Why Propensity Scores Should Not Be Used for Matching

Gary King† Richard Nielsen‡

March 23, 2015

Abstract

Researchers use propensity score matching (PSM) as a data preprocessing step to selectively prune observations prior to applying a model to estimate a causal effect. The goal is to reduce imbalance in pre-treatment covariates between the treatment and control groups, thereby reducing the degree of model dependence and potential for bias. Although some applied researchers have combined PSM with various ad hoc procedures and checks to produce useful analyses, we show that the core PSM procedure itself often accomplishes the opposite of what is intended — increasing imbalance, model dependence, and bias. The weakness of PSM is that it approximates a completely randomized experiment, rather than, as with other matching methods, a more powerful fully blocked randomized experiment. PSM is therefore blind to the portion of imbalance that would have been eliminated by also approximating full blocking. Moreover, in data balanced enough to approximate complete randomization, either to begin with or after pruning some observations, PSM approximates random matching which turns out to increase imbalance. We show that these problems occur even in data designed for PSM, and is exacerbated in data with better balance, of higher dimensionality, and, in our experience, from real applications. Although these results suggest that propensity scores not be used for matching, they have many other productive uses. In addition, matching by most other methods remains a strongly recommended way to make causal inferences.

*We thank Alberto Abadie, Justin Grimmer, Jens Hainmueller, Chad Hazlett, Seth Hill, Stefano Iacus, Kosuke Imai, Simon Jackman, John Londregan, Adam Meirowitz, Giuseppe Porro, Molly Roberts, Jamie Robins, Bradley Spahn, Brandon Stewart, Liz Stuart, Chris Winship, and Yiqing Xu for helpful suggestions, and Jason Sclar for superb research assistance. We also appreciate the insights from our collaborators on a previous related project, Carter Coberley, James E. Pope, Aaron Wells.

†Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, Cambridge MA 02138; GaryKing.org, king@harvard.edu, (617) 500-7570.

‡Department of Political Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; mit.edu/~rnielsen, rnielsen@mit.edu, (857) 998-8039.
1 Introduction

Matching is an increasingly popular method for preprocessing data to improve causal inference in observational data (Ho et al., 2007; Morgan and Winship, 2014). The goal of matching is to reduce the imbalance in the empirical distribution of the pre-treatment confounders between the treated and control groups (Stuart, 2010, p.13). Lowering imbalance reduces, or reduces the bound on, the degree of model dependence in the statistical estimation of causal effects (Ho et al., 2007; Imai, King and Stuart, 2008; Iacus, King and Porro, 2011b). Propensity score matching (PSM) (Rosenbaum and Rubin, 1983) is the most common matching method, possibly even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010); it is used or referenced in over 48,200 scholarly articles, with almost 1,000 additional each month.1

Some applied researchers produce useful empirical results by iterating between PSM and separate balance calculations in the space of X, thus effectively preventing PSM from optimizing its objective function and thereby limiting some of the damage we describe herein (e.g., Rosenbaum and Rubin, 1984; Ho et al., 2007; Rosenbaum, Ross and Silber, 2007; Imbens and Rubin, 2009; Austin, 2008; Caliendo and Kopeinig, 2008; Stuart, 2010; Imai and Ratkovic, 2014). However, as we show, the core PSM procedure can and usually does increase imbalance, model dependence, and bias at some point in both real data and in data generated to meet the requirements of PSM theory. In fact, the more balanced the data, or the more balanced it becomes by pruning some observations through matching, the more likely PSM will degrade inferences — a problem we refer to as the PSM paradox. If one’s data are so imbalanced that making valid causal inferences from it without heavy modeling assumptions is impossible, then you might be able to avoid the paradox but then you would probably want to avoid making causal inferences from these data altogether.

We trace the PSM paradox to the particular way propensity scores interact with matching. Thus, our results do not apply to the many other productive uses of propensity scores, such as regression adjustment (Vansteelandt and Daniel, 2014), inverse weighting (Robins, Hernan and Brumback, 2000), or stratification (Rosenbaum and Rubin, 1984),

1Count according to Google Scholar, accessed 1/4/2015, searching for: “propensity score” (matching OR matched OR match).
among others. In particular, the mathematical theorems in the literature used to justify propensity scores in general, such as in Rosenbaum and Rubin (1983), are of course correct and useful elsewhere. However, the theorems do not apply to finite samples, do not attempt to account for model dependence, do not reference the iterative procedures discussed above, and are not specialized to matching — all of which are crucial for applications of PSM.

We give our notation and the goals of matching methods in Section 2. In Section 3, we show that PSM is blind to an important source of information in observational studies because it approximates a completely randomized rather than more informative and powerful, fully blocked experiment. As a result, other matching methods are able to achieve lower levels of imbalance than PSM. We then show, in Section 4, that PSM’s inefficiencies generate more than a waste of information. When data are well balanced either to begin with or after pruning some observations, the fact that PSM is approximating the coin flips of a completely randomized experiment means that it will prune observations approximately randomly, which we show increases imbalance and model dependence.

Moreover, the imbalance and model dependence created by PSM leads directly to biased estimates, since it leaves researchers making qualitative choices among larger sets of causal estimates. Similar to the warnings that researchers should match without looking at the outcome variable so as not to inadvertently induce selection bias (Rubin, 2008b), we must limit model dependence to avoid selection bias induced by the researcher (perhaps inadvertently) cherry-picking causal estimates from a wider than necessary set of possible choices. As we explain below, the social psychological evidence that qualitative choices like these lead to bias is overwhelming.

Fortunately, since other commonly used matching methods reduce imbalance, model dependence, and bias more effectively than PSM, and do not typically suffer from the same paradox, matching in general should remain a recommended method of causal inference. However, as Section 5 shows, the same problems that occur with PSM can arise in other methods in highly specialized situations, and so matching cannot be used without careful thought in the application of any matching method. This section also gives advice
to those who still wish to use PSM, despite the problems we discuss here.

2 The Goal of Matching Methods

As we detail here, “The goal of matching is to create a setting within which treatment effects can be estimated without making heroic parametric assumptions,” (Hill, 2008).

Our notation, setup, and results apply more generally, but we focus on the simplest and most common use of PSM. Thus, for unit i ($i = 1, \ldots, n$), denote $T_i \in \{0, 1\}$ as the treatment variable, where 0 denotes the “control group” and 1 the “treated” group. Let X_i be a vector of k pre-treatment covariates and Y_i a scalar outcome variable. Crucially, the assignment of values to T is not necessarily random, controlled by the researcher, or known.

2.1 Quantity of Interest

Define $Y_i(1)$ and $Y_i(0)$ as the “potential outcomes,” the values Y_i would take on if treatment or control were applied, respectively; only one of the potential outcomes is observed for each unit i: $Y_i = T_i Y_i(1) + (1 - T_i) Y_i(0)$. The treatment effect for unit i is the difference $TE_i = Y_i(1) - Y_i(0)$. Causal quantities of interest are then averages of TE_i over different subsets of units in the sample, or the population from which we can imagine the sample was drawn. For simplicity, we focus on the sample average treatment effect on the treated,

$$SATT = \frac{1}{\#\{T_i = 1\}} \sum_{i \in \{T_i = 1\}} TE_i;$$

and, if some treated units have insufficiently good matches and are thereby pruned as part of the matching procedure, then the feasible SATT (or FSATT). Using FSATT is widely recommended in the literature so long as one is careful to characterize the resulting quantity of interest (see Crump et al., 2009; Rubin, 2010; Iacus, King and Porro, 2011b).

2.2 How Model Dependence Can Generate Bias

Identifying assumptions and, conditional on the choice of an outcome model applied to raw or matched data, optimal estimation procedures are well known (Lechner, 2001; Imbens, 2000; Iacus, King and Porro, 2015). However, the nature of observational research means that the data generation process necessary to choose the correct model to condi-
tion on is often unknown, and the differences in causal estimates across these models can be large. Thus, from this large range of possible models and corresponding estimates, the researcher typically chooses one or, at best, 4–5 (often in different columns of a table) to publish, often on the basis of the results. This results in the model dependence problem, leading Ho et al. (2007, p.199) to ask “how can researchers ensure that the few estimates presented are accurate or representative? How do readers know that publications are not merely demonstrations that it is possible to find a specification that fits the author’s favorite hypothesis?” More precisely, model dependence is defined as the variation in causal estimates from two or more models that fit a data set approximately equally (King and Zeng, 2006; Iacus, King and Porro, 2011b).

At best, model dependence generates additional often unaccounted for uncertainty (Athey and Imbens, 2015; Efron, 2015; King and Zeng, 2007). However, a researcher’s choice of estimates to report can turn a set of even unbiased estimates into a severely biased estimator. To see this, consider a set of J models, M_1, \ldots, M_J, which generate estimators $\hat{\tau}_1, \ldots, \hat{\tau}_J$ of the causal effect τ. Suppose we have model dependence, so that in any one sample data set the estimates vary:
\[\frac{1}{J} \sum_{j=1}^{J} (\hat{\tau}_j - \bar{\hat{\tau}})^2 > 0, \]
where $\bar{\hat{\tau}} = \frac{1}{J} \sum_{j=1}^{J} \hat{\tau}_j$. Assume that each estimator conditional its model is unbiased (i.e., the average over repeated samples equals the true causal estimate):
\[E(\hat{\tau}_j | M_j) = \tau \text{ (for } j = 1, \ldots, J). \]

Now consider a new estimator $\hat{\tau}_0$, in which a researcher chooses one estimate to report, in part on the basis of the values of all the empirical estimates. Since the researcher would hypothetically choose a different estimate on each randomly drawn data set, this means we can no longer condition on the model. Define the estimator as $\hat{\tau}_0 = g(\hat{\tau}_1, \ldots, \hat{\tau}_J)$, for any $g(\cdot)$ other than a fixed weighted linear average. For example, one simple but realistic example has the researcher choosing the maximum among the estimates, $\hat{\tau}_0 = \text{max}(\hat{\tau}_1, \ldots, \hat{\tau}_J)$. The result is that this estimator is biased,
\[E(\hat{\tau}_0) \neq \tau. \]
Thus, a human being making an unconstrained qualitative choice from among a set of unbiased but different estimates is a biased estimator. For the same reason, scholars who study matching uniformly recommend that Y should not be consulted during the matching process to prevent inadvertent biases (Rubin, 2008b). The same logic also implies that controlling bias
requires that we reduce model dependence.

The social psychological literature has unambiguously shown that biases are likely to affect qualitative choices like these even when researchers conscientiously try as hard as they can to avoid them (Banaji and Greenwald, 2013). The tendency to imperceptibly favor one’s own hypotheses, or to be swayed in unanticipated directions even without strong priors, is unavoidable. People do not have easy access to their own mental processes and they have little self-evident information to use to avoid the problem (Wilson and Brekke, 1994). To make matters worse, subject matter experts overestimate their ability to control their personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock, 2005). Moreover, training researchers to make better qualitative decisions based on empirical estimates when there exists little information to choose among them scientifically is unlikely to reduce bias even when people are taught these social-psychological results. As Kahneman (2011, p.170) explains, “teaching psychology is mostly a waste of time”. Or, in conclusion, “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman, 2011, p.240).

Scientists are no different from other human beings in this regard. Researchers have long shown that flexibility in reporting, presentation, and analytical choices routinely leads directly to biased decisions, consistent with the researcher’s hypotheses (Ioannidis, 2005; Mahoney, 1977; Simmons, Nelson and Simonsohn, 2011). The literature makes clear that the way to avoid these biases is to remove the flexibility from the researcher as much as possible, rather than instituting training sessions or encouraging everyone to try harder to avoid bias (Wilson and Brekke, 1994, p.118). Indeed, we can even conceptualize one of the central projects of statistical science as automating an ever increasing portion of what was previously unaided, qualitative human decision making. In the present case, bias can be removed by taking unnecessary arbitrary decisions away from the researcher by reducing levels of model dependence.
2.3 Matching to Reduce Model Dependence

Model dependence increases when making counterfactual predictions farther from the data (King and Zeng, 2006). Since, in causal inference, observed control group units $Y_i \equiv Y_i(0)$ are used to fill in for unobserved $Y_i(0)$ potential outcomes in the treated group, researchers usually focus on imbalance, the overall difference in the empirical distribution of X in the treated and control groups (see Imai, King and Stuart 2008 for a precise mathematical description and bias decomposition). Researchers and statisticians thus focus on imbalance, which is observable, as a measure of model dependence.

Controlling imbalance directly controls, and mathematically bounds, the degree of model dependence (for a proof, see Iacus, King and Porro, 2011b, Section 2.4). The proof requires the assumption that observations which are similar on their covariate values are also similar with respect to the potential outcomes (usually formalized by restricting the relationship to the space of Lipschitz functions; King and Zeng 2006; Iacus, King and Porro 2011b; Kallus 2015). This assumption, which requires matching to reduce imbalance measured in the space of the covariates, is at least implicitly accepted throughout the literature as the statistical foundation of matching methods, including those that make calculations in other projected spaces such as PSM (see the discussion of iterative approaches in Section 1).

Successful applications of matching involves pruning units so that imbalance is reduced in the remaining data set, which in turn reduces the maximum level of model dependence. Reducing model dependence reduces the discretion of the researcher and can, as a result, greatly reduce the potential for bias.

2.4 Matching Methods

In addition to PSM, we describe two matching methods that are representative of the large variety used in the literature (other than derivatives of PSM). Each method represents one of the two existing classes of matching methods: Mahalanobis Distance Matching (MDM) is one of the longest standing matching method that can fall within the Equal Percent Bias Reducing (EPBR) class (Rubin, 1976; Rubin and Stuart, 2006) and Coarsened Exact Matching (CEM) is the leading example within the Monotonic Imbalance Bounding
PSM can also be EPBR, if used with appropriate data. For expository purposes, we present the simplest version of each method here. Numerous refinements of these methods, and many others, have appeared (e.g., Lunceford and Davidian, 2004; Imbens, 2004; Ho et al., 2007; Stuart, 2010). Differences among the methods can matter for applications but have no major effect on our main results here and so for expository purposes we focus on the simplest and most widely used approaches.

We begin with MDM and PSM, which are based on distance metrics. Under MDM, the metric is the Mahalanobis distance between treated unit i and control unit j: $D(X_i, X_j) = \sqrt{(X_i - X_j)'S^{-1}(X_i - X_j)}$, where S is the sample covariance matrix of the original data matrix X. (MDM is good for methods articles, where the standardization makes the variables unitless; in applications, metrics such as Euclidean distance better enable a researcher to represent knowledge of the underlying variables and their relative importance.)

In contrast, under PSM, the k-dimensional vector X_i is first reduced to a scalar propensity score, $\pi_i \equiv \Pr(T_i = 1|X_i)$, in practice almost always by assuming and estimating a logistic regression model $\hat{\pi}_i = (1 + e^{-X_i'\hat{\beta}})^{-1}$. Then the distance between treated unit i and control unit j is based on the absolute difference in propensity scores $D(X_i, X_j) = |\hat{\pi}_i - \hat{\pi}_j|$ (or the absolute difference in their log odds). Under PSM, information in X other than that projected in the propensity scores $\hat{\pi}$ is ignored.

Then, in the most common implementation of either PSM or MDM (Austin, 2009, p.173), the first treated unit is (greedily) matched with the closest control; then, the second treated unit is matched with the closest control unit that has not already been matched, and so on until all treated units have matches. Finally, any treated-control matched pairs that have distances larger than a chosen caliper are also pruned (Rosenbaum and Rubin, 1985; Stuart and Rubin, 2007). Since a caliper is an arbitrary choice widely recommended and routinely made in practice, a matching method can be thought of as producing a sequence of matched data sets, the first with no caliper (and the number of observations equaling twice the number of treated units), and subsequent matched data sets created by continuing to caliper pairs of observations off until no data are left.

Under CEM, we first temporarily coarsen each of the pre-treatment covariates (Iacus, 2011b).
Continuous covariates could be coarsened at “natural breakpoints,” such as high school and college degrees in years of education, poverty level for income, etc. Discrete variables can be left as is or categories can be combined, such as when data analysts combine strong and weak Democrats into one category and strong and weak Republicans into another. (Variables can also be coarsened in groups of related variables, such as requiring the sum of three dichotomous variables to be equal.) Then units that do not match exactly on all the temporarily coarsened variables are pruned. Finally, the uncoarsened values of X are passed on to the estimation stage. Since coarsening is an adjustable choice, like calipers, CEM should also be thought of as producing a sequence of matched data sets that prune more units as data are less coarsened.

3 Information Ignored by Propensity Scores

Matching can be thought of as a technique for finding experimental data hidden within an observational data set. However, we show here that different matching methods try to approximate different experimental ideals, and PSM makes a choice with low standards, causing it to be blind to a valuable source of information available in observational data.

3.1 Different Experimental Ideals of Different Matching Methods

One way to think about MDM, CEM, and other methods aside from PSM is that they attempt to approximate a fully blocked randomized experimental design, such as a matched pair randomized experiment. In this design, treated and control groups are blocked at the start of the experiment exactly on the observed covariates X — so that all potential bias with respect to X is eliminated exactly in sample — and potential bias due to unobserved variables is not controlled in sample but is eliminated on average across experiments via randomization within the homogeneous blocks.

Similarly, in observational data, MDM and CEM seek to eliminate potential bias due to the observed X by replacing blocking ex ante with matching ex post. They also attempt to control for potential bias due to unobserved covariates by replacing physical randomization with the usual unconfoundedness and common support assumptions.

In contrast, we can think of PSM as attempting to approximate a completely randomized experimental design, where treatment assignment depends only on the given prob-
ability of treatment. The simplest version of this design assigns the same probability of
treatment to all units (say 0.5), but a common alternative version assigns a constant prob-
ability of treatment to all units within each of several assigned strata, and allows variation
in the probability across strata. (This would happen, for example, if the experimenter
could afford the treatment for say half the patients for one month but then only 25% for
the next month.) This could of course be described as a stratified design, so long as we
recognize that the strata are not subsets of the covariate space. Regardless, in this design,
imbalance in either the observed or unobserved variables is not controlled in sample; im-
balance is instead controlled only on average across experiments. The crucial difference
between the designs, then, is that in any one data set, the observed X variables may be im-
balanced in a completely randomized experiment but are never imbalanced for a matched
pair experiment (Iacus, King and Porro, 2011b, p.349).

Similarly, in observational data, PSM seeks to eliminate potential bias by replacing ex
ante randomized treatment assignment with an attempt ex post to discover a set of strata
(such as matched treated-control pairs) within which propensity scores are constant. The
theoretical justification for this procedure comes from the result that unconfoundedness
conditional on the raw covariates, $Y_i(0) \perp T_i \mid X_i$, implies unconfoundedness conditional
on the propensity score, $Y_i(0) \perp T_i \mid \pi_i$ (Rosenbaum and Rubin, 1983). This theorem
applies on average across samples, not to the one data set the researcher gets to analyze. To
see the information left on the table, note that equality between any two estimated scalar
propensity scores, $\hat{\pi}_i = \hat{\pi}_j$, does not imply that the two corresponding k-dimensional
covariate vectors are matched exactly, $X_i = X_j$. (PSM attempts to control for potential
bias due to unobserved covariates in the same way as MDM and CEM, by adding the
usual unconfoundedness and common support assumptions.)

The difference between the experimental ideals is crucial since, compared to a com-
pletely randomized experimental design, a fully blocked randomized experimental design
has more power, more efficiency, lower research costs, more robustness, less imbalance,
and — most importantly from the perspective here — lower model dependence and thus
less bias (Box, Hunger and Hunter, 1978; Greevy et al., 2004; Imai, King and Stuart,
2008; Imai, King and Nall, 2009). For example, Imai, King and Nall 2009 found that standard errors differed in their data between the two designs by as much as a factor of six. Compared to fully blocked randomized experiments “for gold standard answers, complete randomization may not be good enough, except for point estimation in very large experiments,” (Rubin, 2008a). In fact, if the design is fully blocked on all X variables, all model dependence is eliminated with respect to these variables: That is, regardless of how a researcher controls for perfectly matched variables in the post-matching modeling step, the causal estimate is the same. In any one data set, completely randomized experimental designs usually have larger imbalance on X than if a fully blocked design were used. Of course, the discrepancy between the estimate and the truth in the one data set a researcher gets to analyze and thus publishes from is far more important to that researcher than what happens across hypothetical repeated samples from the same hypothetical population (cf. Gu and Rosenbaum, 1993). Put differently, an unbiased but inefficient estimator, conditional on a randomly observed sample that is imbalanced, is a biased estimator (Robins and Morgenstern, 1987).

3.2 Simulation Evidence for Propensity Score’s Lower Standards

We now simulate 1,000 data sets, each of which mixes data from three separate sources: (1) a matched pair randomized experiment, (2) a completely randomized experiment, (3) observations that, when added to the first two components, make the entire collection an imbalanced observational data set. We then study whether MDM and PSM prune individual observations in the correct order — starting with those at the highest level of imbalance (data set 3) to the lowest (data set 1). For clarity, we use two covariates (using more covariates generates patterns like those we present here, only stronger).

To fix ideas, we display one of our 1,000 data sets in the left panel of Figure 1, which highlights its three parts in separate colors. In blue in the upper right is the matched pair experiment with 25 treated units drawn uniformly from the $[-2, 2] \times [-2, 2]$ square and 25 control units which are slightly jittered versions of each of these treated units. In red, at the bottom right is a completely randomized experiment, with 50 random observations drawn uniformly from the $[-2, 2] \times [-8, -4]$ rectangle and with 25 of these randomly assigned
to treatment and 25 to control. Finally, we simulate part of an imbalanced observational study by adding 50 control observations in black, drawn uniformly from the $[-6, -4] \times [-8, 2]$ square, and without corresponding randomly drawn (or otherwise overlapping) treated units.

Figure 1: Finding experiments hidden in observational data, with PSM, but not MDM, blind to information from full blocking. Left panel: One (of 1,000) randomly generated data sets from a matched pair randomized experiment (in blue), a completely randomized experiment (in red), and control units from an imbalanced observational data set (in black). Right Panels: Each of the 1,000 simulations is represented by a separate row of pixels, color-coded by experiment type to indicate the order (from left to right) of which observations are pruned by MDM (left) and PSM (right).

We apply PSM and MDM to each data set and iteratively remove the (next) worst observation as defined by each matching method. In the two panels at the right of Figure 1, each row of pixels stands for one simulated data set, with each individual pixel in a row representing one pruned observation color-coded by data set type. The results show that both MDM and PSM do well at removing the 50 control units that lack common support with any treated units (black is separate in both). MDM is able to separate the fully randomized experiment from the matched pair experiment (red is clearly separated from blue) but PSM is unable to separate the more informative matched-pair experiment.
from the fully randomized experiment (red and blue are mixed).

This simulation shows that PSM cannot recover a matched pair experiment reliably. At best, it can recover something that looks like a fully randomized experiment, meaning that the covariates can no longer predict treatment on average. This is useful, since it makes possible estimation that is unbiased conditional on a model. However, by definition some model dependence and researcher discretion remains which, when combined can lead to bias. In observational work, the ideal should be a fully blocked experiment, which is approximated by exact matching, not merely overlapping data clouds. This is essential so that model dependence can be reduced as far as possible.

4 The Propensity Score Paradox

Given the differing goals of PSM and other methods, it is no surprise, after PSM’s goal of complete randomization has been approximated, that other methods would be more effective at continuing to reduce imbalance on X than PSM. However, we find that pruning after this point with PSM does genuine damage — increasing imbalance, model dependence, and bias. That is, after this point, pruning the observations with the worst matched observations, according to the absolute propensity score distance in treated and control pairs, will increase imbalance, model dependence, and bias; this will also be true when pruning the pair with the next largest distance, and so on. We call this the PSM Paradox. The paradox is apparent in data designed for PSM to work well (Section 4.2) and often worse in real applications (Section 4.3).

The reason for the PSM Paradox is because, after PSM achieves its goals of finding a subset of the data that approximates complete randomization, with approximately constant propensity scores within strata, any further pruning is being done essentially at random, exactly as a completely randomized experiment. And, as we show in Section 4.1, random pruning, contrary to conventional wisdom, increases imbalance.

Another way to describe the reason for the paradox is as the consequence of PSM’s unusual two-step procedure, which collapses the multivariate covariate vector to a scalar propensity score outside the space of the original covariates and then matches on the score. PSM is sometimes described as solving the curse of dimensionality problem, since
researchers only need to condition on a scalar rather than k covariates (Dehejia, 2004). In fact, we show in Section 4.4 that PSM’s two-step procedure is an increasingly worse summary of X_i as the number of elements k in the vector increase beyond one (see Brookhart et al., 2006). Although the curse of dimensionality affects every matching method — and in high enough dimensions no matching method will be very effective — the problem with PSM starts earlier, often with only two covariates.

Some issues with PSM are well known. For example, estimating the propensity score regression with misspecification can bias estimates (Drake, 1993; Smith and Todd, 2005; Kang and Schafer, 2007; Zhao, 2008; Diamond and Sekhon, 2012). For another, if X_i contains continuous variables, π_i will be continuous and so is no easier to match exactly than X. The PSM Paradox is in addition to these important points; even when the propensity score logit is correctly specified, and even if matches can be found, PSM discards considerable information, because it approximates a completely randomized rather than fully blocked experimental design, and this unconditional inefficiency is equivalent to conditional bias.

4.1 Random Matching

Obviously, one should only delete observations from a data set if some benefit results. Certainly, no sensible researcher would randomly prune observations from a data set (except perhaps for computational reasons with very large data sets). However, we show that random pruning not only cuts down the information available; it actually increases the level of imbalance in the resulting data set. This may seem counterintuitive, and to our knowledge has not before been noted in the matching literature (cf. Imai, King and Stuart, 2008, p.495). Then, in a separate subsection, we give intuition why, in common situations, PSM approximates random pruning.

4.1.1 Random Pruning Increases Imbalance

For intuition about how random pruning increases imbalance, consider a simple and extreme example: a data set that, however generated, happened to be perfectly balanced, with a treatment group composed of one male and one female, M_1, F_1, and a control group with the same composition, M_0, F_0. Then, randomly dropping two of the four
observations leaves us with one matched pair among \{M_1, M_0\}, \{F_1, F_0\}, \{M_1, F_0\}, or \{F_1, M_0\}, with equal probability. This means that with 1/2 probability the remaining data set will be balanced (\{M_1, M_0\} or \{F_1, F_0\}) and with 1/2 probability it will be completely imbalanced (\{M_1, F_0\} or \{F_1, M_0\}). Thus, on average in these data random matching will increase imbalance.

For a continuous example, consider a randomly assigned \(T\) and a fixed univariate \(X\). The (expected) covariance between \(T\) and \(X\) is zero. However, as a measure of imbalance, the expected value of the squared sample covariance is proportional to \(1/\sqrt{n}\). Thus, as we prune from this sample randomly, \(n\) declines and our measure of imbalance increases.

(We also introduce a higher dimensional example with real data in in Section 4.3.)

4.1.2 PSM Approximates Random Matching

In a simple simulation, we provide intuition for how relatively balanced data makes PSM, but not MDM or CEM, highly sensitive to trivial changes in the covariates, often producing nonsensical results approximating random matching. In the left panel of Figure 2, we generate data with 12 observations and two covariates, with one covariate plotted by the other. The data are well balanced between treated (black disks) and control (open circles) units. From these initial data, we generate 10 data sets, where we add to each of the 12 observations a small amount of random error drawn from a normal distribution with mean zero and variance 0.001. This error is so small relative to the scale of the covariates that the new points are visually indistinguishable from the original points (in fact, the graph plots all 10 sets of 12 points nearly on top of one another, but it only appears that one set is there). Next, we run CEM and MDM; in both cases, as we would expect, the treated units are matched to the nearest control in every one of the 10 data sets (as portrayed by the pair of points linked by curved solid lines).

However, when we run PSM on each of the 10 data sets generated for Figure 2, the four treated units are each matched to different control units (as portrayed by the maze of dashed lines connecting the black disks to different open circles). PSM is approximating random matching in this situation because it is unable to distinguish treated and control units; it is blind to the space of \(X\) that is not represented in \(\hat{\pi}\).
Figure 2: Ten data sets (differing from each other by imperceptibly small amounts of random error) with 4 treated units (black disks) and 8 control units (open circles). CEM and MDM match the closest control units to each treated (curved black lines). The two-step procedures match different control units for each data set, as can be seen for PSM (dashed lines, left panel) and PS-CEM (dashed lines, right panel). (The four open circles in the middle of the right panel are never matched; lines are passing through them on the way to show how other points are matched.)

Finally, we illustrate how the paradox results from PSM’s two-step procedure. We do this by developing a (similarly unnecessary and ill-advised) two-step “propensity score CEM” (PS-CEM) algorithm: to do this, we use CEM to compute a nonparametric estimate of the propensity score (i.e., the proportion of treated units within each coarsened stratum; see Iacus, King and Porro 2011b) and, second, without running CEM as usual, we match directly on the nonparametric estimate of the propensity score. The right panel in Figure 2 is constructed the same way as the left panel except that instead of the dashed lines representing propensity score matches, they represent PS-CEM matches. The result is almost as bad as PSM. The dashed lines in the right panel show how in the different (but highly similar) data sets, the two-step PS-CEM procedure matches control units (circles) close to and also distant from treated (closed disks) units. This suggests that ignoring X and only matching based on the scalar propensity score generates the PSM paradox.
4.2 Damage Caused in Data Designed for Propensity Scores

Here we study model dependence and the PSM paradox in a simulation designed for PSM, as it was intended. We do this by hiding a completely randomized experiment within an imbalanced data set. Unlike the previous example, we do not include fully blocked experiment within these data.

For each of two covariates, we randomly and independently draw 100 control units from a Uniform(0,5) and 100 treated units from Uniform(1,6). This leaves the overlapping $[1, 5] \times [1, 5]$ square as a completely randomized experiment and observations falling outside adding imbalance. We generate the outcome as $Y_i = 2T_i + X_{i1} + X_{i2} + \epsilon_i$, where $\epsilon \sim N(0,1)$. We repeat the entire simulation 100 times. We assume, as usual, that the analyst knows the covariates necessary to achieve unconfoundedness but does not know the functional form.

To evaluate the methods, we compute both model dependence and potential for bias, each averaged over 100 simulated data sets. We measure model dependence by the variance in the estimate of the causal effect over 512 separate models (linear regression using every possible combination of X_1 and X_2 and their 3 second order and 4 third order effects) from the same simulated data set for each given caliper level; we do this for PSM and then also MDM as a comparison. The results, which appear in the top-left panel of Figure 3, show that at first the degree of model dependence drops for both MDM and PSM, but then, after PSM has pruned enough so that the PSM paradox kicks in, model dependence dramatically increases. Instead of benefiting from units being dropped, PSM is causing damage. Model dependence for MDM, as expected, declines monotonically as stricter calipers are applied and more units are pruned.

To show how model dependence along with discretion for the analyst can result in potential bias, we implemented an estimator meant to simulate the common situation where the analyst chooses a preferred estimate to publish from many possible estimates. Suppose the researcher’s preferred hypothesis is that the causal effect is large, and that this preference intentionally or unintentionally affects their choice. Thus, for each caliper level of PSM and then MDM, we select the largest estimated treatment effect from among
the estimates provided by the 512 possible specifications. The results, in the top-right panel of Figure 3, show that calipering initially does what we would expect by reducing the potential for bias for both MDM and PSM, with PSM even slightly outperforming MDM. However, as calipering continues, the PSM paradox kicks in, and PSM increases model dependence (as indicated in the top left graph), the potential for bias with PSM dramatically grows even while the bias under MDM monotonically declines as we would expect and desire. (Although we do not show the graph, these patterns are unchanged for mean squared error as well.)

To provide intuition for how the paradox occurs in these data, we show which observations are matched and in which order in one of the 100 simulated data sets. Thus also in Figure 3, we plot X_1, X_2 points from one simulated data set, with matches from MDM (bottom-left panel) and PSM (bottom-right panel) denoted by lines drawn between the points, colored in by when they were matched or pruned in the calipering process. (The outcome variable is ignored during the matching process, as usual.) Darker colors were pruned later (i.e., matched earlier).

As expected, the MDM results (bottom-left panel) show that treated (circles) and control (dots) pairs that are close to each other are matched first (or pruned last). These darker blue lines mostly appear within the (completely randomized) square in the middle. In stark contrast, PSM, in the bottom-right panel, finds many matches seemingly unrelated to local closeness of treated and control units and many even outside the middle square. The diagonal pattern in PSM dark lines comes from the propensity score logit which cannot distinguish high values of X_1 and low values of X_2 from low values of X_1 and high values of X_2.

Overall, the figure shows that PSM is trying to match globally — meaning it essentially has only one chance to get it right, rather than matching locally like other methods and having some additional degree of robustness. In fact, because the propensity score is outside the space of the original data, using it for analysis violates the congruence principle. This principle which holds that the data space and analysis space should be the same. Statistical methods which violate this principle are known to generate nonrobust
Figure 3: PSM Increases Model Dependence and Potential Bias. Top-left panel: The vertical axis measures model dependence as the average, over 100 data sets, of the variance in the causal effect estimate across 512 models applied to the same data. Top-right panel: The vertical axis shows the maximum estimated causal effect from 512 models applied to each of 100 data sets. For one simulated data set, the order of matches is indicated for MDM (bottom-left panel) and PSM (bottom-right panel).
and counterintuitive properties (Mielke and Berry, 2007).

4.3 Damage Caused in Real Data

In this section, we reveal the PSM paradox in real applications, with data selected and analyzed by others, including two published studies and a large number of studies in progress.

First, Finkel, Horowitz and Rojo-Mendoza (2012) showed that civic education programs in Kenya cause citizens to have more civic competence and engagement and be more supportive of the political system, with \(n = 3,141 \) survey responses, 1,347 of which received the program. They also measured a large number of socioeconomic, demographic, and leadership covariates. Second, Nielsen et al. (2011) show that a sudden decrease in international foreign aid to a developing country (an “aid shock”) increases the probability of the onset of lethal conflict within that country. They collect data on developing countries from 1975 to 2006, in total representing \(n = 2,627 \) country-years, including 393 (treated) aid shocks. The authors measure 18 pre-treatment covariates representing national levels of democracy, wealth, population, ethnic and religious fractionalization, and prior upheaval and violence. Finally, we analyzed a large number of data sets obtained from scholars doing work in progress, which we received by trading offers of help with their analyses and promising not to cite or scoop them. The results of all sources of data yielded very similar conclusions to that from the two data sets we now reanalyze.

For both of the published studies we replicate, Figure 4 plots imbalance (vertically) by the number of pruned observations (horizontally). We measure imbalance (i.e., the difference between the empirical distribution of \(X \) in the treated and control groups) by the “Mahalanobis Discrepancy,” proposed by Abadie and Imbens (2006).\(^2\) In each plot, the open circle at the left summarizes the imbalance in original data set. For reference, we also add a solid triangle that summarizes the level of imbalance that would be present if \(T \) were assigned via complete randomization.

\(^2\)We repeated the analysis with the \(L_1 \) imbalance metric proposed by Iacus, King and Porro 2011b, and the average absolute difference in means for the columns of \(X \), the components of which are often used in applied articles. Essentially the same conclusions result from each of these and other measures we have tried. We also repeated the analysis with various measures of model dependence, and found similar conclusions, although the large number of covariates in these applications mean that numerous measures could be chosen.
The one-to-one PSM analysis (which in the case of Nielsen et al. 2011 is the published result and in both cases is estimated by all main effects in a logit model) is represented by the left end of the solid line. In the left panel, PSM’s initial result is worse than the original data; in the right panel it is an improvement, as Nielsen et al. (2011) report. However, consider what happens in either data set if we caliper off the worst match according to the propensity score metric (i.e., the largest value of $|\hat{\pi}_i - \hat{\pi}_j|$ across all matched pairs), recalculate the level of imbalance, and repeat. These results, which are represented by the full black line in each panel, reveal the PSM paradox kicking in immediately and continuing until no data is left: That is, the more strict we are in applying PSM, the worse imbalance gets. (In a few of the unpublished data sets we analyzed that had much worse initial imbalance, PSM helped for initial pruning and then started increasing imbalance as in these graphs; simulated examples of this pattern appear in Section 4.4.)

If we use the venerable practice of setting the caliper to 1/4 of a standard deviation of the propensity score, imbalance is worse than the basic PSM solution for the left panel and provides no improvement for the right panel. Following the strictures of PSM even more closely, in the hopes of finding better balance and less model dependence, accomplishes precisely the opposite.
For comparison, in each graph, we also prune via MDM (dot-dashed line) and CEM (dotted line). For MDM, we do one-to-one matching (and so the line starts at the same horizontal point as PSM) and then caliper off the observations with the largest Mahalanobis distance, recompute imbalance, and repeat. For CEM, we begin with the loosest possible coarsening, so that all data fall in a single stratum and no observations are pruned (and so the line starts from the original data). We then randomly select a variable, add one cutpoint to its coarsening (always arranging the cutpoints so they divide the space between the minimum and maximum values into equal sized bins), and compute the imbalance metric. Additional cutpoints eventually lead to more observations being dropped.

As can be seen in both panels in Figure 4, the MDM and CEM lines both tend downward through their entire range with no hint of the paradox that would be represented by an upward turn like PSM: in this case, the trade off is as it should be, in that one can reasonably choose any point along this frontier to do an analysis. (The figure also includes a dashed line marked “Random” representing the average of a sequence of data sets constructed by random pruning; as with the simpler examples in Section 4.1, the figure shows that random pruning increases imbalance.)

4.4 Damage Caused by Higher Dimensionality and Better Balance

We now study different types of simulations generated consistent with PSM theory. Results vary by the number of covariates, levels of imbalance, and matching method.

4.4.1 Data Generation Processes

We generate data by following Gu and Rosenbaum (1993). Covariates are drawn from a multivariate normal (meeting the data requirements of EPBR) with variances of 1 and covariances of 0.2. Data sets with high, medium, and low levels of balance result from setting the control group mean vector to (0,0,0) and different treated group mean vectors to (0.1,0.1,0.1), (1,1,1), and (2,2,2), respectively. We draw 250 treated and 250 control units, which is equivalent for our purposes to generating a larger pool of controls and pruning down to 250 to achieve 1-to-1 matching with the treated units. We then prune from that point by caliper off additional units.

We draw 50 random data sets, for each of the nine combinations of 1, 2, and 3 co-
variates and low, medium, and high levels of imbalance. (Analyses with more covariates and higher levels of imbalance predictably produce even more dramatic patterns than presented here and so we do not present them.) For each data set generated, we analyze the same data with PSM, CEM, and MDM, following the procedures from Section 4.3. We repeat the procedure for each level of pruning and for each of the 50 data sets, average, and put a point on a graph we present below. All our results apply to estimating both SATT and FSATT; for simplicity, we present results here for the latter, which is the most commonly recommended and used approach.

4.4.2 Results

Figure 5 gives the results for the methods in three rows (PSM, MDM, and CEM from top to bottom) and different numbers of covariates in separate columns (1,2,3, from left to right). Each of the nine graphs in the figure gives results from data generated with low (dotted line), medium (dashed line), and high (solid line) levels of initial imbalance. For graphical clarity, individual matching solutions do not appear and instead we average over the 50 simulations in each graph for a given matched sample size and level of imbalance. The PSM paradox is revealed whenever one of the lines increase from left to right (i.e., with imbalance increasing as the number of observations drops).

As expected, the usual curse of dimensionality reduces the performance of all three matching methods, as can be seen by the level of imbalance increasing from graphs at the left to the graphs at the right in any one row. Also as expected, the second and third rows of the Figure 5 show that CEM and MDM do not suffer from the paradox in these data: for all the lines in all the graphs in these rows, imbalance never increases as more observations are pruned, just as we would want to be the case.

However, for PSM in the first row, three important patterns emerge, all of which occur when the propensity score paradox kicks in (where a line changes direction from heading downward to where it starts heading upwards). First, no paradox emerges with PSM and one covariate (top left graph) because PSM does no dimension reduction; in this case, the propensity score is merely a rescaling of a scalar X. Second, the paradox point appears earlier, that is with fewer observations pruned, the more covariates are included in the
Figure 5: For PSM, MDM, and CEM in rows, and 1, 2, and 3 covariates in columns, these graphs give average values from 50 simulations with low (dotted), medium (dashed), and high (solid) levels of initial imbalance between the treated and control groups. The paradox is revealed for portions of lines that systematically increase. This can be seen for PSM with more than one covariate but not for CEM and MDM.
propensity score regression (as we go from left to right in the top row of Figure 5). This problem is worse for 3 than 2 covariates and, although we do not show it, the paradox intensifies with more covariates. Third, the paradox kicks in earlier as the data become more balanced, approximating a completely randomized experiment. This can be seen by comparing the dotted (well balanced) and solid (least balanced) data in the two graphs at the top right, and noting that the point where the paradox starts moves to the left for better balanced data.

5 Guidance for Users

In this section, we offer some guidance for users who are accustomed to using PSM, and prefer to keep using it. We also show how other methods can, under certain circumstances, generate problems somewhat like the PSM paradox. The main lesson is that because observations are dropped, matching will only be beneficial if the observations pruned do enough positive good to counterbalance the negative effects of pruning, and otherwise the procedure may cause damage.

First, PSM can be used without increasing imbalance — if one is careful to check imbalance after running PSM and verify that the PSM paradox is not in evidence. Because the iterative methods discussed in Section 1 ignore PSM’s objective function, and attempt to check imbalance in the space of the covariates, they can be useful additions. The easiest rule of thumb to indicate whether you have reached the point of complete randomization, and to present to readers, is diagnostic plots like Figure 4. Second, researchers should be aware that PSM can help the most in data where valid causal inferences is least likely (i.e., with high levels of imbalance) and may do the most damage in data that are already well suited to making causal inferences (i.e., with low levels of imbalance).

Third, PSM is better justified in very large samples, and where relatively few observations are pruned, both so as not to go past the point of complete randomization and so that the difference after matching between fully blocked and completely randomized experiments is smaller. Fourth, the model dependence that remains after PSM can usually be reduced further if the researcher switches to another matching method, although this could be done after an initial application of PSM, or via preliminary exact or coarsened
matching on a small number of the most important covariates. Fifth, researchers who use PSM and are left with unnecessary model dependence and bias should explicitly clarify how much imbalance, and therefore model dependence and bias, was left after applying PSM so inadvertent biases that may creep in due to researcher discretion can be evaluated by the reader.

Finally, switching to other matching methods also requires careful thought and analysis. To emphasize this point, we now give an example of the application of MDM that generates problems like the PSM paradox. The example is somewhat contrived, but it is important to understand that anything, including this, can happen in real data.

To generate the data, we first create 100 values of a single covariate X deterministically, in pairs along the number line as $X = 1, 2, 4, 5, 7, 8, \ldots, 145, 146, 148, 149$. We then assign observations with even values of X to receive treatment and those with odd values to receive control. If we stopped here, each treated unit would match best to the control observation 1 unit away and T would be independent of X (and where both treated and control units of X have a mean of 75). Then to each value of X, we add a tiny amount of jitter drawn from a uniform on the interval $[-0.00001, 0.00001]$. This results in some pairs being slightly better matches than others, although solely due to random jitter. We then introduce confounding by taking the three treated units with the lowest values of X and reassigning them to control, and take the three control units with the highest X values and assign them to treatment. For example, this creates a substantial difference between the mean value of X for the treated (≈ 83) and control (≈ 67). We generate the outcome variable as $Y = T + 0.01X + \epsilon$, where $\epsilon \sim N(0, 1)$.

The resulting data set has important levels of imbalance (and confounding) due to the units at the low and high values of X. The rest of the data will have matches that are effectively at random. The idea is that any method of matching will first prune the extreme (imbalanced) observations first for good reason and then start pruning at random.

We measure model dependence by first estimating the regression of Y on a constant, T, and elements of one of the subsets of $\{X, X^2, X^3, X^4, X^5\}$, and then repeat for all the other subsets. Then our measure is the range of estimates of the coefficient on T across
all these regressions. Results appear in Figure Section 6, with model dependence plotted vertically and the number of treated units pruned by MDM horizontally.

![Figure 6: The Paradox with Mahalanobis Distance Matching](image)

Although MDM was used to prune these observations, we can see evidence of the paradox. In particular, MDM prunes the six extreme values of X first, during which model dependence drops. After that point, when all pairs differ by pure randomness, MDM continues to prune without accomplishing much of value. Matching in this way does not do enough good to overcome the fact that pruning itself increases imbalance, and so the overall imbalance line starts heading upward.

Similar issues can be generated with different types of data generation processes, such as with numerous covariates or irrelevant covariates not systematically related to T or Y. In all applications, with all matching methods, it pays to study the data, the units that are pruned, how much imbalance and model dependence is left, and what happens to the resulting sample.

6 Concluding Remarks

The important insight behind propensity score matching is to analyze an observational data set by approximating as closely as possible a completely randomized experiment.
However, when feasible, approximating a fully blocked randomized experiment can be substantially better than approximating a completely randomized experiment. The consequence of not doing so will in some situations merely mean that important information is left on the table — just as those who actually design experiments know to block on all available pre-treatment covariates whenever feasible to avoid wasting research resources, statistical power, and efficiency. However, in the case of propensity score matching, the problem is not merely information discarded but the damage it creates by continuing to prune after it has nearly accomplished its goal of approximating a completely randomized experiment; in this situation, the PSM paradox will kick in and pruning observations will discard information and also increase imbalance, model dependence, researcher discretion, and the potential for bias.

Fortunately, these problems are usually easy to avoid by switching to one of the other popular methods of matching, or possibly combining the two. However, since randomly pruning observations increases imbalance, any matching method that is not actively doing good can do damage. As such, those who apply matching methods must ensure that the methods are working as designed. In doing so, the researcher should closely follow the advice in the literature about these other methods. For example, researchers should use information about the substance of the problem being analyzed and measurement characteristics of the variables included, such as encoded in coarsenings in CEM or data measurements in Euclidean distance matching, rather than the automatic standardization in MDM that is convenient for a methods paper like this. Similarly, optimal matching will often work better than greedy, and j-to-k matching (with j and k varying over units) will often be an improvement for a given sample size than one-to-one or other fixed strata size approaches.

It is an open question whether the PSM paradox discussed here explains some of the difficulties scholars have noticed that PSM has caused, or not solved, in real data analyses. For example, Peikes, Moreno and Orzol (2008) (Glazerman, Levy and Myers, 2003), and Smith and Todd (125) have each pointed to PSM requiring many more observations than they expected as one source of PSM’s problems, which is the difference one would
experience when running a completely randomized experiment instead of a fully blocked randomized experiment.

References

Imai, Kosuke, Gary King and Elizabeth Stuart. 2008. “Misunderstandings Among Experimentalists and Observationalists about Causal Inference.” *Journal of the Royal Statis-

