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Verbal Autopsy Methods

The Problem

Policymakers need the cause-specific mortality %’s to set research
goals, donor priorities, and ameliorative policies
High quality death registration data: 23/192 countries

Existing Approaches

Verbal Autopsy: Ask relatives or caregivers 50+ symptom questions
Ask physicians

(low intercoder reliability)

Classification algorithms

Find deaths with medically certified causes at a local hospital,
Trace caregivers to their homes, ask the same symptom questions
statistically classify deaths in community
(model-dependent, low accuracy)

Summary of existing methods:

huge efforts; few reliable results

Our Key insight:

in public health, no one cares about you!

They care about:

% in categories, not individual classification

Statistical problem:

use labeled set to estimate %s in unlabeled set
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Social Media Analytics

Categories: List of 10 reasons to like or not like Donald Trump

With a hand-coded training set: best classifier accuracy?

60%?

(≈ the accuracy of Google or Bing)

Classify&Count estimate (for example):

5% don’t like Trump because of foreign policy
Truth is 5% + 40% = 45%

Classification: great for Google, useless for some social science

Key insight:

no one cares what @StatPumpkin213 says on Twitter

Statistical problem: use labeled set to estimate %s in unlabeled set

Estimating aggregate quantities distinguishes social science
In epidemiology: “prevalence estimation”
In computer science, machine learning, computational linguistics, and
data mining:

“quantification,” “class prior estimation,” “counting,”
“class probability re-estimation,” and “learning of class balance.”
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Prior work: The Only Multicategory Method w/o Classification

“Verbal Autopsy Methods with Multiple Causes of Death.” (King &
Lu, Statistical Science, 2008)
“Designing Verbal Autopsy Studies” (King, Lu, & Shibuya,
Population Health Metrics, 2010)
“A Method of Automated Nonparametric Content Analysis for Social
Science” (Hopkins & King, AJPS, 2010)
U.S. Patent 8180717 (Hopkins, King, Lu, 2012)

  

Worldwide cause-of-death estimates for

Open source software:

VA: Verbal Autopsy Software
and Readme: Software for Automated Content Analysis
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%’s Can be Estimated Better than “Classify & Count”

Start with bad estimator ̂P(D = 1), from classification or otherwise

Decompose bad estimator with accounting identity

̂P(D = 1) = (sens) P(D = 1) + (1− spec) P(D = 2)

Sensitivity: Prob(true positive)
1− Specificity: Prob(false negative)

Solve for “truth” to correct estimate:

P(D = 1) =
̂P(D = 1)− (1− spec)

sens− (1− spec)
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Generalizations: C Categories, No Individual Classification

Accounting identity for C categories:

P(D̂ = c) =
C∑

c ′=1

P(D̂ = c |D = c ′) P(D = c ′)

Misclassification Probs

New accounting identity:

P(S = s) =
C∑

c ′=1

P(S = s|D = c ′) P(D = c ′)

Word stem profiles Word stem profiles
by category

S = s: Deterministic profile of document

(Many options!)

P(S = s): proportion of documents in profile s
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Matrix Simplifications

P(S = s) =
C∑

c ′=1

P(S = s|D = c ′) P(D = c ′)

P(S)
W×1

= P(S |D)
W×C

P(D)
C×1

Word stem profile

Word stem profile by category

Quantity of interest, category proportions
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Matrix Simplifications

P(S)
W×1

= P(S |D)
W×C

P(D)
C×1

Word stem profile

Word stem profile by category

Quantity of interest, category proportions

Alternative notation: Y = Xβ

Solve for quantity of interest: β = (X ′X )−1X ′Y

The readme estimator:

P(S |D) ≡ X is unobserved;

make assumption: P(S |D)L = P(S |D)U

W is too large;

take random subsamples and average

P(D) ≡ β is on the simplex;

use constrained LS
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Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U

 P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U

 P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U

 P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U

 P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U

 plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U  plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U  plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)

 attenuation toward P(D)L

11/17



Statistical Properties

Assumptions

Classification: P(S ,D)L = P(S ,D)U (& measure all predictors!)

Readme: P(S |D)L = P(S |D)U  P̂(D) = P(D)

Alternative DGP: labeled is random, unlabeled is fixed population

Readme2: E [P(S |D)L] = P(S |D)U

Properties

Like regression with random measurement error in X ( attenuation)

Unlike regression, it’s Consistent:

plim
n→∞

P(S |D)L = P(S |D)U  plim
n→∞

P̂(D) = P(D)

But it’s biased: E [P̂(D)] 6= P(D)  attenuation toward P(D)L

11/17



Where’s the Bias? Analytical answer in 2 categories

Try to: Reduce P(D) divergence; Increase P(S |D) discrimination
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A Proposed Readme2: Part 1 (of 2)

Goal: reduce P(D) divergence, increase P(S |D) discrimination

Start with readme

Add bootstrap aggregating (“bagging”):

Improve stability, accuracy

Add Weighted bagging:

Ideal (unavailable) weights to reduce divergence: p` ∝
P(D`)

U

P(D`)L

We’re estimating β in Y = Xβ & know the true Y in the test set!

Weight on p` ∝
P(S`)

U

P(S`)L

 but it’s sparse  weights are too variable

We prove
P(S`)

U

P(S`)L
= f (Propensity score) (of labeled v. unlabeled set)

 Use PScore to smooth

To increase discrimination, form propensity score using “important”
words

(with two lasso-regularized multivariate logistic models); same
logic as balancing for causal inference
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A Proposed Readme2: Part 2 (of 2)

Form P(S |D) by tabulating weighted bootstrap labeled set

But P(S |D) is sparse (for each bootstrapped sample)

Use Bayesian model: mitigate sparseness, increase efficiency

Most words have little effect
If no effect, P(S |D) = P(S)
 Shrink P(S |D) toward prior of P(S)U

(Details: Beta-binomial Bayesian model for cell counts)

Overall method: weighted bagging + PScore + Bayesian shrinkage

Refinements: alternative numeric representations of text
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