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@ Decompose bad estimator with accounting identity

P(D =1) = (sens) P(D=1)+ (1—spec) P(D=2)

o Sensitivity: Prob(tru;m

e 1 — Specificity: Prob(false negative)

@ Solve for “truth” to correct estimate:

P(Eil) — (1 — spec)

P(D=1)=
( ) sens — (1 — spec)
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Solve for quantity of interest: 8= (X'X)71X'Y

The readme estimator:
o P(S|D) = X is unobserved; make assumption: P(S|D)" = P(S|D)Y
e W is too large; take random subsamples and average
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~+ Use PScore to smooth

To increase discrimination, form propensity score using “important”
words (with two lasso-regularized multivariate logistic models); same
logic as balancing for causal inference

Ideal (unavailable) weights to reduce divergence: py

Weight on py ~> but it's sparse ~~ weights are too variable

We prove = f(Propensity score) (of labeled v. unlabeled set)
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But P(S|D) is sparse (for each bootstrapped sample)

Use Bayesian model: mitigate sparseness, increase efficiency
o Most words have little effect

If no effect, P(S|D) = P(S)

~ Shrink P(S|D) toward prior of P(S)Y

(Details: Beta-binomial Bayesian model for cell counts)

Overall method: weighted bagging + PScore 4+ Bayesian shrinkage

Refinements: alternative numeric representations of text
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Validation in 72 Data Sets

@ Enron
o Hillary Clinton

(2008)
@ Immigration
blogs

o 69 Twitter data
sets created by
firms,
governments,
candidates,
nonprofits, etc.
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