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Applications of modern methods for analyzing data with missing values, based primarily on multiple imputation, have in
the last half-decade become common in American politics and political behavior. Scholars in this subset of political science
have thus increasingly avoided the biases and inefficiencies caused by ad hoc methods like listwise deletion and best guess
imputation. However, researchers in much of comparative politics and international relations, and others with similar data,
have been unable to do the same because the best available imputation methods work poorly with the time-series cross-
section data structures common in these fields. We attempt to rectify this situation with three related developments. First, we
build a multiple imputation model that allows smooth time trends, shifts across cross-sectional units, and correlations over
time and space, resulting in far more accurate imputations. Second, we enable analysts to incorporate knowledge from area
studies experts via priors on individual missing cell values, rather than on difficult-to-interpret model parameters. Third,
because these tasks could not be accomplished within existing imputation algorithms, in that they cannot handle as many
variables as needed even in the simpler cross-sectional data for which they were designed, we also develop a new algorithm
that substantially expands the range of computationally feasible data types and sizes for which multiple imputation can be
used. These developments also make it possible to implement the methods introduced here in freely available open source
software that is considerably more reliable than existing algorithms.

We develop an approach to analyzing data with
missing values that works well for large num-
bers of variables, as is common in American

politics and political behavior; for cross-sectional, time
series, or especially “time-series cross-section” (TSCS)
data sets (i.e., those with T units for each of N cross-
sectional entities such as countries, where often T < N),
as is common in comparative politics and international
relations; or for when qualitative knowledge exists about
specific missing cell values. The new methods greatly in-
crease the information researchers are able to extract from
given amounts of data and are equivalent to having much
larger numbers of observations available.

Our approach builds on the concept of “multiple
imputation,” a well-accepted and increasingly common
approach to missing data problems in many fields. The
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idea is to extract relevant information from the observed
portions of a data set via a statistical model, to impute
multiple (around five) values for each missing cell, and
to use these to construct multiple “completed” data sets.
In each of these data sets, the observed values are the
same, and the imputations vary depending on the esti-
mated uncertainty in predicting each missing value. The
great attraction of the procedure is that after imputation,
analysts can apply to each of the completed data sets what-
ever statistical method they would have used if there had
been no missing values and then use a simple procedure
to combine the results. Under normal circumstances, re-
searchers can impute once and then analyze the imputed
data sets as many times and for as many purposes as they
wish. The task of running their analyses multiple times
and combining results is routinely and transparently
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handled by special purpose statistical analysis software.
As a result, after careful imputation, analysts can ignore
the missingness problem (King et al. 2001; Rubin 1987).

Commonly used multiple imputation methods work
well for up to 30–40 variables from sample surveys and
other data with similar rectangular, nonhierarchical prop-
erties, such as from surveys in American politics or
political behavior where it has become commonplace.
However, these methods are especially poorly suited to
data sets with many more variables or the types of data
available in the fields of political science where missing
values are most endemic and consequential, and where
data structures differ markedly from independent draws
from a given population, such as in comparative politics
and international relations. Data from developing coun-
tries especially are notoriously incomplete and do not
come close to fitting the assumptions of commonly used
imputation models. Even in comparatively wealthy na-
tions, important variables that are costly for countries to
collect are not measured every year; common examples
used in political science articles include infant mortality,
life expectancy, income distribution, and the total burden
of taxation.

When standard imputation models are applied to
TSCS data in comparative and international relations,
they often give absurd results, as when imputations in
an otherwise smooth time series fall far from previ-
ous and subsequent observations, or when imputed val-
ues are highly implausible on the basis of genuine local
knowledge. Experiments we have conducted where se-
lected observed values are deleted and then imputed with
standard methods produce highly uninformative imputa-
tions. Thus, most scholars in these fields eschew multiple
imputation. For lack of a better procedure, researchers
sometimes discard information by aggregating covariates
into five- or ten-year averages, losing variation on the de-
pendent variable within the averages (see, for example,
Iversen and Soskice 2006; Lake and Baum 2001; Moene
and Wallerstein 2001; and Timmons 2005, respectively).
Obviously this procedure can reduce the number of ob-
servations on the dependent variable by 80 or 90%, limits
the complexity of possible functional forms estimated
and number of control variables included, due to the
restricted degrees of freedom, and can greatly affect em-
pirical results—a point regularly discussed and lamented
in the cited articles.

These and other authors also sometimes develop ad
hoc approaches such as imputing some values with lin-
ear interpolation, means, or researchers’ personal best
guesses. These devices often rest on reasonable intuitions:
many national measures change slowly over time, obser-
vations at the mean of the data do not affect inferences for

some quantities of interest, and expert knowledge outside
their quantitative data set can offer useful information. To
put data in the form that their analysis software demands,
they then apply listwise deletion to whatever observations
remain incomplete. Although they will sometimes work
in specific applications, a considerable body of statisti-
cal literature has convincingly demonstrated that these
techniques routinely produce biased and inefficient infer-
ences, standard errors, and confidence intervals, and they
are almost uniformly dominated by appropriate multiple
imputation-based approaches (Little and Rubin 2002).1

Applied researchers analyzing TSCS data must then
choose between a statistically rigorous model of missing-
ness, predicated on assumptions that are clearly incorrect
for their data and which give implausible results, or ad hoc
methods that are known not to work in general but which
are based implicitly on assumptions that seem more rea-
sonable. This problem is recognized in the comparative
politics literature where scholars have begun to examine
the effect of missing data on their empirical results. For
example, Ross (2006) finds that the estimated relation-
ship between democracy and infant mortality depends on
the sample that remains after listwise deletion. Timmons
(2005) shows that the relationship found between taxa-
tion and redistribution depends on the choice of taxation
measure, but superior measures are subject to increased
missingness and so not used by researchers. And Spence
(2007) finds that Rodrik’s (1998) results are dependent
on the treatment of missing data.

We offer an approach here aimed at solving these
problems. In addition, as a companion to this article,
we make available (at http://gking.harvard.edu/amelia)

1King et al. (2001) show that, with the average amount of miss-
ingness evident in political science articles, using listwise deletion
under the most optimistic of assumptions causes estimates to be
about a standard error farther from the truth than failing to con-
trol for variables with missingness. The strange assumptions that
would make listwise deletion better than multiple imputation are
roughly that we know enough about what generated our observed
data to not trust them to impute the missing data, but we still
somehow trust the data enough to use them for our subsequent
analyses. For any one observation, the misspecification risk from
using all the observed data and prior information to impute a
few missing values will usually be considerably lower than the risk
from inefficiency that will occur and selection bias that may oc-
cur when listwise deletion removes the dozens of more numerous
observed cells. Application-specific approaches, such as models for
censoring and truncation, can dominate general-purpose multi-
ple imputation algorithms, but they must be designed anew for
each application type, are unavailable for problems with missing-
ness scattered throughout an entire data matrix of dependent and
explanatory variables, and tend to be highly model-dependent. Al-
though these approaches will always have an important role to play
in the political scientist’s toolkit, since they can also be used to-
gether with multiple imputation, we focus here on more widely
applicable, general-purpose algorithms.
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an easy-to-use software package that implements all the
methods discussed here. The software, called Amelia II: A
Program for Missing Data, works within the R Project for
Statistical Computing or optionally through a graphical
user interface that requires no knowledge of R (Honaker,
King, and Blackwell 2009). The package also includes
detailed documentation on implementation details, how
to use the method in real data, and a set of diagnos-
tic routines that can help evaluate when the methods
are applicable in a particular set of data. The nature of
the algorithms and models developed here makes this
software faster and more reliable than existing impu-
tation packages (a point which statistical software re-
views have already confirmed; see Horton and Kleinman
2007).

Multiple Imputation Model

Most common methods of statistical analysis require rect-
angular data sets with no missing values, but data sets
from the real political world resemble a slice of swiss
cheese with scattered missingness throughout. Consider-
able information exists in partially observed observations
about the relationships between the variables, but listwise
deletion discards all this information. Sometimes this is
the majority of the information in the original data set.2

Continuing the analogy, what most researchers try
to do is to fill in the holes in the cheese with various
types of guesses or statistical estimates. However, unless
one is able to fill in the holes with the true values of
the data that are missing (in which case there would be
no missing data), we are left with “single imputations”
which cause statistical analysis software to think the data
have more observations than were actually observed and
to exaggerate the confidence you have in your results by
biasing standard errors and confidence intervals.

That is, if you fill the holes in the cheese with peanut
butter, you should not pretend to have more cheese! Anal-
ysis would be most convenient for most computer pro-
grams if we could melt down the cheese and reform it
into a smaller rectangle with no holes, adding no new in-
formation, and thus not tricking our computer program

2If archaeologists threw away every piece of evidence, every tablet,
every piece of pottery that was incomplete, we would have entire
cultures that disappeared from the historical record. We would no
longer have the Epic of Gilgamesh, or any of the writings of Sappho.
It is a ridiculous proposition because we can take all the partial
sources, all the information in each fragment, and build them
together to reconstruct much of the complete picture without any
invention. Careful models for missingness allow us to do the same
with our own fragmentary sources of data.

into thinking there exists more data than there really is.
Doing the equivalent, by filling in observations and then
deleting some rows from the data matrix, is too diffi-
cult to do properly; and although methods of analysis
adapted to the swiss cheese in its original form exist (e.g.,
Heckman 1990; King et al. 2004), they are mostly not
available for missing data scattered across both depen-
dent and explanatory variables.

Instead, what multiple imputation does is to fill in
the holes in the data using a predictive model that in-
corporates all available information in the observed data
together along with any prior knowledge. Separate “com-
pleted” data sets are created where the observed data
remain the same, but the missing values are “filled in”
with different imputations. The “best guess” or expected
value for any missing value is the mean of the imputed
values across these data sets; however, the uncertainty
in the predictive model (which single imputation meth-
ods fail to account for) is represented by the variation
across the multiple imputations for each missing value.
Importantly, this removes the overconfidence that would
result from a standard analysis of any one completed
data set, by incorporating into the standard errors of our
ultimate quantity of interest the variation across our es-
timates from each completed data set. In this way, mul-
tiple imputation properly represents all information in
a data set in a format more convenient for our stan-
dard statistical methods, does not make up any data, and
gives accurate estimates of the uncertainty of any resulting
inferences.

We now describe the predictive model used most
often to generate multiple imputations. Let D denote a
vector of p variables that includes all dependent and ex-
planatory variables to be used in subsequent analyses,
and any other variables that might predict the missing
values. Imputation models are predictive and not causal
and so variables that are posttreatment, endogenously de-
termined, or measures of the same quantity as others can
all be helpful to include as long as they have some pre-
dictive content. In particular, including the dependent
variable to impute missingness in an explanatory variable
induces no endogeneity bias, and randomly imputing an
explanatory variable creates no attenuation bias, because
the imputed values are drawn from the observed data
posterior. The imputations are a convenience for the an-
alyst because they rectangularize the data set, but they
add nothing to the likelihood and so represent no new
information even though they enable the analyst to avoid
listwise deleting any unit that is not fully observed on all
variables.

We partition D into its observed and missing ele-
ments, respectively: D = {Dobs, Dmis}. We also define a
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missingness indicator matrix M (with the same dimen-
sions as D) such that each element is a 1 if the corre-
sponding element of D is missing and 0 if observed. The
usual assumption in multiple imputation models is that
the data are missing at random (MAR), which means that
M can be predicted by Dobs but not (after controlling for
Dobs) Dmis, or more formally p(M |D) = p(M |Dobs).
MAR is related to the assumptions of ignorability, non-
confounding, or the absence of omitted variable bias that
are standard in most analysis models. MAR is much safer
than the more restrictive missing completely at random
(MCAR) assumption which is required for listwise dele-
tion, where missingness patterns must be unrelated to
observed or missing values: P (M |D) = P (M). MCAR
would be appropriate if coin flips determined missing-
ness, whereas MAR would be better if missingness might
also be related to other variables, such as mortality data
not being available during wartime. An MAR assumption
can be wrong, but it would by definition be impossible
to know on the basis of the data alone, and so all existing
general-purpose imputation models assume it. The key
to improving a multiple imputation model is including
more information in the model so that the stringency of
the ignorability assumption is lessened.

An approach that has become standard for the widest
range of uses is based on the assumption that D is mul-
tivariate normal, D ∼ N(�, �), an implication of which
is that each variable is a linear function of all others.
Although this is an approximation, and one not usu-
ally appropriate for analysis models, scholars have shown
that for imputation it usually works as well as more com-
plicated alternatives designed specially for categorical or
mixed data (Schafer 1997; Schafer and Olsen 1998). All
the innovations in this article would easily apply to these
more complicated alternative models, but we focus on the
simpler normal case here. Furthermore, as long as the im-
putation model contains at least as much information as
the variables in the analysis model, no biases are generated
by introducing more complicated models (Meng 1994). In
fact, the two-step nature of multiple imputation has two
advantages over “optimal” one-step approaches. First, in-
cluding variables or information in the imputation model
not needed in the analysis model can make estimates even
more efficient than a one-step model, a property known
as “super-efficiency.” And second, the two-step approach
is much less model-dependent because no matter how
badly specified the imputation model is, it can only affect
the cell values that are missing.

Once m imputations are created for each missing
value, we construct m completed data sets and run what-
ever procedure we would have run if all our data had
been observed originally. From each analysis, a quantity

of interest is computed (a descriptive feature, causal ef-
fect, prediction, counterfactual evaluation, etc.) and the
results are combined. The combination can follow Ru-
bin’s (1987) original rules, which involve averaging the
point estimates and using an analogous but slightly more
involved procedure for the standard errors, or more sim-
ply by taking 1/m of the total required simulations of
the quantities of interest from each of the m analyses
and summarizing the set of simulations as is now com-
mon practice with single models (e.g., King, Tomz, and
Wittenberg 2000).

Computational Difficulties and
Bootstrapping Solutions

A key computational difficulty in implementing the nor-
mal multiple imputation algorithm is taking random
draws of � and � from their posterior densities in order
to represent the estimation uncertainty in the problem.
One reason this is hard is that the p( p + 3)/2 elements
of � and � increase rapidly with the number of variables
p. So, for example, a problem with only 40 variables has
860 parameters and drawing a set of these parameters at
random requires inverting an 860 × 860 variance matrix
containing 370,230 unique elements.

Only two statistically appropriate algorithms are
widely used to take these draws. The first proposed is the
imputation-posterior (IP) approach, which is a Markov-
chain, Monte Carlo–based method that takes both ex-
pertise to use and considerable computational time. The
expectation maximization importance sampling (EMis)
algorithm is faster than IP, requires less expertise, and
gives virtually the same answers. See King et al. (2001)
for details of the algorithms and citations to those who
contributed to their development. Both EMis and IP have
been used to impute many thousands of data sets, but
all software implementations have well-known problems
with large data sets and TSCS designs, creating unaccept-
ably long run-times or software crashes.

We approach the problem of sampling � and � by
mixing theories of inference. We continue to use Bayesian
analysis for all other parts of the imputation process and
to replace the complicated process of drawing � and �

from their posterior density with a bootstrapping algo-
rithm. Creative applications of bootstrapping have been
developed for several application-specific missing data
problems (Efron 1994; Lahlrl 2003; Rubin 1994; Rubin
and Schenker 1986; Shao and Sitter 1996), but to our
knowledge the technique has not been used to develop
and implement a general-purpose multiple imputation
algorithm.
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The result is conceptually simple and easy to imple-
ment. Whereas EMis and especially IP are elaborate al-
gorithms, requiring hundreds of lines of computer code
to implement, bootstrapping can be implemented in just
a few lines. Moreover, the variance matrix of � and �

need not be estimated, importance sampling need not
be conducted and evaluated (as in EMis), and Markov
chains need not be burnt in and checked for convergence
(as in IP). Although imputing much more than about
40 variables is difficult or impossible with current imple-
mentations of IP and EMis, we have successfully imputed
real data sets with up to 240 variables and 32,000 observa-
tions; the size of problems this new algorithm can handle
appears to be constrained only by available memory. We
believe it will accommodate the vast majority of applied
problems in the social sciences.

Specifically, our algorithm draws m samples of size n
with replacement from the data D.3 In each sample, we
run the highly reliable and fast EM algorithm to produce
point estimates of � and� (see the appendix for a descrip-
tion). Then for each set of estimates, we use the original
sample units to impute the missing observations in their
original positions. The result is m multiply imputed data
sets that can be used for subsequent analyses.

Since our use of bootstrapping meets standard reg-
ularity conditions, the bootstrapped estimates of � and
� have the right properties to be used in place of draws
from the posterior. The two are very close empirically in
large samples (Efron 1994). In addition, bootstrapping
has better lower order asymptotics than the parametric
approaches IP and EMis implement. Just as symmetry-
inducing transformations (like ln(�2) in regression prob-
lems) make the asymptotics kick in faster in likelihood
models, it may then be that our approach will more faith-
fully represent the underlying sampling density in smaller
samples than the standard approaches, but this should be
verified in future research.4

3This basic version of the bootstrap algorithm is appropriate when
sufficient covariates are included (especially as described in the
fourth section) to make the observations conditionally indepen-
dent. Although we have implemented more sophisticated bootstrap
algorithms for when conditional independence cannot be accom-
plished by adding covariates (Horowitz 2001), we have thus far not
found them necessary in practice.

4Extreme situations, such as small data sets with bootstrapped sam-
ples that happen to have constant values or collinearity, should not
be dropped (or uncertainty estimates will be too small) but are eas-
ily avoided via the traditional use of empirical (or “ridge”) priors
(Schafer 1997, 155).

The usual applications of bootstrapping outside the imputation
context requires hundreds of draws, whereas multiple imputation
only requires five or so. The difference has to do with the amount of
missing information. In the usual applications, 100% of the param-
eters of interest are missing, whereas for imputation, the fraction

The already fast speed of our algorithm can be in-
creased by approximately m ∗ 100% because our al-
gorithm has the property that computer scientists call
“embarrassingly parallel,” which means that it is easy to
segment the computation into separate, parallel processes
with no dependence among them until the end. In a par-
allel environment, our algorithm would literally finish
before IP begins (i.e., after starting values are computed,
which are typically done with EM), and about at the point
where EMis would be able to begin to utilize the parallel
environment.

We now replicate the “MAR-1” Monte Carlo experi-
ment in King et al. (2001, 61), which has 500 observations
and about 78% of the rows fully observed. This simula-
tion was developed to show the near equivalence of results
from EMis and IP, and we use it here to demonstrate that
those results are also essentially equivalent to our new
bootstrapped-based EM algorithm. Figure 1 plots the
estimated posterior distribution of three parameters for
our approach (labeled EMB), IP/EMis (for which only one
line was plotted because they were so close), the complete
data with the true values included, and listwise deletion.
For all three graphs in the figure, one for each parameter,
IP, EMis, and EMB all give approximately the same result.
The distribution for the true data is also almost the same,
but slightly more peaked (i.e., with smaller variance), as
should be the case since the simulated observed data with-
out missingness have more information. IP has a smaller
variance than EMB for two of the parameters and larger
for one; since EMB is more robust to distributional and
small sample problems, it may well be more accurate here
but in any event they are very close in this example. The
(red) listwise deletion density is clearly biased away from
the true density with the wrong sign, and much larger
variance.

Trends in Time, Shifts in Space

The commonly used normal imputation model assumes
that the missing values are linear functions of other vari-
ables’ observed values, observations are independent con-
ditional on the remaining observed values, and all the
observations are exchangable in that the data are not orga-
nized in hierarchical structures. These assumptions have

of cells in a data matrix that are missing is normally considerably
less than half. For problems with much larger fractions of missing
information, m will need to be larger than five but rarely anywhere
near as large as would be required for the usual applications of
bootstrapping. The size of m is easy to determine by merely cre-
ating additional imputed data sets and seeing whether inferences
change.
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FIGURE 1 Histograms Representing Posterior
Densities from Monte Carlo
Simulated Data (n = 500 and about
78% of the Units Fully Observed), via
Three Algorithms and the Complete
(Normally Unobserved) Data
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IP and EMis, and our algorithm (EMB) are very close in all three
graphs, whereas listwise deletion is notably biased with higher
variance.

proven to be reasonable for survey data, but they clearly
do not work for TSCS data. In this section and the next,
we take advantage of these discrepancies to improve im-
putations by adapting the standard imputation model,
with our new algorithm, to reflect the special nature of
these data. Most critically in TSCS data, we need to rec-
ognize the tendency of variables to move smoothly over
time, to jump sharply between some cross-sectional units
like countries, to jump less or be similar between some
countries in close proximity, and for time-series patterns
to differ across many countries.5 We discuss smoothness
over time and shifts across countries in this section and

5The closest the statistical literature on missing data has come to
tackling TSCS data would seem to be “repeated measures” designs,
where clinical patients are observed over a small number of irregu-
larly spaced time intervals (Little 1995; Molenberghs and Verbeke
2005). Missingness occurs principally in the dependent variable
(the patient’s response to treatment) and largely due to attrition,
leading to monotone missingness patterns. As attrition is often due
to a poor response to treatment, MAR is usually implausible and so
missingness models are necessarily assumption-dependent (Davey,
S̃hanahan, and Schafer 2001; Kaciroti et al. 2008). Since in typical
TSCS applications, missingness is present in all variables, and time
series are longer, direct application of these models is infeasible

then consider issues of prior information, nonignorabil-
ity, and spatial correlation in the next.

Many time-series variables, such as GDP, human cap-
ital, and mortality, change relatively smoothly over time.
If an observation in the middle of a time series is miss-
ing, then the true value often will not deviate far from a
smooth trend plotted through the data. The smooth trend
need not be linear, and so the imputation technique of
linear interpolation, even if modified to represent un-
certainty appropriately, may not work. Moreover, sharp
deviations from a smooth trend may be caused by other
variables, such as a civil war. This same war might also
explain why the observation is missing. Such deviates will
sometimes make linear interpolation badly biased, even
when accurate imputations can still be constructed based
on predictions using other variables in the data set (such
as the observed intensity of violence in the country).

We include the information that some variables tend
to have smooth trends over time in our imputation model
by supplementing the data set to be imputed with smooth
basis functions, constructed prior to running the impu-
tation algorithm. These basis functions can be created
via polynomials, LOESS, splines, wavelets, or other ap-
proaches, most of which have arbitrary approximation
capabilities for any functional form. If many basis func-
tions are needed, one approach would be to create basis
functions for each variable within a country and to use the
first few principal components of the whole set of these
variables, run separately by country or interacted with
country indicators. In contrast to direct interpolation,
including basis functions in the imputation model will
increase the smoothness of the imputations only if the
observed data are well predicted by the basis functions
conditional on other variables, and even then the predic-
tive capacity of other variables in the model may cause
deviations from smoothness if the evidence supports
it.

Including q-order polynomials is easy, but may not
work as well as other choices. (In addition to being rel-
atively rigid, polynomials work better for interpolation
than extrapolation, and so missing values at the end of
a series will have larger confidence intervals, but the de-
gree of model dependence may be even larger [King and
Zeng 2006].) Since trends over time in one unit may not
be related to other units, when using this option we also
include interactions of the polynomials with the cross-
sectional unit. When the polynomial of time is simply
zero-order, this becomes a model of “fixed effects,” and

or inadequate. Researchers with data sets closer to this framework,
particularly with such nonignorable missingness mechanisms, may
find them more useful.
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FIGURE 2 Time Series of GDP in Six African Nations with Diverse Trends and Levels
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so this approach (or the other more sophisticated ap-
proaches) can also deal with shifts across cross-sections.
As q increases, the time pattern will fit better to the
observed data. With k cross-sections, a q-order poly-
nomial will require adding ((q + 1) × k) − 1 variables
to the imputation model. As an illustration, below we
estimate a cubic polynomial for six countries and thus
add ((3 + 1) × 6) − 1 = 23 fully observed covariates. For
variables that are either central to our subsequent anal-
ysis or for which the time-series process is important,
we also recommend including lags of that variable. Since
this is a predictive model, we can also include leads of
the same variable as well, using the future to predict
the past. Given the size of most data sets, this strategy
would be difficult or impossible with IP or EMis, but our
EMB algorithm, which works with much larger num-
bers of variables, makes this strategy feasible and easy to
implement.

We illustrate our strategy with the data from the
Africa Research Program (Bates et al. 2006). The raw data
appear in Figure 2, which shows the fully observed levels
of GDP in six African countries between 1972 and 1999.6

6GDP is measured as real per capita purchasing power parity using
a chain international price index.

In Cameroon we can see that GDP in any year is close
to the previous year, and a trend over time is discernible,
whereas in the Republic of Congo the data seem much
more scattered. While Cameroon’s trend has an interest-
ing narrative with a rise, a fall, and then a flat period,
Zambia has a much more straightforward, seemingly lin-
ear decline. Ghana experiences such a decline, followed
by a period of steady growth. Cote d’Ivoire has a break in
the middle of the series, possibly attributable to a crisis in
the cocoa market. In addition to these values of GDP, we
constructed a data set with several of the standard bat-
tery of cross-national comparative indicators, including
investment, government consumption and trade open-
ness (all three measured as a percentage of GDP), the
Freedom House measure of civil freedoms, and the log of
total population.

We used our EMB algorithm for all that follows. We
ran 120 standard imputation models with this data set,
sequentially removing one year’s data from each cross-
section (20 years × six countries), trying to impute the
now missing value and using the known true value as
validation. We then ran another 120 imputations by also
including time up to a third-order polynomial. For each
imputation model, we construct confidence intervals and
plot these in Figure 3. The green confidence intervals
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FIGURE 3 The Vertical Lines Represent Three 90% Confidence Intervals of Imputed Values (with
the Same True Values Plotted as Red Circles as in Figure 2 but on a Different Vertical
Scale), from a Separate Model Run for Each Country-Year Treating That Observation of
GDP as Missing
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The green confidence intervals are based on the most common specification which excludes time from the imputation model. The narrower
blue confidence intervals come from an imputation model that includes polynomials of time, and the smallest red confidence intervals
include LOESS smoothing to form the basis functions.

represent the distribution of imputed values from an im-
putation model without variables representing time. Be-
cause they were created via the standard approach that
does not include information about smoothness over

time, they are so large that the original trends in GDP,
from Figure 2, are hard to see at this scaling of the vertical
axis. The large uncertainty expressed in these intervals is
accurate and so inferences based on these data will not
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mislead, but they have such low power that most inter-
esting patterns will be missed.

We then reran the same 120 imputations, this time
adding polynomials of time; the results are represented
by blue lines in Figure 3 and are about a quarter the
size (25.6% on average) of those green lines from the
model without time trends. In every country, this imputa-
tion approach within each cross-section now picks up the
gross patterns in the data far better than the standard ap-
proach. The blue confidence intervals are not only much
smaller, but they also still capture all but a small fraction
of the imputations across the 120 tests represented in this
figure.

Finally, we also ran a third set of 120 imputation mod-
els, this time using LOESS smoothing to create the basis
functions. These appear as red lines in Figure 3. LOESS-
based smoothing provides a clear advantage over poly-
nomial smoothing: almost as many points are captured
by the 90% confidence intervals as for the polynomials,
but the LOESS-based intervals are narrower in almost all
cases, especially when the polynomial-based intervals are
largest.

The imputations from our preferred model do not
fully capture a few patterns in the data, such as the
cocoa crisis in Cote d’Ivoire and the drastic economic
turnaround in Cameroon. The methods would also be
less powerful when applied to data with long stretches of
missingness, such as might occur with variables merged
from different collections observed over periods that do
not completely overlap. In the example presented here, the
confidence intervals capture most of the points around,
or recover shortly before and after, even extreme outliers
like these. We could improve the model further by in-
cluding additional or more flexible basis functions, or by
including expert local knowledge, a subject to which we
now turn.

Incorporating Expert Knowledge

In the usual collection of mass survey (type) data, respon-
dents’ identities and locations have been removed and so
the only information analysts have about an observation
is that coded in the numerical variables. In contrast, a
great deal is known about the units in TSCS data beyond
the quantified variables included in the data set (such
as “Iran in 1980” or “the United States in 2008”). This
difference between survey and TSCS data thus suggests a
new source of valuable information and an opportunity
to improve imputations well beyond the standard model.
We do this in this section via new types of Bayesian priors.

Prior information is usually elicited for Bayesian
analysis as distributions over parameters in the model,
which assumes knowledge of the relationships between
variables or their marginal distributions. In an imputa-
tion model, however, most of the elements of � and �

have little direct meaning, and researchers are unlikely to
have prior beliefs about their specific values.7 However,
researchers and area studies experts often have informa-
tion about particular missing values in their data sets that
is much more specific and, in the context of imputation
models, far more valuable.

Consider three examples. First, a researcher may un-
derstand that GDP must have been in a low range: perhaps
he or she visited the country at that time, spoke to mi-
grants from the country, read newspapers from that era,
or synthesized the scholarly consensus that the economy
was in bad shape at that time. In all these cases, researchers
have information about individual missing observations
rather than hypothetical parameters. For a second exam-
ple, in most countries vital registration systems do not op-
erate during wartime, and mortality due to war, which is
surely higher due to the direct and indirect consequences
of the conflict, is unobserved (Murray et al. 2002). And
a final example would be where we do not have much
raw information about the level of a variable in a country,
but we believe that it is similar to the observed data in a
neighboring country. We show how to add information
in terms of priors for all these situations.

Researchers in many situations are thus perfectly will-
ing to put priors on the expected values of particular
missing cell values, even if they have no idea what the
priors should be on the parameters of the model. Yet, for
Bayesian analysis to work, all priors must ultimately be put
on the parameters to be estimated, and so if we have priors
on the expected value of missing observations, they must
somehow be translated into a prior over the parameters,
in our case on � and �. Since according to the model each
missing observation is generated by these p( p + 3)/2 pa-
rameters, we need to make a few-to-many transforma-
tion, which at first sounds impossible. However, following
Girosi and King (2008, chap. 5), if we restrict the trans-
formation to the linear subspace spanned by the variables
taking the role of covariates during an imputation, a prior
on the expected value of one or more observations is eas-
ily transformed into a prior over � and �. In particular, a
prior on the expected value E (D̃i j ) ≡ Dobs

i,− j �̃ (where we

7Even when translated into regression coefficients for one variable
as a linear function of the others, researchers are highly unlikely to
know much about the predictive “effect” of what will be a dependent
variable in the analysis model on some explanatory variable that
is causally prior to it, or the effect of a treatment controlling for
posttreatment variables.
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use a tilde to denote a simulated value) can be inverted
to yield a prior on �̃ = (Dobs′

i,− j Dobs
i,− j )

−1 Dobs′
i,− j E (D̃i j ), with

a constant Jacobian. The parameter � can then be used
to reconstruct � and � deterministically. Hence, when
researchers can express their knowledge at the level of the
observation, we can translate it into what is needed for
Bayesian modeling.8

We now offer a new way of implementing a prior on
the expected value of an outcome variable. Our approach
can be thought of as a generalized version of data aug-
mentation priors (which date back at least to Theil and
Goldberger 1961), specialized to work within an EM al-
gorithm. We explain each of these concepts in turn. Data
augmentation priors (DAPs) are appropriate when the
prior on the parameters has the same functional form
as the likelihood. They are attractive because they can
be implemented easily by adding specially constructed
pseudo-observations to the data set, with weights for the
pseudo-observations translated from the variance of the
prior hyperparameter, and then running the same algo-
rithm as if there were no priors (Bedrick, Christensen, and
Johnson 1996; Clogg et al. 1991; Tsutakawa 1992). Empir-
ical priors (as in Schafer 1997, 155) can be implemented
as DAPs.

Unfortunately, implementing priors at the observa-
tion level solely via current DAP technology would not
work well for imputation problems.

The first issue is that we will sometimes need dif-
ferent priors for different missing cells in the same unit
(say if GDP and fertility are both missing for a country-
year). To allow this within the DAP framework would
be tedious at best because it would require adding mul-
tiple pseudo-observations for each real observation with
more than one missing value with a prior, and then adding
the appropriate complex combination of weights to reflect
the possibly different variances of each prior. A second
more serious issue is that the DAPs have been imple-
mented in order to estimate model parameters, in which
we have no direct interest. In contrast, our goal is to create
imputations, which are predictions conditional on actual
observed data.

8In addition to the formal approach introduced for hierarchical
models in Girosi and King (2008), putting priors on observations
and then finding the implied prior on coefficients has appeared in
work on prior elicitation (see Gill and Walker 2005; Ibrahim and
Chen 1997; Kadane 1980; Laud and Ibrahim 1995; Weiss, Wang, and
Ibrahim 1997), predictive inference (Tsutakawa 1992; Tsutakawa
and Lin 1986; West, Harrison, and Migon 1985), wavelet analysis
(Jefferys et al. 2001), and logistic (Clogg et al. 1991) and other
generalized linear models (Bedrick, Christensen, and Johnson 1996;
Greenland 2001; Greenland and Christensen 2001).

The EM algorithm iterates between an E-step (which
fills in the missing data, conditional on the current model
parameter estimates) and an M-step (which estimates the
model parameters, conditional on the current imputa-
tions) until convergence. Our strategy for incorporating
the insights of DAPs into the EM algorithm is to include
the prior in the E-step and for it to affect the M-step only
indirectly through its effect on the imputations in the
E-step. This follows basic Bayesian analysis where the im-
putation turns out to be a weighted average of the model-
based imputation and the prior mean, where the weights
are functions of the relative strength of the data and prior:
when the model predicts very well, the imputation will
downweight the prior, and vice versa. (In contrast, priors
are normally put on model parameters and added to EM
during the M-step.)9 This modified EM enables us to put
priors on observations in the course of the EM algorithm,
rather than via multiple pseudo-observations with com-
plex weights, and enables us to impute the missing values
conditional on the real observations rather than only es-
timated model parameters. The appendix fully describes
our derivation of prior distributions for observation-level
information.

We now illustrate our approach with a simulation
from a model analyzed mathematically in the appendix.
This model is a bivariate normal (with parameters � =
(0, 0) and � = {1 0.4, 0.4 1}) and with a prior on the ex-
pected value of the one missing observation. Here, we add
intuition by simulating one set of data from this model,
setting the prior on the observation to N(5, �), and ex-
amining the results for multiple runs with different values
of �. (The mean and variance of this prior distribution
would normally be set on the basis of existing knowledge,
such as from country experts, or from averages of ob-
served values in neighboring countries if we know that
adjacent countries are similar.) The prior mean of five
is set for illustrative purposes far from the true value of
zero. We drew one data set with n = 30 and computed
the observed mean to be −0.13. In the set of histograms
on the right of Figure 4, we plot the posterior density
of imputed values for priors of different strengths. As �

9Although the first applications of the EM algorithm were for miss-
ing data problems (Dempster, Laird, and Rubin 1977; Orchard and
Woodbury 1972), its use and usefulness have expanded to many
maximum-likelihood applications (McLachlan and Krishan 2008),
and as the conventional M-step is a likelihood maximization EM is
considered a maximum-likelihood technique. However, as a tech-
nique for missing data, use of prior distributions in the M-step, both
informative and simply for numerical stability, is common (as in
Schafer 1997) and prior distributions are Bayesian. Missing data
models, and multiple imputation in particular, regularly straddle
different theories of inference, as discussed by Little (2008).
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FIGURE 4 Posterior Densities of the Expected Value of One
Imputation Generated from a Model with a Mean of
Zero and a Prior Mean of Five
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Distribution of imputed values for one observation with prior μ= 5

The left column holds constant the strength of the prior (summarized by the smallness of
its variance, � at 1) and changes the predictive strength of the data (summarized by the
covariance between the two variables, �12). The right column holds constant the predictive
strength of the data (at �12 = 0.5) and changes the strength of the prior (�).

shrinks (shown for the histograms closer to the top of the
figure), the imputations collapse to a spike at our value of
5, even though the model and its MAR assumption fit to
the observed data without a prior would not support this.
As � becomes larger, and thus our prior becomes weaker
given data of the same strength, the observed data in-
creasingly overrides the prior, and we see the distribution
of imputations centering close to the observed data value
near zero. As importantly, the spread across imputed val-
ues, which reflects the uncertainty in the imputation as
summarized by the model, increases.

The histograms on the right of Figure 4 keep the
predictive strength of the data the same and increase the
confidence of the prior. The histograms on the left of
the same figure do the opposite: they hold constant the

strength of the prior (i.e., �) and increase the predictive
strength of the data (by increasing the covariance between
the two variables, �12). The result is that as the data predict
better (for the histograms higher in the figure on the
left), the imputations increasingly reflect the model-based
estimates reflecting the raw data (which have a mean value
of 1.5) and ignore the prior values. (The histograms in
the third position of each column have the same values of
� and �12 and so are the same.)

We also illustrate here the smaller and indirect effect
on the model parameters of this prior over one cell in
the data matrix with Figure 5 , which plots a model pa-
rameter vertically by the log of the strength of the prior
horizontally. In particular, with no prior specified, model
parameter �2 has a value of −0.13, which we represent in
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FIGURE 5 Values of One Model Parameter �2,
the Mean of Variable 2, with Prior
p(x12) = N(5, �), Across Different
Strengths of the Prior, ln � (That Is
on the Log Scale)
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The parameter is approaching the theoretical limits (represented by
dashed lines), where the upper bound is the parameter generated
when the missing value is simply filled in with the expectation,
and the lower bound is the parameter when the model is estimated
without priors. The overall movement of this model parameter on
the basis of the prior on one observation is small.

Figure 5 with the lower horizontal dashed line. If instead
of a prior, we simply filled in our missing cell D12 at our
prior value of 5, then this parameter rises to 0.05,10 which
we represent in the figure with the horizontal dashed line
at the top. For any possible prior or value of �2, then,
these two values act as the limits on how much our prior
can change the final estimate. The plotted curve shows
how the expected value changes with �. As ln � → 0, the
expected value converges to what would have resulted
had we simply filled in the missing value. Similarly, as
ln � grows large (here about 100), then the prior has no
contribution to the final estimate from the EM chain. For
a sufficiently weak prior the parameter approaches the
lower dashed line at −0.13, which would have resulted
had no priors been used on the data set.

Figure 5 shows that the effect on a model parame-
ter of a prior on one observation is relatively small, as
it should be. Nevertheless, researchers are advised to use
observation-level priors in conjunction with a judicious
choice of covariates, since ultimately putting priors on
observations is also putting priors on the model param-
eters. The key is to ensure that the covariates span a rich
enough space to accommodate the added prior informa-
tion, so that the data are fit better rather than the prior

10As shown in the appendix, this is roughly (nobs �obs + �0)/
(nobs + 1) = (28 ∗ −0.13 + 5)/29.

values merely creating outliers and biasing the model pa-
rameters with respect to the remaining imputations.

We use the same technology for putting priors on
individual missing cell values to borrow strength from
information in the data of neighboring or similar coun-
tries via user-specified proximity matrices. In most ap-
plications with priors, users will have information over
many of the missing values in the data, rather than just
one. In such cases, the computations are somewhat more
involved (for details, see the appendix), but the intuition
in this simple case still applies.

Illustrations

In practice, any analysis using a new method on a given
data set only demonstrates what can happen in those
data, not in any others. We know from the GDP data
analyses in Figure 2 that the effects of our methods can
be massive in terms of efficiency and bias. In this section,
we go further and replicate two published studies that
seek to explain terrorist incidents and economic growth,
respectively. We also reanalyze the same data after mul-
tiply imputing their missing data with our methods and
find some major effects, with some important variables
changing sign, uncertainty estimates changing, and some
original findings strengthened.11

Explaining Terrorism

As an example of our imputation method we replicated
Burgoon’s (2006) study of the effect of a nation’s wel-
fare and economic policies on the number of terrorism
incidents caused by citizens of that country. Burgoon es-
timates six similar model specifications—three different
measures of a key variable of interest, with and without
lagged levels of the dependent variable and time fixed ef-
fects. The number of observations after listwise deletion
varies from 1,193 to 1,779. In the model with the fewest
observations, 98 countries are present for an average of
12.2 years each.

11We also replicated Moene and Wallerstein’s (2001) analysis of
inequality and welfare spending, Fearon’s (2005) reassessment of
Collier and Hoeffler’s (2004) work on natural resources and civil
wars, Fearon and Laitin’s (2003) work on ethnicity and civil war,
and Marinov’s (2005) work on economic sanctions. In each of
these analyses, imputation of the incomplete data strengthened the
original findings, in some cases substantially. Additionally, we are
limited to analyzing the effects of our methods on published work,
but many research projects have undoubtedly been abandoned
altogether because missing data proved too large an obstacle to
overcome, or researchers were rightly concerned about the biases
and inefficiencies created by listwise deletion; perhaps our methods
will bring such works to completion in the future.
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We imputed this data set, bringing the number of
rows of data to 2,268, which spans 108 countries for
21 years each. Most of the missing values were scattered
over time among various economic indicators. On aver-
age, incomplete observations were missing only in 2.3 of
the 10 key variables in the analysis (not including all the
region and time fixed effects, which were of course fully
observed). Thus, across the roughly 1,000 incomplete ob-
servations, more than three quarters of the variables were
present, but none of this observed information is used in
the listwise deletion models.

One independent variable Burgoon examines is trade
openness, the sum of imports and exports as a fraction of
gross domestic product. This is an important variable in
the literature on growth and development, often used as
a proxy in studies in globalization. Burgoon summarizes
arguments in the literature that predict opposing causal
mechanisms. Succinctly, if trade leads to growth and de-
velopment, this may reduce domestic tensions and vio-
lence, while if trade leads to inequality this may increase
violence and the number of terrorist incidents.

If theory cannot predict the effect of trade openness
on terrorist incidents, the listwise deleted data are no more
instructive. Across the six models, under slightly different
model specifications and different complete observations,
the effect of trade openness varies considerably in sign and
magnitude. In two models the sign is positive, predicting
more violence as openness increases. In four models the
sign is negative. Both one of the positive and one of the
negative models are significant at the 90% confidence
level.

We present first differences from the six models in
Figure 6. Each circle represents the expected change in
the number of terrorist incidents between a country with
trade openness one standard deviation below and one
above the mean level of openness (holding all other
variables at their mean). The vertical lines represent the
confidence intervals for these first differences in the six
listwise deleted models. The horizontal lines represent the
confidence intervals from the six models using multiply
imputed data.

If the estimates from listwise deletion and those after
imputation agreed with each other, all these plus signs
would line up on the y = x (45 degree) line. As they
move away from this line, the parameters in these models
increasingly disagree. The pluses that fall in either of the
two shaded quadrants represent parameters whose signs
change when the data set is imputed, and here we see
four of the six parameters change sign, which of course
means that the information discarded by listwise deletion
and retained by our imputation model was substantively
meaningful. As expected, the confidence interval for the

FIGURE 6 Each Plus Sign Represents the 90%
Confidence Interval for the Change
in the Number of Terrorist Incidents
When Trade Openness Changes
from One Standard Deviation Below
to One Deviation Above the Mean
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First Differences of Trade Dependence on Violence

If the parameter estimates from the listwise deleted and imputed
data sets agree, then all the stars should fall directly on the 45-degree
line. In the listwise deleted data sets, the sign of this parameter varies
across models. However, four parameters (in the grey lower-right
quadrant) change sign when the data are imputed, making the
expected direction of the effect of trade coherent across alternate
model specifications.

imputed data, which does not discard observed cell values
in the data set, is smaller (on average around 14%) than
for listwise deletion. Whereas in the listwise deleted data
the effect of trade can be positive or negative depending on
the model specification, all the parameters across all the
models in the imputed data predict a positive relationship,
with two significant at the 90% confidence level. The null
test for the parameters from the imputed model can be
seen graphically as the horizontal lines do not intersect the
horizontal axis at zero. Although not certain, the evidence
under listwise deletion indicates no particular pattern
whereas under EMB imputation clearly suggests a positive
relationship.

Explaining Economic Growth

For our second example we reestimate key results from
Baum and Lake (2003), who are interested in the effect
of democracy on economic growth, both directly (as in
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TABLE 1 Replication of Baum and Lake, Using
Listwise Deletion and Multiple
Imputation

Listwise Multiple
Deletion Imputation

Life Expectancy
Rich Democracies −.072 .233

(.179) (.037)
Poor Democracies −.082 .120

(.040) (.099)
N 1789 5627

Secondary Education
Rich Democracies .948 .948

(.002) (.019)
Poor Democracies .373 .393

(.094) (.081)
N 1966 5627

The table shows the effect of being a democracy on life expectancy
and on the percentage enrolled in secondary education (with p-
values in parentheses).

Barro 1997) and indirectly through its intermediate ef-
fects on female life expectancy and female secondary ed-
ucation. We reproduce their recursive regression system
of linear specifications, using our imputation model, and
simple listwise deletion as a point of comparison.12

As shown in Table 1, under listwise deletion democ-
racy conflictingly appears to decrease life expectancy even
though it increases rates of education. These coefficients
show the effect of moving one quarter of the range of
the Polity democracy scale on female life expectancy and
on the percentage enrolled in secondary education. With
multiple imputation, the effect of democracy is consis-
tently positive across both variables and types for rich
and poor democracies. The effect of democracy on life
expectancy has changed direction in the imputed data.
Moreover, in the imputed data both rich and poor democ-
racies have a statistically significant relationship to these
intermediate variables. Thus the premise of intermediate
effects of democracy in growth models through human
capital receives increased support, as all types of democ-
racies have a significant relationship to these measures of

12Baum and Lake use a system of overlapping moving averages
of the observed data to deal with their missingness problem. Like
many seemingly reasonable ad hoc procedures, they can be useful
in the hands of expert data analysts but are hard to validate and
will still give incorrect standard errors. In the present case, their
results are intermediate between our model and listwise deletion
with mixed significance and some negative effects of democracy.

human capital, and democracy always positively increases
human capital.13

In each of the examples at least one variable is inter-
mittently measured over time and central to the analysis.
We now demonstrate the intuitive fit of the imputation
model by showing the distribution of imputed values in
several example countries. To do this, we plot the data
for three key variables for four selected countries in each
row of Figure 7. Observed data appear as black dots, and
five imputations are plotted as blue circles. Although five
or 10 imputed data sets are commonly enough for esti-
mating model parameters with multiple imputation, we
generated 100 imputed data sets so as to obtain a fuller un-
derstanding of the range of imputations for every missing
value, and from these created 90% confidence intervals.
At each missing observation in the series, these confidence
intervals are plotted as vertical lines in grey. The first row
shows welfare spending (total social security, health, and
education spending) as a percent of GDP, from Burgoon’s
study. The second row shows female life expectancy from
the first model we present from Baum and Lake. The last
row shows the percent of female secondary enrollment,
from our second model from this study. The confidence
intervals and the distribution of imputations line up well
with the trends over time. With the life expectancy vari-
able, which has the strongest trends over time, the imputa-
tions fall within a narrow range of observed data. Welfare
has the least clear trend over time and, appropriately, the
largest relative distribution of imputed values.

Concluding Remarks

The new EMB algorithm developed here makes it pos-
sible to include features in the imputation model that
would have been difficult or impossible with existing
approaches, resulting in more accurate imputations, in-
creased efficiency, and reduced bias. These techniques
enable us to impose smoothness over time-series vari-
ables, shifts over space, interactions between the two, and
observation-level priors for as many missing cells as a re-
searcher has information about. The new algorithm even

13The number of observations more than doubles after imputation
compared to listwise deletion, although of course the amount of
information included is somewhat less than this because the ad-
ditional rows in the data matrix are in fact partially observed. We
used a first-order autoregressive model to deal with the time series
properties of the data in these analyses; if we had used a lagged
dependent variable there would have been only 303 and 1,578 ob-
servations, respectively, in these models after listwise deletion, be-
cause more cases would be lost. The mean per capita GDP in these
303 observations where female life expectancy was collected for
two sequential years was $14,900, while in the other observations
the mean observed GDP was only $4,800.
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FIGURE 7 Fit of the Imputation Model
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Black disks are the observed data. Blue open circles are five imputations for each missing value, and grey vertical bars represent 90%
confidence intervals for these imputations. Countries in the second row have missing data for approximately every other year.

enables researchers to more reliably impute single cross-
sections such as survey data with many more variables
and observations than has previously been possible.

Multiple imputation was originally intended to be
used for “shared (i.e., public use) data bases, collected and
imputed by one entity with substantial resources but ana-
lyzed by a variety of users typically armed with only stan-
dard complete-data software” (Rubin 1994, 476). This
scenario has proved valuable for imputing a small num-
ber of public-use data sets. However, it was not until
software was made available directly to researchers, so
they could impute their own data, that the technique be-

gan to be widely used (King et al. 2001). We hope our
software, and the developments outlined here, will make
it possible for scholars in comparative and international
relations and other fields with similar TSCS data to ex-
tract considerably more information from their data and
generate more reliable inferences. The benefits their col-
leagues in American politics have had for years will now
be available here. Future researchers may also wish to take
on the valuable task of using systematic methods of prior
elicitation (Gill and Walker 2005; Kadane 1980), and the
methods introduced here, to impute some of the available
public-use data sets in these fields.
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What will happen in the next data set to which our
method is applied depends on the characteristics of those
data. The method is likely to have its largest effect in data
that deviate the most from the standard sample survey
analyzed a few variables at a time. The leading exam-
ple of such data includes TSCS data sets collected over
country-years or country-dyads and presently most com-
mon in comparative politics and international relations.
Of course, the methods we introduce also work for more
than six times as many variables as previous imputation
approaches and so should also help with data analyses
where standard surveys are common, such as in Ameri-
can politics and political behavior.

Finally, we note that users of data sets imputed with
our methods should understand that, although our model
has features to deal with TSCS data, analyzing the result-
ing multiply imputed data set still requires the same at-
tention that one would give to TSCS problems as if the
data had been fully observed (see, for example, Beck and
Katz 1995; Hsiao 2003).

Appendix: Generalized Version of
Data Augmentation Priors within EM

Notation

As in the body of the article, elements of the missingness
matrix, M , are 1 when missing and 0 when observed. For
notational and computational convenience, let X ≡ D
(where D is defined in the text as a partially observed
latent data matrix), where xi is the ith row (unit), and
xi j the jth element (variable) in this row. Then, create a
rectangularized version of Dobs, called Xobs by replacing
missing elements with zeros: Xobs = X ∗ (1 − M), where
the asterisk denotes an element-wise product. As is com-
mon in multivariate regression notation, assume the first
column of X is a constant. Since this can never be miss-
ing, no row is completely unobserved (that is mi �= 1 ∀i),
but so that the jth subscript represents the jth variable,
subscript these constant elements of the first column of X
as xi0. Denote the data set without this zero-th constant
column as X−0.

The Likelihood Framework

We assume that D ∼ N(�, �), with mean � and variance
�. The likelihood for complete data is

L (�, � |D) ∝
n∏

i=1

N(Di |�, �) =
n∏

i=1

N(xi |�, �), (1)

where Di refers to row i (i = 1, . . . , n) of D. We also de-
note Dobs

i as the observed elements of row i of D, and �obs
i

and �obs
i as the corresponding subvector and submatrix

of � and �, respectively. Then, because the marginal den-
sities are normal, the observed data likelihood, which we
obtain by integrating (1) over Dmis, is

L (�, � |Dobs) ∝
n∏

i=1

N
(

Dobs
i

∣∣�obs
i , �obs

i

)
=

n∏
i=1

N
(
xobs

i

∣∣(1− Mi ) ∗ �i ,

(1− Mi )′(1− Mi ) ∗ � + M′
i Mi ∗ H

)
(2)

where H = I(2�)−1, for identity matrix I, is a place-
holding matrix that numerically removes the dimensions
in Mi from the calculation of the normal density since
N(0|0, H) = 1. What is key here is that each observa-
tion i contributes information to differing portions of the
parameters, making optimization complex to program.
Each pattern of missingness contributes in a unique way
to the likelihood.

An implication of this model is that missing values
are imputed from a linear regression. For example, let
x̃i j denote a simulated missing value from the model for
observation i and variable j, and let xobs

i,− j denote the vector
of values of all observed variables in row i, except variable
j (the missing value we are imputing). The true coefficient
� (from a regression of D j on the variables with observed
values in row j) can be calculated deterministically from
� and � since they contain all available information in
the data under this model. Then, to impute, we use

x̃i j = xobs
i,− j �̃ + �̃i . (3)

The systematic component of x̃i j is thus a linear function
of all other variables for unit i that are observed, xobs

i,− j .
The randomness in x̃i j is generated by both estimation
uncertainty due to not knowing � (i.e., � and �) exactly,
and fundamental uncertainty �̃i (i.e., since � is not a
matrix of zeros). If we had an infinite sample, we would
find that �̃ = �, but there would still be uncertainty in
x̃i j generated by the world. In the terminology of King,
Tomz, and Wittenberg (2000), these imputations are pre-
dicted values, drawn from the distribution of xi j , rather
than expected values, or best guesses, or simulations of x̂i j

that average away the distribution of �̃i .

EM Algorithms for Incomplete Data

The EM algorithm is a commonly used technique for
finding maximum-likelihood estimates when the likeli-
hood function cannot be straightforwardly constructed
but a likelihood “simplified” by the addition of unknown
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parameters is easily maximized (Dempster, Laird, and
Rubin 1977). In models for missing data, the likelihood
conditional on the observed (but incomplete) data in (2)
cannot be easily constructed as it would require a sepa-
rate term for each of the up to 2k patterns of missingness.
However, the likelihood of a rectangularized data set (that
is, for which all cells are treated as observed) like that in
(1) is easy to construct and maximize, especially under
the assumption of multivariate normality. The simplicity
of rectangularized data is why dropping all incomplete
observations via listwise deletion is so pragmatically at-
tractive, even though the resulting estimates are inefficient
and often biased. Instead of rectangularizing the data set
by dropping known data, the EM algorithm rectangu-
larizes the data set by filling in estimates of the missing
elements, generated from the observed data. In the E-step,
missing values are filled in (using a generalized version of
(3)) with their conditional expectations, given the current
estimate of the sufficient statistics (which are estimates of
� and �) and the observed data. In the M-step, a new
estimate of the sufficient statistics is computed from the
current version of the completed data.

Sufficient Statistics. Because the data are jointly normal,
Q = X′X summarizes the sufficient statistics. Since the
first column of X is a constant,

Q =
(

n 1X−0

X−01 X′
−0X−0

)

=
∑

i

⎛⎜⎜⎜⎜⎝
n xi1 . . . xik

xi1 x2
i1 . . . xi1xik

...
. . .

xik . . . x2
ik

⎞⎟⎟⎟⎟⎠
(4)

We now transform this matrix by means of the sweep
operator into parameters of the conditional mean and
unconditional covariance between the variables. Let s
be a binary vector indicating which columns and rows
to sweep and denote �{s } as the matrix resulting from
Q swept on all rows and columns for which si = 1 but
not swept on rows and columns where si = 0. For exam-
ple, sweeping Q on only the first row and column results
in

�{s = (1 0 . . . 0)} =
(

−1 �

�′ �

)
, (5)

where � is a vector of the means of the variables, and �

the variance-covariance matrix. This is the most common
way of expressing the sufficient statistics, since X−0 ∼
N(�, �) and all these terms are found in this version
of �. However, transformations exist to move between

different parameterizations of � and Q, as all contain the
same information.

The E-step. In the E-step we compute the expectation of
all quantities needed to make estimation of the sufficient
statistics simple. The matrix Q requires xi j xik ∀i, j, k.
Only when neither are missing can this be calculated
straightforwardly from the observed data. Treating ob-
served data as known, one of three cases holds:

E[xi j xik] =

⎧⎪⎨⎪⎩
xi j xik, if mi j , mik = 0

E[xi j ]xik, if mi j = 1, mik = 0

E[xi j xik], if mi j , mik = 1

(6)

Thus we need to calculate both E [xi j : mi j =1], the ex-
pectations of all missing values, and E [xi j xik : mi j , mik =
1] the expected product of all pairs of elements missing in
the same observation. The first of these can be computed
simply as

E [xi j ] = xobs
i �{1−Mi }t

j (7)

where the superscript t , here and below, denotes the iter-
ation round of the EM algorithm in which that statistic
was generated.

The second is only slightly more complicated as

E [xi j xik] = E [xi j ]E [xik] + �{1−Mi }t
j k (8)

where the latter term is the estimated covariance of j and
k, conditional on the observed variables in observation i.

Both (7) and (8) are functions simply of the observed
data, and the matrix Q swept on the observed variables
in some observation, i. Given these expectations, we can
create a new rectangularized data set, X̂, in which we re-
place all missing values with their individual expectations
given the observed data. Sequentially, every observation
of this data set can be constructed as

x̂ t+1
i = xobs

i + Mi ∗ (
xobs

i �{1−Mi }t
)

(9)

The missing values within any observation have a
variance-covariance matrix which can be extracted as a
submatrix of � as �t+1

i |xobs
i

= M′
i Mi ∗ �{1−Mi }t . By con-

struction with M this will be zero for all �i j unless i and
j are both missing in this observation. The expectation
of the contribution of one observation, i, to Q is thus
E[x ′

i xi ] = x̂ t+1′
i x̂ t+1

i + �t+1
i |xobs

i
.

The M-step. Given the construction of the expectations
above, it is now simple to create an updated expectation
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of the sufficient statistics, Q, by

Qt+1 =
∑

i

(
x̂ t+1′

i x̂ t+1
i + �t+1

i |xobs
i

)
= X̂t+1′

X̂t+1 +
∑

i

(
�t+1

i |xobs
i

)
. (10)

Convergence to the Observed Data Sufficient Statis-
tics. Throughout the iterations, the values of the ob-
served data are constant, and generated from the sufficient
statistics of the true data-generating process we would like
to estimate. In each iteration, the unobserved values are
filled in with the current estimate of these sufficient statis-
tics. One way to conceptualize EM is that the sufficient
statistics generated at the end of any iteration, �t , are a
weighted sum of the “true” sufficient statistics contained

within the observed data, �MLE, and the erroneous suf-
ficient statistics, �t−1 that generated the expected values.
The previous parameters in �t−1 used to generate these
expectations may have been far from the true values, but
in the next round these parameters will only be given par-
tial weight in the construction of �t together with the true
relationships in the observed data. Thus each sequential
value of � by necessity must be closer to the truth, since it
is a weighting of the truth with the previous estimate. Like
Zeno’s paradox, where runners are constantly moving a
set fraction of the remaining distance to the finishing line,
we never quite get to the end point, but we are confident
we are always moving closer. If we iterate the sequence
long enough, we can get arbitrarily close to the truth, and
usually we decide to end the process when the change
between successive values of � seems tolerably small that
we believe we are within a sufficient neighborhood of the
optimum. Convergence is guaranteed to at least a local
maximum of the likelihood space under simple regular-
ity conditions (McLachlan and Krishan 2008). When the
possibility of multiple modes in the likelihood space ex-
ists, a variety of starting points, �0, can be used to monitor
for local maxima, as is common in maximum-likelihood
techniques. However, modes caused by underidentifica-
tion or symmetries in the likelihood, while leading to
alternate sets of sufficient statistics, often lead to the same
model fit and the same distribution of predicted values
for the missing data, and so are commonly less problem-
atic than when multiple modes occur in analysis models.
We provide diagnostics in our software to identify local
modes in the likelihood surface as well as identify which
variables in the model are contributing to these modes.

Incorporating a Single Prior

Existing EM algorithms incorporate prior information in
the M-step, because this is the step where the parame-

ters are updated, and prior information has always been
assumed to inform the posterior of the parameters. In-
stead, we have information that informs the distribution
of particular missing cells in the data set and so we mod-
ify the E-step to incorporate our priors. If the priors are
over elements, it should be intuitive that it will be advan-
tageous to apply this information over the construction
of expected elements, rather than the maximization of
the parameters. It is possible to map information over
elements to restrictions on parameters, as demonstrated
in Girosi and King (2008), but in the EM algorithm for
missing data we have to construct expectations explic-
itly anyway for the objects for which we have informa-
tion, so it is opportune to bind our information to this
estimate.

Let individuals have a prior for the realized value
of any individual observation, xi j : mi j =1, as p(xi j ) =
N(�0, �). Given this prior, we need to update E [xi j ],
and E [xi j xik : mik =1] in the E-step. Conditional only on
Xobs and the current sufficient statistics, Q, these are given
by (7) and (8). Incorporating the prior, the expectation
becomes

E
[
xi j

∣∣�0, �, Qt, xobs
i

] = �0�−1 + x̂i j �
−1
j j

�−1 + �−1
j j

(11)

where x̂i j = xobs
i �{1−Mi }t

j and �j j = �{1−Mi }t
j j , as

previously detailed. For (8) in addition to these new
expectations, we need to understand how the covari-
ances and variance change. The variance is given by
Var(xi j , xi j ) = [�−1 + (�{1−Mi }t

j k)−1]−1, and calcula-
tion of the covariances are left for the more general ex-
planation of multivariate priors in the last section of this
appendix.

Example. Consider the following simplified example
with a latent bivariate data set of n observations drawn
from X1,2 ∼ N(�1, �2, �11, �12, �22) where the first vari-
able is fully observed, and the first two observations of the
second variable are missing. Thus the missingness matrix
looks like

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1

0 0 1

0 0 0

...
...

...

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(12)

recalling that the first column represents the constant in
the data set. Assume a solitary prior exists for the missing
element of the first observation: p(x12) = N(�0, �). After
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the tth iteration of the EM sequence,

�{(1 0 0)}t =

⎛⎜⎝−1 �1 �2

�1 �11 �12

�2 �12 �22

⎞⎟⎠ . (13)

If we sweep Q on the observed elements of row one we
return

�{(1 1 0)}t

=

⎛⎜⎜⎝
. . �2 − �1�−1

11 �12

. . �−1
11 �12

�2 − �1�−1
11 �12 �−1

11 �12 �22 − �21�−1
11 �12

⎞⎟⎟⎠ (14)

=
⎛⎝ . . �0

. . �1

�0 �1 �22|1

⎞⎠ (15)

where .’s represent portions of the matrix no longer of
use to this example, and �0, �1, and �22|1 are the param-
eters of the regression of x2 on x1, from which we can
determine our expectation of the missing data element,
x12, conditional only on the current iteration of �, de-
fined as p(x12 |�t) = N(�12, �2), �t+1

12 = �0 + �1 ∗ x11,
and �2 = �22|1.

Therefore our expected value from this distribu-
tion is simply E [x12 |�t] = �t+1

12 . Then our posterior
is p(xi j |�t, �0, �) = N(�∗, �2∗), where �2∗ = (�−1 +
�−1

22|1)−1 and �∗
12 = (�−1�0 + �−1

22|1�t+1
12 )�2∗. If � has not

converged, then �∗ becomes our new expectation for x12

in the E-step. If � has converged, then p(xi j |�t, �0, �) be-
comes the distribution from which we draw our imputed
value.

Incorporating Multiple Priors

More generally, priors may exist for multiple observations
and multiple missing elements within the same observa-
tion. Complications arise especially from the latter since
the strength of the prior may vary across the different
elements within an observation. Conditional only on the
current value of �t the mean expectation of the missing
values in some row can be computed (by the rightmost
term of equation 9) as x̂mist+1

i = Mi ∗ (xobs
i �{1−Mi }t),

which is a vector with zeros for observed elements, and
gives the mean value of the multivariate normal distribu-
tion for unobserved values, conditional on the observed
values in that observation and the current value of the
sufficient statistics.

For observation i, assume a prior of p(xmis
i ) =

N(�0i , �), where �0i is a vector of prior means, and
where we define � to be a diagonal matrix: �i j = 0 for all
i �= j . Assuming off-diagonal elements of � are zero is

computationally convenient, and it is appropriate when
we do not have prior beliefs about how missing elements
within an observation covary.14 Thus, �−1 is a diagonal
matrix with diagonal element j ( j = 1, . . . , k) equal to
�−1

j j for missing values with priors, and zero for elements
that are missing with no prior or are observed.

The posterior distribution of xmis
i has parameters:

�∗
i =

(
�−1

i +
(
�t+1

i |xobs
i

)−1)−1

×
(
�−1

i �0i +
(
�t+1

i |xobs
i

)−1
x̂mist+1

i

)
(16)

�∗
i =

(
�−1

i +
(
�t+1

i |xobs
i

)−1)−1
. (17)

The vector �∗ becomes our new expectation for the E-
step as in the rightmost term in (9) in the construction
of X̂t+1, while �∗

i replaces �t+1
i |xobs

i
in (10).15 When the EM

algorithm has converged, these terms will also be used for
the final imputations as

(x̃i |Xobs, M, �, �0) ∼ N(�∗
i , �

∗) (18)

Implicitly, note that this posterior is normally distributed,
thus the priors are conjugate normal, which is convenient
for the normal EM algorithm. Although we constructed
our technique of observation-level priors to easily incor-
porate such prior information into EM chains and our
EMB imputation algorithm, clearly the same observation
priors could be incorporated into the IP algorithm. Here,
instead of parameter priors updating the P-step, obser-
vation priors would modify the I-step through the exact
same calculation of (16) and (17) and the I-step replaced
by a draw from (18).
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