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In this paper we propose Bayesian and frequentist approaches to
ecological inference, based on R 3 C contingency tables, including a
covariate. The proposed Bayesian model extends the binomial-beta
hierarchical model developed by KING, ROSEN and TANNER (1999) from
the 2 3 2 case to the R 3 C case. As in the 2 3 2 case, the inferential
procedure employs Markov chain Monte Carlo (MCMC) methods. As
such, the resulting MCMC analysis is rich but computationally intensive.
The frequentist approach, based on ®rst moments rather than on the
entire likelihood, provides quick inference via nonlinear least-squares,
while retaining good frequentist properties. The two approaches are
illustrated with simulated data, as well as with real data on voting patterns
in Weimar Germany. In the ®nal section of the paper we provide an
overview of a range of alternative inferential approaches which trade-off
computational intensity for statistical ef®ciency.
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1 Introduction to ecological inference

Ecological inference is the process of inferring discrete individual behavior from data

available on groups of individuals ± or, more precisely, learning about the cells of p

cross-tabulations from the observed marginal totals in each. Ecological inference is a

special, and somewhat easier, case than general issues of aggregation, which can span
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continuous individual variables, time series problems, and many other issues. How-

ever, in all aggregation problems, including ecological inference, assumptions (and

when possible inferences) about the process by which data get aggregated substitute

for information lost in the aggregation process.

When a valid sample of individuals is available, direct inference about the cells of

the population cross-tabulation is possible and so ecological inference is unnecessary

(and of course when a census is available, direct calculation makes any type of

inference unnecessary). Unfortunately, in many academic ®elds and areas of public

policy, the only available information is ecological. For example, political scientists

have sought for half a century to learn how and why the democratic institutions of

Weimar Germany led to the popular election of one of the most destructive regimes

in history. Since no surveys were conducted, a key part of this inquiry involves using

ecological data to make inferences about who voted for the Nazi Party. We analyze

these data in this paper.

For another example, in applying the U.S. Voting Rights Act, the law requires

information about whether African Americans and other ethnic minorities vote

differently than the white majority. Since political polls about racially divisive

contests are notoriously untrustworthy, even when they are available, one must draw

inferences about quantities like the fraction of African Americans voting for the

Democrats from separate Census data on the numbers of blacks and electoral data on

the number of people voting for the Democrats. The secret ballot prevents one from

computing the cross-tabulation directly.

The inherent dif®culties of making ecological inferences, combined with their

necessity in these ®elds, and others such as epidemiology, marketing, campaign

targeting, education, sociology, and political science, should keep ecological infer-

ence on the agenda for some time. The statistical ®eld dates to OGBURN and GOLTRA

(1919) and GEHLKE (1917), who, in the context of studies of political behavior, ®rst

recognized the ecological inference problem, and ROBINSON (1950), who ®rst

formalized it. GOODMAN (1953, 1959) proposed the ®rst statistical approach to the

problem; DUNCAN and DAVIS (1953) offered the ®rst formal deterministic method;

and KING (1997) gave the ®rst model that combined available statistical and

deterministic information from both approaches. KING, ROSEN, and TANNER (1999),

who also combined statistical and deterministic information, offered the ®rst

hierarchical Bayesian approach to ecological inference.

The ecological inference problem has been seen as dif®cult enough that most

analysts have focused on the 2 3 2 case. Of the methods that have been proposed for

larger tables, only direct generalizations of GOODMAN (1953, 1959) have been used

much in real applications. Unfortunately, Goodman's statistical approach in the

R 3 C case usually gives at least some out of bounds point estimates, and always

implies a posterior distribution with support over impossible parts of the parameter

space.
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2 Hierarchical models for the 2 3 2 case

KING, ROSEN and TANNER's (1999) model uses Markov chain Monte Carlo (MCMC)

methods. They describe the basic probem in terms of an example from KING (1997).

Speci®cally, for each of p electoral precincts, two variables are observed, the fractions

of voting-age people who turn out to vote (Ti) and the fraction of voting-age people

who are black (X i), along with the number of voting age people (Ni). In addition, there

are two unobserved quantities of interest, the fraction of blacks who vote (âb
i ) and the

fraction of whites who vote (âw
i ). Denoting the number of voting-age people who turn

out to vote by T 9i, KING et al. (1999) propose hierarchical Bayesian models, at the top

level of which T 9i is assumed to follow a binomial distribution with probability equal to

èi � X iâb
i � (1ÿ X i)âw

i and count Ni. At the second level of the hierarchy, it is

assumed that âb
i is sampled from a beta distribution with parameters cb and db, and

that âw
i is sampled independently from a beta distribution with parameters cw and dw.

Using the beta family of distributions which is quite rich allows one to relax the single-

cluser assumption in KING (1997). At the third and ®nal level, KING et al. (1999)

assume that the unknown parameters cb, db, cw and dw follow exponential distribu-

tions. Given this three-stage model, these authors construct the posterior distribution

of all the parameters. Using MCMC methods, they estimate the unknown quantities,

based on samples drawn from the posterior distribution.

KING et al. (1999) expand the above-described hierarchical model by incorporating

covariates (Zi). In particular, at the second stage of the model, they assume that âb
i

is sampled from a beta distribution with parameters db exp(á� âZi) and db,

whereas âw
i is sample independently from a beta distribution with parameters

dw exp(ã� äZi) and dw. This assumption implies that the log odds for blacks depend

linearly on the covariate Zi, with intercept á and slope â. Analogously, the log odds

for whites depend on Zi with intercept ã and slope ä. Incorporating covariates allows

the distribution to be more ¯exible by allowing more complicated shapes of densities.

At the third level of the hierarchical model with covariates, the regression parameters

are assumed to be a priori independent with a ¯at prior on these parameters, whereas

db and dw are assumed to follow exponential distributions. Having drawn samples

from the posterior distribution of the parameters, KING et al (1999) are able to assess

the signi®cance of the covariate.

3 Hierarchical models for the R3C case ± Bayesian inference

3.1 The multinomial-Dirichlet hierarchical model

The binomial-beta model with covariates, proposed by KING et al. (1999) and

summarized in Section 2, is extended in this section to a multinomial-Dirichlet

model, allowing for analysis of R 3 C tables (C . 2 and R > 2), with covariates. We

introduce the ecological inference problem in the R 3 C case with an example on

voting patterns in Weimar Germany (see Table 1). (This example will be considered

in detail in Section 5.) The data for this example consist of a 4 3 4 table for each of
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p � 695 German Kreise (electoral precincts). For Kreis (the singular of Kreise)

i(i � 1, . . . , p), we observe the fractions of voting-age people who turn out to vote

for speci®c parties (T1i, . . . , TC,i) and the fractions of voting-age people in different

social classes (X 1i, . . . , X R,i). The unobserved quantities (âi
rc, r � 1, . . . , R,

c � 1, . . . , C ÿ 1) are the fractions of people in social class r, who vote for party c.

To describe the multinomial-Dirichlet model, suppose there are p Kreise. Let

T 9i � (T 91i, T 92i, . . . , T 9Ci) be the numbers of voting-age people who turn out to vote

for the different parties. At the ®rst stage of the hierarchy we assume that T9i follows

a multinomial distribution with parameter vector èi � (è1i, è2i, . . . , èC,i)
t and count

Ni, where èci equals
PR

r�1â
i
rc X ri for c � 1, . . . , C, under the constraint thatPC

c�1èci � 1. Note that the èci's and the âi
rc's depend on a covariate Zi in a manner

to be speci®ed at the second stage. It therefore follows that the contribution of the

data of Kreis i to the likelihood is

èT 91i

1i 3 . . . 3 èT 9Cÿ1,i

Cÿ1,i 3 (1ÿ
XCÿ1

c�1

èci)
Niÿ
PCÿ1

c�1
T 9ci :

At the second stage of the hierarchical model, we assume that the vectors which we

denote âi
r � (âr1, âr2, . . . , âr,Cÿ1) t (i � 1, . . . p, r � 1, . . . , R) follow independent

Dirichlet distributions with parameters (dr exp(ãr1 � är1 Zi), . . . , dr exp(ãr,Cÿ1�
är,Cÿ1 Zi), dr). Thus, the second-stage means of the âi

rc's are

dr exp(ãrc � ärc Zi)

dr 1�PCÿ1
j�1 exp(ãrj � ärj Zi)

� � � exp(ãrc � ärc Zi)

1�PCÿ1
j�1 exp(ãrj � ärj Zi)

, (1)

for i � 1, . . . , p, r � 1, . . . , R and c � 1, . . . , C ÿ 1, which implies that

log
E(âi

rc)

E(âi
rC)
� ãrc � ärc Zi: (2)

Table 1. Notation for Kreis i in a 4 3 4 table

Social Class Voting Decision

Far-Left or Left Far-Right NSDAP Other

White Collar âi
11 âi

12 âi
13 1ÿ

X3

c�1

âi
1c X1i

Blue Collar âi
21 âi

22 âi
23 1ÿ

X3

c�1

âi
2c X2i

Unemployed âi
31 âi

32 âi
33 1ÿ

X3

c�1

âi
3c X3i

Others âi
41 âi

42 âi
43 1ÿ

X3

c�1

âi
4c 1ÿ

X3

r�1

X ri

T1i T2i T3i 1ÿ
X3

c�1

Tci
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In other words, the log odds depend linearly on the covariate Zi. We will refer to

E(ârc)=E(ârC) as the odds, although this term usually describes the ratio of the

fractions ârc=ârC , and not the ratio of the expected fractions.

At the third and ®nal stage, we treat the regression parameters (the ãrc's and the

ärc's) to be a priori independent, putting a ¯at prior on these regression parameters.

The parameters dr, r � 1, . . . , R, are assumed to follow exponential distributions

with means 1=ë.

3.2 Inference via Markov Chain Monte Carlo Methods

By Bayes' theorem, the posterior distribution is proportional to the likelihood times

the prior. Thus, given the three-stage model, it then follows that the posterior

distribution for the parameters is proportional to

p(datajâi, i � 1, . . . , p) 3 p( âi, i � 1, . . . , pjä) 3 p(ä)

�
Yp

i�1

YC
c�1

èT 9ci

ci 3
Yp

i�1

YR

r�1

3
Ã dr

PC
c�1 exp(ãrc � ärc Zi)

� �
QC

c�1 Ã(dr exp(ãrc � ärc Zi))

YC
c�1

âi
rc

dr exp(ã rc�ä rc Zi)ÿ1

8<:
9=; (3)

3 exp ÿë
XR

r�1

dr

 !
,

where âi denotes all the âi
rc's in the ith Kreis and ä � (ãrc, ärc, dr)

R,Cÿ1
r,c�1,1. Obtaining

the marginals of this posterior distribution using high-dimensional numerical integra-

tion is infeasible. Instead we use the Gibbs sampler (TANNER, 1996). To implement

the Gibbs sampler, we need the following conditional distributions; that is, we need

the distribution of each unknown parameter conditional on the full set of the

remaining parameters

p(âi
rcjfâi

jkgk 6�c

j6�r , dr, ãrc, ärc) / èT 9ci

ci 3 èT 9Ci

Ci 3 âi
rc

dr exp(ã rc�ä rc Zi)ÿ1 3 âi
rC

drÿ1

p(ãrcjfâi
rcg p

i�1, dr, färcgCÿ1
c�1 , fãrjg j6�c)

/
Yp

i�1

Ã dr

PC
c�1 exp(ãrc � ärc Zi)

� �
Ã(dr exp(ãrc � ärc Zi))

âi
rc

dr exp(ã rc�ä rc Zi)

p(ärcjfâi
rcg p

i�1, dr, färjg j6�c, fãrcgCÿ1
c�1 )

/
Yp

i�1

Ã dr

PC
c�1 exp(ãrc � ärc Zi)

� �
Ã(dr exp(ãrc � ärc Zi)� âi

rc
dr exp(ã rc�ä rc Zi)
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p(drjfâi
rcg(Cÿ1, p)

(c,i)�(1,1), fãrcgCÿ1
c�1 , färcgCÿ1

c�1 )

/
Yp

i�1

Ã(dr

PC
c�1 exp(ãrc � ärc Zi)�QC

c�1 Ã(dr exp(ãrc � ärc Zi))

YC
c�1

âi
rc

dr exp(ã rc�ä rc Zi)

( )
3 exp(ÿëdr):

To generate a Gibbs sampler (Markov) chain, one draws a random deviate from

each of these full conditionals, in turn updating the values of the variable after each

draw. Unfortunately none of these distributions are standard distributions for which

prewritten sampling subroutines are available. For this reason, we use the Metropolis

algorithm (METROPOLIS et al., 1953) to sample from each of these distributions.

Thus, to sample a value for ãrc, ärc or dr, a candidate value for the next point in the

Metropolis chain is drawn from the univariate normal distribution with mean equal to

the current sample value and variance suf®ciently large to allow for variation around

the current sample value. To sample a value for âi
rc, a candidate value for the next

point in the Metropolis chain is drawn from the uniform distribution. Note that sincePC
c�1â

i
rc � 1, for each r, a value âi

rc is sampled from a uniform distribution over the

interval [0, 1ÿP j6�câi
rj]. The candidate value is then accepted or rejected according

to the Metropolis scheme of evaluating ð(y�)=ð(y), the ratio of the full conditional

at the candidate value to the full conditional evaluated at the current point in the

chain. With probability á(y, y�) � minfð(y�)=ð(y), 1g the candidate value is

accepted; otherwise it is rejected (TANNER, 1996). The Metropolis algorithm is

iterated, and the ®nal value in this chain is treated as a deviate from the full

conditional distribution. In the examples considered in this article, we iterated the

Metropolis algorithm three times to yield a deviate. A rigorous theory for the

convergence of the Gibbs sampler and other MCMC methods is given in TIERNEY

(1994).

A variety of methods are available for assessing convergence for a given data set.

A critical review of these methods is presented in COWLES and CARLIN (1996). A

very popular method presented in GELMAN and RUBIN (1992) is based on comparing

the between-chain variation (among multiple chains) to the within-chain variation.

Clearly, if the between-chain variation is much larger than the within chain variation,

further iteration is required. Although this approach can fail (see TANNER 1996), it

generally works well in practice and is fairly simple to implement.

3.3 Simulated examples

To illustrate the Bayesian methodology, we now consider two simple examples. In

the ®rst example, data from 150 precincts consisting of 3 3 3 tables were simulated

from the hierarchical model. In all examples in this section ë was taken equal to 0.5.

In addition, an independent normal random deviate was generated for each precinct

with true ärc's equal to zero. Clearly, in such a situation, one would expect the

methodolgy to recognize that the covariate information is irrelevant. Figure 1

presents the posterior distributions of the ärc's, the slope parameters for regressing
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the log odds (2) on the covariate. The chains were iterated 300,000 times, with the

results based on the ®nal 200,000 iterates. It is seen that zero is a plausible value in

all of the histograms. Table 2 presents the posterior mean and standard deviation for

each of the regression parameters.

As a second example of using Bayesian inference, we consider a situation in which

the covariate is important. The data were generated from the hierarchical model, but

this time the covariate is related to the log odds according to equation (2). Figure 2

shows the posterior distributions of the slope parameters (ärc's). For this example, it

is seen that the bulk of the mass of the marginal posterior distributions are removed

from zero indicating the importance of the covariate. Table 3 presents the posterior

means and standard deviations of the regression parameters.

Fig. 1. Posterior distributions of the slope parameters (ärc's) with an unimportant covariate
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Table 2. Posterior means and standard deviations of the regression

parameters for the simulated data with an unimportant covariate

Parameter Posterior Parameter Posterior

Mean SD Mean SD

ã11 ÿ0.227 0.284 ä11 ÿ0.002 0.174

ã12 0.508 0.270 ä12 0.235 0.169

ã21 ÿ0.307 0.261 ä21 0.079 0.194

ã22 0.649 0.282 ä22 ÿ0.061 0.203

ã31 ÿ0.750 0.209 ä31 0.057 0.142

ã32 ÿ0.761 0.232 ä32 0.102 0.178

Fig. 2. Posterior distributions of the slope parameters (ärc's) with an important covariate
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4 Hierarchical models for the R3C case- nonlinear least-squares estimation

4.1 Nonlinear least-squares estimation

In the previous section, we considered full Bayesian inference. This approach based

on MCMC methods yields a rich analysis of the data. Unfortunately, the full Bayesian

approach can be quite computationally intensive, and for complex models the

assessment of convergence may not be straightforward. For these reasons, we now

consider a simpler nonlinear least-squares approach which provides quick inference,

while retaining good frequentist properties. We do not advocate one method above

another. Rather, as discussed in Section 6, we feel that these methods are comple-

mentary and important tools in the analyses of ecological inference data. Although

GOODMAN's (1953, 1959) method is also a least squares estimator, our nonlinear

least-squares approach is an approximation to our MCMC method, not Goodman's.

In particular, even though our method, like Goodman's, only gives estimates of the

moments at present, it, unlike Goodman's, is consistent with a posterior that has

positive density only in regions that are logically possible.

We introduce nonlinear least-squares estimation by ®rst considering the general

non-linear regression model, expressed as

Y � f (x, è)� E, (4)

where Y is an observed response or dependent variable, x is a vector of independent

variables, E is an unobserved error with mean zero, and è is a vector of unknown

parameters. The nonlinear function f is assumed to be known. Upon observing

(x1, Y1), . . . , (xn, Yn), nonlinear least-squares estimation of è consists of minimizing

the sum of squared deviations

SSE(è) �
Xn

i�1

(Yi ÿ f (xi, è))2 (5)

over all possible è's. Note that unlike the case in linear regression, minimizing (5)

requires iterative procedures. In (5), f (xi, è) is the mean or the ®rst moment of Yi,

according to model (4), and (Yi ÿ f (xi, è))2 is the squared Euclidean distance

Table 3. Posterior means and standard deviations of the regression

parameters for the simulated data with an important covariate

Parameter Posterior Parameter Posterior

Mean SD Mean SD

ã11 0.288 0.182 ä11 1.623 0.161

ã12 0.421 0.163 ä12 2.211 0.140

ã21 ÿ1.549 0.677 ä21 ÿ1.058 0.348

ã22 0.923 0.161 ä22 ÿ1.590 0.134

ã31 ÿ0.768 0.155 ä31 ÿ1.207 0.117

ã32 ÿ1.466 0.207 ä32 ÿ1.410 0.146
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between Yi and f (xi, è). The parameter vector è characterizes the mean function. In

the next section, this nonlinear least-squares methodology is used to etimate the mean

parameters (the ãrc's and the ärc's) and to test the signi®cance of the covariate. This

method does not require simulation and is therefore faster than MCMC methods. A

disadvantage of this method is that it does not yield estimates of the âi
rc's, however

one can obtain an estimate of the mean of âi
rc conditional on the value of a covariate.

4.2 Nonlinear least squares for ecological inference

The model considered in this section consists of the ®rst two levels of the hierarchical

model described in Section 3.1. At the ®rst stage of the hierarchy we assume that T9i
follows a multinomial distribution with parameter vector èi � (è1i, è2i, . . . , èC,i)

t

and count Ni, where èci equals
PR

r�1â
i
rc X ri for c � 1, . . . , C, under the constraint

that
PC

c�1èci � 1. At the second stage of the hierarchical model, we assume that the

mean of âi
rc is equal to exp(ãrc � ärc Zi)=(1�PCÿ1

j�1 exp(ãrj � ärj Zi)), for r � 1,

. . . , R, c � 1, . . . , C ÿ 1 and i � 1, . . . , p.

For each table i � 1, . . . , p, de®ne Tci � T 9ci=Ni, for c � 1, . . . , C, and âi �
(âi

rc)R,C
r,c�1,1 (subject to

PC
c�1â

i
rc � 1 for each r). De®ne also ç � (ãrc, ärc)R,C

r,c�1,1

(with constraints ãrC � ärC � 0). From the ®rst level of the hierarchical model, it

follows that T9ijâi is Multinomial fNi; E(Tcijâi)
C
c�1g, where

E(Tcijâi) �
XR

r�1

X riâ
i
rc �

XR

r�1

(X 9ri=Ni)â
i
rc:

However, to facilitate inference we want the expectation conditional on ç.

By iterating the expectation we have:

mi
c(ç) � E(Tcijç)

� EfE(Tcijâi, ç)jçg

� E
XR

r�1

X riâ
i
rcjç

 !

�
XR

r�1

X ri E(âi
rcjç)

for c � 1, . . . , C ÿ 1 and i � 1, . . . , p. The mi
c(ç)'s (c � 1, . . . , C ÿ 1) are mean

functions, and E(âi
rcjç) is given in (1). The least-squares approach consists of

solving

min
ç

Xp

i�1

XCÿ1

c�1

(Tci ÿ mi
c(ç))2 (6)

to obtain the estimate of ç. The method of inference adopted in this section is based

on ®rst moments. As seen in equation (1), while the dr's are used to model variance
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they do not appear in the mean function. As such, they are eliminated in this ®rst

moment inferential procedure. By including second order moment conditions in the

estimation procedure, the ef®ciency may be increased and the dr's estimated as a

byproduct ± see Section 6.

To obtain the standard errors of the parameter estimates, let SS �P p
i�1

PCÿ1
c�1 (Tci ÿ mi

c(ç))2 �P p
i�1ssi and de®ne G � =(SS), where = is the gradient

with respect to ç. It then follows that the asymptotic variance of ç̂ is

avar(ç̂) � f=G(ç̂) tV̂ÿ1=G(ç̂)gÿ1, (7)

where V̂ �P p
i�1gi(ç̂)gi(ç̂) t. The vector gi is the ith summand of G, that is,

gi � =(ssi). In Section 6, we will see that formula (7) is a general formula that can be

used in the context of other moment-based estimation methods. The explicit formulas

for the ®rst and second derivatives are presented in Appendix 1.

Starting values for ç can be obtained by recognizing that the mean function of Tci

forms a linear model with respect to the composite parameter E(âi
rcjç). To estimate

the composite parameters, the covariate Zi is ®rst discretized into a number of strata,

and the Tci's are then regressed on the predictors Xri, r � 1, . . . , R, within each

stratum. A good set of starting values can then be obtained by solving for ç from the

composite parameter estimates. An alternative method (JENNRICH, 1969, p. 642)

involves a random search over p values of ç and uses the one that minimizes the

least squares objective function, as the starting value.

The following proposition provides regularity conditions under which the least-

squares estimator ç̂ is consistent for ç and asymptotically normal with mean ç and

variance-covariance given by (7). The result is most conveniently formulated by

treating (T t
i , X t

i , Zi)
p
i�1 as independent and identically distributed random vectors,

where Ti � (Tci)
C
c�1 and Xi � (X ri)

R
r�1. Denote Tred

i � (Tci)
Cÿ1
c�1 .

PROPOSITION 1 Suppose that var(Tred
i jXi Zi) is nonsingular for all Xi and Zi.

Suppose var(Zi) . 0. Then, for almost all true parameters ç in the Lebesgue sense,

there exists a sequence of local least square estimators ç̂p such that

avar(ç̂p)1=2(ç̂p ÿ ç)!d N (0, I)

as p!1.

PROOF. This proposition is proved in a similar manner to the consistency and

asymptotic normality of the local maximum likelihood estimates [see, e.g., SERFLING

(1980, Theorem 4.2.2, use the multi-dimensional generalization), or REDNER and

WALKER (Theorem 3.1, 1984)], in which regularity conditions of three types are

involved: smoothness conditions, integrability conditions, and local identi®cation.

The only nontrivial condition in the current context is the local identi®cation-type

condition, as ensured by the nonsingularity of the expected Hessian I �(ç) �
ÿE==(SS), together with the nonsingularity of the variance of the `score vector'
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V(ç) � varf=(SS)g. (Note that unlike the likelihood situation, here I �(ç) is not

proportional to V(ç) in general.) Using the analyticity of I �(:) it is easy to show that

as a consequence of a nonzero var(Zi), the set A must have zero Lebesgue measure,

where A is the set of ç giving a zero detfI �(ç)g. This together with the

nonsingularity of var(Tred
i jXi, Zi) also ensure the nonsingularity of V(ç) for almost

all ç. h

Comments:

1. The nonsingularity of var(Tred
i jZi, Xi) implies that there should not exist any

further constraints on the components of Ti, except that all its components add to

one. This condition is needed to guarantee the nonsingularity of the asymptotic

variance.

2. The condition var(Zi) . 0 is also necessary, since without this condition the

regression coef®cients would not be identi®able. It is noted in the 2 3 2 case when

Z � X that when the tomography lines have very similar slopes, by the formula-

tion of the model, X is a near constant. In such a case, the slopes and intercepts of

the model will be poorly identi®ed.

3. An interesting situation is when a component of Xi is taken as a covariate. For

example, in the 2 3 2 case let Z � X . It then can be shown that the parameters

are not locally identi®able (with a singular I �(ç)) on a set of measure zero of

true parameters. Speci®c elements of this set include: (i) ä11 � ä21 � 0, and (ii)

(ã11, ä11) � (ã21, ä21). In these cases the asymptotic normality results fail. Note

that this is a clear advantage of the model logit E(âr1jX , ç) � ãr1 � är1 X , over

the model E(âr1jX , ç) � ãr1 � är1 X ± the latter would have nonidenti®able

parameter values everywhere, as is easy to see from the nonidenti®ability of the

parameters in the mean function E(T1jX , ç), or by checking the Hessian I �(ç).

For example, note that

E(T1jX , ç) � X (ã11 � ä11 X )� (1ÿ X )(ã21 � ä21 X )

� ã21 � (ã11 ÿ ã21 � ä21)X � (ä11 ÿ ä21)X 2,

which involves three coef®cients of the powers of X but four parameters; and that

I �(ç) / E(vv t) where v � [X , X 2, 1ÿ X , (1ÿ X )X ] t is a set of linearly de-

pendent random vectors.

4. As an implicaton of the previous comment, the power of a test against the null

hypothesis of a zero covariate effect (ä11 � ä21 � 0) will be unity in the large

sample ( p) limit, for almost all true parameters, in the present approach.

5. For the purpose of testing the null hypothesis of no covariate effect, we suggest

using the working model logit E(âr1jX , ç) � ãr1 � är1 h(X ) and test är1 � 0, by,

for example, the Wald statistic. Here h(X ) is a nonlinear function of X , which

could be logit(X ) � log(X=(1ÿ X )), or I[X . 0:5]. This corresponds to using the

transformed covariate Z � h(X ), which makes the expected Hessian I �(ç)
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nonsingular. This model does not suffer from nonidenti®ability at the null value,

guarantees the asymptotic normality under the null hypothesis, and therefore also

guarantees the correct asymptotic type-one error rate.

6. It is noted that the local nonidenti®ability is associated with the use of the mean

function alone in the least-squares procedure. It is potentially possible to avoid

such problems by augmenting the least-squares method and modeling the second

moment of âi or Ti in addition to the ®rst moment.

4.2 Simulated examples

In this section we again use the simulated data sets described in Section 3.3, to

demonstrate the nonlinear least-squares methodology. The point estimates along with

approximate standard errors, computed according to (7), are presented in Table 4 and

Table 5 for the unimportant and important covariate, respectively. Note that with the

exception of ä21, the regression parameters in Table 4 are not signi®cantly different

from zero. The least-squares standard errors are larger than the corresponding values

obtained in the full Bayesian approach (see Table 2). This is expected ± the data were

generated according to the hierarchical model and the full Bayesian approach which

assumes this model will be more ef®cient than the ®rst moment approach. As

discussed further in Section 6, the ®rst moment approach is expected to be more

robust against departures from the full hierarchical model. By modeling the variance

Table 4. Nonlinear least-squares point estimates and standard errors

of the regression parameters for the simulated data with an unimportant

covariate

Parameter Point

Estimate

SE Parameter Point

Estimate

SE

ã11 0.581 0.522 ä11 ÿ0.271 0.462

ã12 0.937 0.450 ä12 0.065 0.379

ã21 ÿ1.815 1.391 ä21 1.774 0.821

ã22 0.849 0.413 ä22 0.410 0.353

ã31 ÿ0.972 0.387 ä31 0.103 0.375

ã32 ÿ1.200 0.363 ä32 0.221 0.442

Table 5. Nonlinear least-squares point estimates and standard errors

of the regression parameters for the simulated data with an important

covariate

Parameter Point

Estimate

SE Parameter Point

Estimate

SE

ã11 0.466 0.180 ä11 1.563 0.211

ã12 0.347 0.210 ä12 2.259 0.179

ã21 ÿ2.788 0.874 ä21 ÿ2.539 0.587

ã22 1.011 0.182 ä22 ÿ1.625 0.169

ã31 ÿ0.805 0.152 ä31 ÿ1.011 0.181

ã32 ÿ1.598 0.285 ä32 ÿ1.470 0.282
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one can potentially realize a more ef®cient estimator, i.e. smaller standard error (see

Section 6).

Examining Table 5, evidence of a covariate effect is seen. Again, the standard

errors are usually larger than the corresponding values in the full Bayesian case.

Interestingly, comparing the least-squares estimates of the slopes and the correspond-

ing full Bayesian values to the true values of (ä11, ä12, ä21, ä22, ä21, ä32) �
(1:5, 2:0, ÿ1:3, ÿ1:5, ÿ1:0, ÿ1:2), neither approach is seen to dominate uniformly.

5 Applications to voting patterns in Weimar Germany

5.1 Overview of the data

We began with aggregate data from FALTER and HAÈ NISCH (1989; see also HAÈ NISCH,

1989) on 1932 electoral results in voting for the German Reichstag, and census data

on social occupations and religious denominations, in the Weimar Republic. The

observations include 1246 contiguous geographic units, with many changes over

time, resulting in only about 1000 towards the end. We aggregated these units into

695 Kreise that, to the extent possible, remained stable over the entire period. This

facilitated comparisons over time, made possible the comparison of the electoral data

with social data from German census, and enabled exploratory analyses via geo-

graphic mapping with available computerized boundary ®les. Our resulting 695

observations tile the country (with the minor exceptions of one tiny area in Prussia

due to the absence of data, and the `Saarland', becaue it was occupied by France.)

We aggregated the data by hand with the help of OSS map 6289 `Greater Germany ±

Kreis Boundaries July 1, 1944,' and Germany by C. S. HAMMOND & CO. (N.Y.

1924), and by studying population changes over time.

The political parties that ran for of®ce in the 1932 election include the Far Left

(KPD, the communist party); the parties in the Government, which we grouped

together, including primarily the Left (SPD, the Social Democrats) and the Catholic

and Center parties (Zentrum, BVP, and others); the Far Right (DNVP, a small party

preferring a return to monarchy), and the Nazi Party (NSDAP, the National

Socialists). We grouped several very small parties (such as DVP, DSTP) together with

nonvoters. Alternative analyses could be based on different groupings.

From the German Census, our occupational groups included the self-employed,

white collar, blue collar, and the unemployed. We also included `Others', which

includes those outside the regular labor force, including domestic employees, helping

family members, and the nonworking population, most of whom were on ®xed

incomes. We also have data on the fraction of the population in each Kreis that is

Protestant (all but a few percent of non-Protestants are Catholic).

5.2 Overview of the literature

Most prior literature on Nazi voting behavior assumes or argues that the electorate

was organized on the basis of social class. (This is no longer the view of modern

voting behavior outside of this historical case, in part because of changes in
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electorates around the world, but mostly because of better information, largely from

survey research, as well as from more successful theories.) Prior to the 1980s, the

dominant view was that the economic depression led to `middle class panic', and the

Middle Class was the group that most believed gave the Nazis their strongest support.

Then, in a major book, HAMILTON (1982) conducted a very careful analysis of about

two dozen areas that gave nearly homogeneous voting support to the Nazis, examined

the housing stock in each, and concluded that the upper classes (White Collar and

Self-Employed) constituted the core elctoral support of the NSDAP. (Hamilton's

`homogeneous precinct analysis' is common in U.S. Voting Rights Act litigation and

is a special case of DUNCAN and DAVIS' (1953) method of bounds.) Hamilton's major

academic adversary is CHILDERS (1983), who ran GOODMAN's (1953) regression, and

backed up his statistical analysis with archival research and summaries of contempor-

ary accounts of the electoral campaign. Childers concluded that the main class basis

of Nazi support came from the working classes (Blue Collar workers and the

Unemployed).

Although Hamilton and Childers, and numerous other writers, have considered

many other variables, such as religion, and numerous special cases and exceptions,

most of the literature is focused on providing a single, uniform, class-based explana-

tion for all of Germany.

5.3 Empirical analyses

The models we have developed here combine and generalize the statistical methods

used by HAMILTON (1982) and CHILDERS (1983). Despite the goal of the literature,

we see no reason to assume that the basis of Nazi voting was uniform across the

entire country. Thus, we apply our model separately in Protestant areas (where the

Nazis mainly campaigned) and Catholic areas (where the Church was dominant), and

we also allow each area's results to differ by the degree of unemployment in the area

by including unemployment as a covariate. Further modeling could incorporate

spatial effects across Germany. The analyses presented below are not meant to

represent a complete analysis of the data ± they are to illustrate the proposed

methodology.

We began by analyzing a reduced 4 3 4 version of the voting data using the

Bayesian model, as well as the frequentist approach, and con®rmed that both gave

substantively similar results. In this reduced analysis, there seemed to be especially

strong agreement between the predicted voting fractions corresponding to the two

approaches. For this reason we only use the least-squares approach to analyze the

more substantively meaningful 5 3 5 case, avoiding the intensive computations

required in the MCMC analysis.

We now discuss the substantive results from our least squares analysis in the 5 3 5

case. We believe these to be consistent with much qualitative evidence about the

Weimar Republic, and considerable prior research on voting behavior outside

Germany, although they clearly contradict some of the central points in the literature

on Nazi voting behavior. Table 6 and Figure 3 present predicted values of the voting
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Table 6. Predicted voting fractions for each party, for low and high protestant percentages, conditional on social class, corresponding to covariate values Z

(% unemployment): less than 10% (marked 10%), between 10 and 20% (marked 20%), and greater than 20% (marked 30%), based on least-squares analysis

Catholic Areas Protestant Areas

Far-Left Govt. Far-Right NSDAP No vote Far-Left Govt. Far-Right NSDAP No vote

Z � 10%

Self-employed 0.083 0.000 0.013 0.597 0.307 0.000 0.331 0.000 0.000 0.669

White Collar 0.019 0.415 0.064 0.501 0.002 0.188 0.082 0.149 0.349 0.232

Blue Collar 0.081 0.331 0.042 0.081 0.464 0.116 0.132 0.185 0.362 0.205

Unemployed 0.000 0.936 0.064 0.000 0.000 0.141 0.859 0.000 0.000 0.000

Others 0.000 0.761 0.000 0.000 0.239 0.000 0.090 0.021 0.888 0.002

Z � 20%

Self-employed 0.000 0.000 0.000 0.666 0.334 0.000 0.145 0.048 0.433 0.375

White Collar 0.000 0.586 0.047 0.351 0.016 0.000 0.171 0.195 0.385 0.249

Blue Collar 0.131 0.550 0.064 0.125 0.130 0.182 0.167 0.039 0.393 0.220

Unemployed 0.318 0.241 0.033 0.018 0.390 0.232 0.768 0.000 0.000 0.000

Others 0.000 0.791 0.000 0.000 0.209 0.000 0.260 0.064 0.662 0.014

Z � 30%

Self-employed 0.000 0.000 0.000 0.673 0.327 0.000 0.000 0.000 0.999 0.000

White Collar 0.000 0.680 0.028 0.202 0.090 0.000 0.272 0.196 0.327 0.205

Blue Collar 0.145 0.630 0.067 0.133 0.025 0.245 0.180 0.007 0.366 0.203

Unemployed 0.445 0.000 0.000 0.120 0.435 0.263 0.474 0.000 0.023 0.240

Others 0.000 0.755 0.077 0.000 0.169 0.000 0.486 0.129 0.318 0.066
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Fig. 3. Graphic representation of voting support from social groups for Major Parties in Table 6. The

vertical axis of each graph is the proportion of the designated social group voting for the

government parties (marked with an oval), the Nazi party (a solid diamond), and, where

nontrivial, the Far Left (a cross). Nonvoters and smaller parties have been deleted, and lines were

added to connect the symbols, for visual clarity. The horizontal axis in each graph is the percent

unemployment in the Kreis (our covariate). The left column are for Catholic areas, and the right

are for Protestant areas.
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fractions for each party, conditional on the social class, corresponding to the

trichotomized values of our covariate, percent unemployment (less than 10%, be-

tween 10 and 20% and greater than 20%). The predicted values were computed by

plugging the least-squares estimates and the covariate values into (1). Note that the

predicted values are not restricted to being a monotonic function of the covariate.

Although we ®nd that there was indeed a coherent structure to voting behavior in

Weimar Germany, the claim that the class structure had a uniform effect across the

entire nation is unambiguously rejected. Most striking is the massive difference

between the columns of Figure 6, representing Catholic (on the left) and Protestant

(on the right) areas. Contrary to previous literature (although see FALTER, 1991), we

®nd that voting behavior is not constant across these different regions for any social

group.

Moreover, the results for each social group do not differ haphazardly, but rather are

quite systematic and consistent with much qualitative evidence. They are not,

however, consistent with either Hamilton's or Childers' analyses. We now discuss

these results for each of the social groups.

With one exception, White and Blue Collar workers in Catholic areas form the

core supporters of the government parties. These parties included the Catholic parties

and so they had the advantages of both representing the policy interests of these

constituents and providing the selective incentives from the Church's organizational

efforts and social activities. The Nazi Party was also avowedly anti-Catholic, which

also contributed to these results. The exception is the high White Collar support for

the Nazis in low unemployment areas. We believe this anomaly is explained by a

number of local political entrepreneurs who developed Nazi political organizations in

Catholic areas to oppose the Catholic Church; HAMILTON's (1982, pp. 383±385)

historical analysis reveals several signi®cant examples of this, all of which we note

were in areas of low unemployment. In Protestant areas, White and Blue Collar

workers gave plurality support to the Nazis. This seems due to Nazi campaign

strategy, which focused on these areas almost exclusively, and the absence of Church

organizational efforts and selective incentives. Not surprisingly, Blue Collar workers

also gave some support to the Far Laft party.

The self-employed (the third row in Figure 3) voted more for the NSDAP in areas

of higher unemployement, although in Catholic areas with a much higher intercept

(and always above 60%) and in Protestant areas with a much steeper slope (covering

near the entire unit interval). Self-employed workers in low unemployment Protestant

areas did not vote much for the Nazis, but they did not vote much for anyone (67%

were nonvoters, according to Table 6). The self-employed were mostly small shop

owners who feared the large department stores coming into town and taking over

their business: `In Nazi appeals to [self-employed] artisans and merchants, Jews were

identi®ed with those aspects of modern capitalism most repugnant to the old middle

class ± big business, the banks, and of course the department stores' CHILDERS

(1983, p. 68). Self-employed support for the Nazis was also based on deep dislike of

the government who they felt was taxing them disproportionately to pay for war
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reparations and social welfare bene®ts, and their belief that the electoral system

should be organized by occupation, so they would feel better represented, rather than

by geographic area. Furthermore, our auxiliary analyses (not shown) suggest that

many self-employed in Catholic areas were Protestant.

The fourth row in Figure 3 portrays the votes of a category marked `Others', which

mostly includes people who depend on a ®xed income; three-quarters of these people

were receiving pensions or rent, more than half were older, and most were women

(CHILDERS, 1983, p. 277). This group had little to fear of unemployemnt, and

although they might fear in¯ation (as present day Social Security recipients in the

U.S.), de¯ation characterized 1932 Germany. Given these powerful incentives to keep

things as they are, these voters supported the status quo and hence the Government

parties. The only exception was in Protestant areas with low unemployment, which

was mostly agricultural east Prussia where the government only months before the

election had ended agricultural subsidies and had ended the rule of the local Prussian

state. Although the Nazis did not offer to reinstate the subsidies, they promised that

no one would lose their land as a result.

The ®nal category includes the unemployed, which are displayed in the last row of

the ®gure. Like in most elections, the unemployed often did not vote, especially in

areas of high unemployment. In this election, when they did vote, their choice

seemed to be between the government and the Far Left parties, with the Nazis picking

up only a small fraction of the vote. In both Catholic and Protestant areas, the vote

for the government parties was lower, and for the Far Left was higher, in areas with

higher unemployment. The unemployed in many societies have more important

things to focus on than revolutionary change; they need a job. In Weimar Germany,

when unemployed voters decided there was a need for a change, they usually cast

their vote for the party designed for them, the Communists.

6 Discussion

In this paper we have used MCMC methods, as well as nonlinear least-squares for

ecological inference. Inference via MCMC methods is based on a posterior distribu-

tion, whereas the nonlinear least-squares method is based on moments only. As we

have seen, MCMC techniques are simulation-based methods and as such, are

computationally intensive. Non-linear least-squares, on the other hand, do not involve

simulation and therefore are faster. Another estimation method that competes with

the full Bayesian approach is maximum likelihood. In the present situation, the

likelihood function can be expressed as

L(T9ijä) �
Yp

i�1

�
p(T9ijâi) p( âijä)dâi,

where p(T9ijâi) is the multinomial distribution, and p( âijä) is the Dirichlet distribu-

tion. Thus, in the present situation, maximum likelihood requires integrating out the
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unobserved âi's. Numerical integration is infeasible due to the high-dimensional

integrals. Instead, one could sample from the Dirichlet distribution and use a mixture

of multinomial distributions to approximate the integrals. Again, this method would

be computationally intensive, though possibly less so than the fully Bayesian

approach ± especially if one used a simpler estimator (e.g. least-squares) as a good

starting value for one- or two-step iteration of the maximum likelihood approach.

The least-squares approach is one representative of a whole host of moment-based

methods. Since in our application, the moments are available in closed form, a large

amount of computation is avoided. Other examples of moment-based methods

include the generalized method of moments, popular in the econometrics literature

(see MAÂTYAÂ S, 1999), and the generalized estimating equations approach (see DIGGLE,

LIANG and ZEGER, 1994), commonly used in biostatistics. All these methods are

based on unbiased estimating functions, that is, estimating functions G(data; para-

meter) such that

EdatajparameterG(data; parameter) � 0

for all parameter values. Parameter estimates are obtained, in some sense, by

minimizing a distance between G and 0. In the special case, where the dimension of

the estimating function matches the dimension of the parameter, the minimization is

equivalent to solving the `unbiased estimating equation' G � 0 if a root exists. This

special case has been widely used in the biostatistics literature (see DIGGLE et al.,

1994 or CARROLL, RUPPERT and STEFANSKI, 1995). There are many examples of such

estimating equations: the moment equation for the method of moments, the normal

equation for the method of least squares, the quasilikelihood equation (MCCULLAGH

and NELDER 1989), the generalized estimating equations (DIGGLE et al., 1994), or

even the score equation for the maximum likelihood method. In general, the solution

of this estimating equation is consistent and asymptotically normal, with mean equal

to the true parameter and with variance typically equal to the `sandwich formula'

f=G t var(G)ÿ1=Ggÿ1 (see CARROLL et al., 1995).

The reason why estimating equation methods may reduce computation is that the

estimating functions sometimes involve only analytically computable moments rather

than the full probability function. These methods are also attractive due to their

robustness against model misspeci®cation. Often, inferential results such as consis-

tency and asymptotic normality remain valid even with a misspeci®ed probability

model p(data|parameter), as long as the low-order moments are correctly modeled to

make the estimating function unbiased. For illustration purposes we have presented

an analysis based on nonlinear least squares, where the estimating functions are

obtained from the gradients or normal equations. Alternatively, other methods could

have been used, such as the generalized estimating equations approach or quasilikeli-

hood or weighted least-squares, which would require a correct model for the

variance/correlation structure to improve ef®ciency (DIGGLE et al., 1994). These

approaches can be viewed as intermediate approaches between the simple least-

squares approach and the full Bayesian approach or even the maximum likelihood
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approach. All of these methods share similar theoretical properties, and the asympto-

tic variances can all be obtained from the same `sandwich formula', with the

corresponding estimating functions. In summary, the least-squares approach (as well

as other higher moment-based approaches) has the following advantages:

1. It saves a large amount of computation, as there is no need to compute or simulate

integrals.

2. The results are robust against departures from distributional assumptions.

The likelihood and the Bayesian methods, on the other hand, have the following

advantages:

1. They may achieve higher ef®ciency (narrower frequentist or Bayesian con®dence

intervals) if the distributional assumptions are correctly speci®ed.

2. They are required (either via empirical Bayes or via hierarchical Bayes) at the

precinct level for computing the posterior probabilities for the âi
rc's.

The likelihood-based approaches and the moment-based approaches complement

each other ± the strengths of one are the weaknesses of the other, and vice versa.

Appendix 1: Calculation of derivatives

In this Appendix, we present the explicit formulas for the ®rst and second derivatives

required for the computation of the asymptotic variance of ç.

=(ssi) � ÿ2
XCÿ1

c�1

(Tci ÿ mi
c(ç))

@mi
c(ç)

@ç

==(ssi) � 2
XCÿ1

c�1

@mi
c(ç)

@ç
@mi

c(ç)

@ç t
ÿ (Tci ÿ mi

c(ç))
@2 mi

c(ç)

@ç@ç t

" #

@mi
c(ç)

@ark

�
Ca

i X ri

exp(ãrc � ärc Zi)(1�
P

j6�c,C exp(ãrj � ärj Zi))

(1�PCÿ1
j�1 exp(ãrj � ärj Zi))2

k � c

ÿCa
i Xri

exp(ãrc � ärc Zi) exp(ãrk � ärk Zi)

(1�PCÿ1
j�1 exp(ãrj � ärj Zi))2

k 6� c,

8>>>><>>>>:
where

Ca
i �

1 if a � ã
Zi if a � ä:

�
Note that the hessian of mi

c(ç) is dropped in the calculation of ==(ssi), since it is

multiplied by Tci ÿ mi
c(ç), which has a zero mean.
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