Event Counts and Durations

Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.

Event Counts

A series of methods that introduced existing, and developed new, statistical models for event counts for political science research.
The Generalization in the Generalized Event Count Model, With Comments on Achen, Amato, and Londregan
King, Gary, and Curtis S Signorino. 1996. The Generalization in the Generalized Event Count Model, With Comments on Achen, Amato, and Londregan, Political Analysis 6: 225–252.Abstract
We use an analogy with the normal distribution and linear regression to demonstrate the need for the Generalize Event Count (GEC) model. We then show how the GEC provides a unified framework within which to understand a diversity of distributions used to model event counts, and how to express the model in one simple equation. Finally, we address the points made by Christopher Achen, Timothy Amato, and John Londregan. Amato's and Londregan's arguments are consistent with ours and provide additional interesting information and explanations. Unfortunately, the foundation on which Achen built his paper turns out to be incorrect, rendering all his novel claims about the GEC false (or in some cases irrelevant).
Presidential Appointments to the Supreme Court: Adding Systematic Explanation to Probabilistic Description
King, Gary. 1987. Presidential Appointments to the Supreme Court: Adding Systematic Explanation to Probabilistic Description, American Politics Quarterly 15: 373–386.Abstract
Three articles, published in the leading journals of three disciplines over the last five decades, have each used the Poisson probability distribution to help describe the frequency with which presidents were able to appoint United States Supreme Court Justices. This work challenges these previous findings with a new model of Court appointments. The analysis demonstrates that the number of appointments a president can expect to make in a given year is a function of existing measurable variables.
Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model
King, Gary. 1988. Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model, American Journal of Political Science 32: 838-863.Abstract
This paper presents analytical, Monte Carlo, and empirical evidence on models for event count data. Event counts are dependent variables that measure the number of times some event occurs. Counts of international events are probably the most common, but numerous examples exist in every empirical field of the discipline. The results of the analysis below strongly suggest that the way event counts have been analyzed in hundreds of important political science studies have produced statistically and substantively unreliable results. Misspecification, inefficiency, bias, inconsistency, insufficiency, and other problems result from the unknowing application of two common methods that are without theoretical justification or empirical unity in this type of data. I show that the exponential Poisson regression (EPR) model provides analytically, in large samples, and empirically, in small, finite samples, a far superior model and optimal estimator. I also demonstrate the advantage of this methodology in an application to nineteenth-century party switching in the U.S. Congress. Its use by political scientists is strongly encouraged.
Event Count Models for International Relations: Generalizations and Applications
King, Gary. 1989. Event Count Models for International Relations: Generalizations and Applications, International Studies Quarterly 33: 123–147.Abstract
International relations theorists tend to think in terms of continuous processes. Yet we observe only discrete events, such as wars or alliances, and summarize them in terms of the frequency of occurrence. As such, most empirical analyses in international relations are based on event count variables. Unfortunately, analysts have generally relied on statistical techniques that were designed for continuous data. This mismatch between theory and method has caused bias, inefficiency, and numerous inconsistencies in both theoretical arguments and empirical findings throughout the literature. This article develops a much more powerful approach to modeling and statistical analysis based explicity on estimating continuous processes from observed event counts. To demonstrate this class of models, I present several new statistical techniques developed for and applied to different areas of international relations. These include the influence of international alliances on the outbreak of war, the contagious process of multilateral economic sanctions, and reciprocity in superpower conflict. I also show how one can extract considerably more information from existing data and relate substantive theory to empirical analyses more explicitly with this approach.
Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator
King, Gary. 1989. Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator, American Journal of Political Science 33: 762–784.Abstract
This paper discusses the problem of variance specification in models for event count data. Event counts are dependent variables that can take on only nonnegative integer values, such as the number of wars or coups d’etat in a year. I discuss several generalizations of the Poisson regression model, presented in King (1988), to allow for substantively interesting stochastic processes that do not fit into the Poisson framework. Individual models that cope with, and help analyze, heterogeneity, contagion, and negative contagion are each shown to lead to specific statistical models for event count data. In addition, I derive a new generalized event count (GEC) model that enables researchers to extract significant amounts of new information from existing data by estimating features of these unobserved substantive processes. Applications of this model to congressional challenges of presidential vetoes and superpower conflict demonstrate the dramatic advantages of this approach.
A Seemingly Unrelated Poisson Regression Model
King, Gary. 1989. A Seemingly Unrelated Poisson Regression Model, Sociological Methods and Research 17: 235–255.Abstract
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
A Correction for an Underdispersed Event Count Probability Distribution
Winkelmann, Rainer, Curtis Signorino, and Gary King. 1995. A Correction for an Underdispersed Event Count Probability Distribution, Political Analysis: 215–228.Abstract
We demonstrate that the expected value and variance commonly given for a well-known probability distribution are incorrect. We also provide corrected versions and report changes in a computer program to account for the known practical uses of this distribution.
Demographic Forecasting
Girosi, Federico, and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract - see sections on dealing with small death counts
We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning. As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Duration of Parliamentary Governments

A statistical model, and related work, that united two warring scholarly literatures.
A Unified Model of Cabinet Dissolution in Parliamentary Democracies
King, Gary, James Alt, Nancy Burns, and Michael Laver. 1990. A Unified Model of Cabinet Dissolution in Parliamentary Democracies, American Journal of Political Science 34: 846–871.Abstract
The literature on cabinet duration is split between two apparently irreconcilable positions. The attributes theorists seek to explain cabinet duration as a fixed function of measured explanatory variables, while the events process theorists model cabinet durations as a product of purely stochastic processes. In this paper we build a unified statistical model that combines the insights of these previously distinct approaches. We also generalize this unified model, and all previous models, by including (1) a stochastic component that takes into account the censoring that occurs as a result of governments lasting to the vicinity of the maximum constitutional interelection period, (2) a systematic component that precludes the possibility of negative duration predictions, and (3) a much more objective and parsimonious list of explanatory variables, the explanatory power of which would not be improved by including a list of indicator variables for individual countries.
Transfers of Governmental Power: The Meaning of Time Dependence
Alt, James E, and Gary King. 1994. Transfers of Governmental Power: The Meaning of Time Dependence, Comparative Political Studies 27: 190–210.Abstract
King, Alt, Burns, and Laver (1990) proposed and estimated a unified model in which cabinet durations depended on seven explanatory variables reflecting features of the cabinets and the bargaining environments in which they formed, along with a stochastic component in which the risk of a cabinet falling was treated as a constant across its tenure. Two recent research reports take issue with one aspect of this model. Warwick and Easton replicate the earlier findings for explanatory variables but claim that the stochastic risk should be seen as rising, and at a rate which varies, across the life of the cabinet. Bienen and van de Walle, using data on the duration of leaders, allege that random risk is falling. We continue in our goal of unifying this literature by providing further estimates with both cabinet and leader duration data that confirm the original explanatory variables’ effects, showing that leaders’ durations are affected by many of the same factors that affect the durability of the cabinets they lead, demonstrating that cabinets have stochastic risk of ending that is indeed constant across the theoretically most interesting range of durations, and suggesting that stochastic risk for leaders in countries with cabinet government is, if not constant, more likely to rise than fall.
Aggregation Among Binary, Count, and Duration Models: Estimating the Same Quantities from Different Levels of Data
Alt, James E, Gary King, and Curtis Signorino. 2001. Aggregation Among Binary, Count, and Duration Models: Estimating the Same Quantities from Different Levels of Data, Political Analysis 9: 21–44.Abstract
Binary, count and duration data all code discrete events occurring at points in time. Although a single data generation process can produce all of these three data types, the statistical literature is not very helpful in providing methods to estimate parameters of the same process from each. In fact, only single theoretical process exists for which know statistical methods can estimate the same parameters - and it is generally used only for count and duration data. The result is that seemingly trivial decisions abut which level of data to use can have important consequences for substantive interpretations. We describe the theoretical event process for which results exist, based on time independence. We also derive a set of models for a time-dependent process and compare their predictions to those of a commonly used model. Any hope of understanding and avoiding the more serious problems of aggregation bias in events data is contingent on first deriving a much wider arsenal of statistical models and theoretical processes that are not constrained by the particular forms of data that happen to be available. We discuss these issues and suggest an agenda for political methodologists interested in this very large class of aggregation problems.

Software

King, Gary. 2002. COUNT: A Program for Estimating Event Count and Duration Regressions.Abstract
A stand-alone, easy-to-use program for running event count and duration regression models, developed by and/or discussed in a series of journal articles by me. (Event count models have a dependent variable measured as the number of times something happens, such as the number of uncontested seats per state or the number of wars per year. Duration models explain dependent variables measured as the time until some event, such as the number of months a parliamentary cabinet endures.) Winner of the APSA Research Software Award.

Related Data