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This paper discusses the problem of variance specification in models for event count data. 
Event counts are dependent variables that can take on only nonnegative integer values, such 
as the number of wars or coups d'etat in a year. I discuss several generalizations of the Poisson 
regression model, presented in King (1988), to allow for substantively interesting stochastic 
processes that do not fit into the Poisson framework. Individual models that cope with, and 
help analyze, heterogeneity, contagion. and negative contagion are each shown to lead to spe- 
cific statistical models for event count data. In addition. I derive a new generalized event count 
(GEC) model that enables researchers to extract significant amounts of new information from 
existing data by estimating features of these unobserved substantive processes. Applications 
of this model to congressional challenges of presidential vetoes and superpower conflict dem- 
onstrate the dramatic advantages of this approach. 

1. Introduction 

Event counts are dependent variables that take on nonnegative integer 
values for each of n observations. These values represent the number of 
times an event occurs in a fixed domain. The domain for each observation 
may be a cross-section, a time interval, or even the cell of a contingency ta- 
ble. The number of visible uses of military force initiated by the United 
States in each six-month interval (Stoll, 1984), the number of presidential 
vetoes per year (Rohde and Simon, 1985), the frequency of formal and in- 
formal military alliances (Russett, 1971; McGowan and Rood, 1975), and 
the annual number of presidential appointments to the Supreme Court 
(King, 1987) are examples of time series counts. Examples of cross-sectional 
event count studies include the number of coups d'etat in each black African 
state (Johnson, Slater, and McGowan, 1984) and the number of political ac- 
tivities engaged in and reported by Soviet emigres (Di Franceisco and Gitel- 
man, 1984).l 

*My thanks to Chris Achen, Jim Alt, Neal Beck. and Andrew Gelman for many helpful 
comments, Nancy Burns for research assistance, and the National Science Foundation (grant 
SES-87-22715) for research support. An earlier version of this paper was presented at the an- 
nual meeting of the Political Science Methodology Group, Duke University. 5-9 August 1987. 

'Event counts may also vary across both time and space, but these require special pooled 
time series-cross-sectional models not considered here. Different models of this sort have been 
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Least squares analyses of event counts are very inefficient, have incon- 
sistent standard errors, and may produce nega t i~e  predictions for the num- 
ber of events; least squares estimates with a logged dependent variable suf- 
fer from these problems and are biased and inconsistent as well (King, 
1988). The Poisson regression model is now used in many disciplines in lieu 
of these models, but it makes two key assumptions about the way unob- 
served processes generate event counts that are implausible in many appli- 
cations. Providing estimates of these unobserved processes, instead of as- 
suming them, can lead to important insights about empirical data. If these 
assumptions do not hold, but the Poisson model is applied anyway, param- 
eter estimates will be inefficient and standard errors inconsistent, a situation 
analogous to heteroscedasticity in least squares models. In fact, this problem 
in event count models is generally more serious, since the inconsistency in 
the standard errors is quite dramatic and since the problems can sometimes 
lead to inconsistency in the parameter estimates as well. 

In this paper I derive a new generalized event count model. This model 
enables researchers to estimate what was previously assumed and to study 
much more interesting data generation processes. Perhaps most striking is 
that the model extracts significant additional information from existing data 
and substantially improves estimation without any cost in additional as- 
sumptions. Section 2 contains a review of the basic Poisson model with an 
emphasis on its variance assumptions. In section 3 the processes giving rise 
to overdispersion (the variance being greater than the mean) are analyzed. 
In section 4 processes leading to underdispersion are analyzed, and a new 
maximum likelihood estimator is proposed. However, limited prior infor- 
mation, and, hence, an unknown range of dispersion, is the usual situation 
with political event count analyses. Thus, a new generalized event count es- 
timator is proposed in section 5 .  This estimator is consistent in the presence 
of unknown forms and levels of under-, over-, or Poisson dispersion. Since 
this new and more general estimator is almost always more appropriate in 
actual research situations, sections 3 and 4 should be considered important 
primarily as a lead up to section 5 .  Section 6 provides two examples that 
demonstrate the dramatic advantages in political science research that can 
result from the application of this new model compared to the more com- 
monly used Poisson model. Section 7 concludes. 

applied to the number of patents awarded per firm each year (Hausman, Hall, and Griliches, 
1984) and the number of presidential vetoes in each policy area per year (King, 1989b). See 
also Bishop, Fienberg, and Holland (1975), McCullagh and Nelder (1983), and King (1989c, 
ch. 6) on log-linear models for contingency tables. These models can be considered special cases 
of the event count models discussed below. 
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2. The Poisson Regression Model 

Let Yi (i = 1, . . . , n) be the random dependent variable event count, 
so that only the values O,1, . . . , occur with nonzero probability. We observe 
the realization yi only at the end of each observation period i. To derive a 
specific probability distribution, one nevertheless needs to make specific as- 
sumptions about the unobserved process within each observation period 
generating the observed count at the end of the period. For example, sup- 
pose we make the following assumptions about the process during observa- 
tion period i: 

ASSUMPTION 1: More than one event cannot occur at the same instant. 

ASSUMPTION 2: The probability of an event occurring at any instant is 
constant within period i and independent of all previous events during 
that observation period. 

ASSUMPTION 3: Zero events have occurred at the start of the period. 

From these first principles, one can derive a form of the Poisson prob- 
ability distribution for the random variable Y; (see King, 1988, Appendix 
1) : 

for t i > O , X i > O  and y i  = 0, 1 , .  . . 
fpi(yi hi, ti) = 

otherwise (1) 

The more usual form of the Poisson distribution results from adding the ad- 
ditional first principle: 

ASSUMPTION 4: The length ti of each observation period i is identical 
(and equal to, say, 1.0). 

Thus, we have: 

e-A'(Xi)yJ for hi > 0 and yi = 0, 1, . 
otherwise 

An event count regression model is specified by letting the expected 
count, E(Yi) = hi in one of these equations vary over observations according 
to a specific function of a vector of explanatory variables. This may be writ- 
ten in general form as Xi = Ai(xi, p ) ,  where xi is a vector of k exogenous 
variables and P is a k x 1 parameter vector. In this paper I specialize this 
functional form to E(Yi) = hi = exp(xip) for the same theoretical reasons 
developed and justified in King (1988). I shall use this more specific form 
for each of the models discussed below, but, at any time before differenti- 
ating, another form may be substituted for Xi. 
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To estimate p, the effect of the explanatory variables on the dependent 
variable, the method of maximum likelihood is used. By assuming the ab- 
sence of autocorrelation, the likelihood function may be written as 

with hi = exp(xiP). The basic idea of maximum likelihood is that the data 
are taken as given, and we choose the value of p that maximizes this function 
and hence the likelihood of having generated the data (see King, 1989c, for 
an introduction). The log-likelihood function, reduced to sufficient statis- 
tics, is then 

Standard numerical maximization methods can easily be applied to this glo- 
bally concave function by using one of many available computer programs 
(see note 11 below and King, 1988, Appendix 2). 

The focus of this paper is on the four assumptions of the stochastic pro- 
cess generating these counts. Assumption 1 is a relatively technical require- 
ment without many real consequences. Assumption 3 is more of a notational 
convenience, and the presence of Assumption 4 enables one to choose 
among the two distributions in equations 1 and 2. However, for political sci- 
ence research, Assumption 2 is very important. For example, suppose one 
is analyzing the number of coups d'etat. Observation i is a single black Af- 
rican state over some period (say, 20 years). The data only contain infor- 
mation on the total number of coups that have occurred in country i ;  they 
do not indicate in what way, during the 20-year period, the coups o ~ c u r r e d . ~  
Assumption 2 has two implications for this example. In one, the probability 
of a coup is assumed the same for every day during those 20 years. This ho- 
mogeneity assumption seems quite implausible. Economic conditions, civil 
unrest, international conflict, and other factors are likely to vary over time, 
resulting in a heterogeneous probability of event occurrence. Second, the 
occurrence of a coup at one point in time is assumed independent of all coups 
that might have occurred before. This part of the assumption is also implau- 
sible in this example because one coup is likely to decrease the probability 
of a coup in the very near future, but a successful coup may also increase 
the probability of a coup farther along. 

21f this more detailed information existed, one could use event history methods and model 
these processes in the systematic. rather than stochastic, component of a statistical model (see 
Allison, 1984). Unfortunately, this detailed information is often either difficult or impossible 
to obtain for all one's dependent and independent variables. 
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These assumptions about the unobserved process generating the ob- 
served counts have consequences for the variance in the event count regres- 
sion. The variance of Yi under the Poisson distribution in equation 2 is equal 
to its expected value: 

However, this result at the level of the counts relies on microlevel assump- 
tions about the process generating the counts-independence and homoge- 
neity. If these assumptions do not apply, then the Poisson distribution does 
not result, and the variance is not equal to the mean. In this case the log- 
likelihood in equation 4 will yield consistent estimates, but they will be in- 
efficient, and the standard errors inconsistent. 

More generally, let 

V(Yij = Xia2 (6) 

for hi > 0 and a2 > 0; a2 is called the dispersion parameter. When indi- 
vidual events are independent with homogeneous rates of occurrence, the 
result is a2 = 1 and V(Yij = hi, the case of Poisson dispersion. Alter- 
native assumptions lead to other values for a2. For example, if a2 > 1, the 
data are said to be overdispersed and, if 0 < a2 < 1, underdispersed (the 
next two sections describe the processes leading to these two situations). In 
general, a2 = a2(xi, p, 81, where 8 is now the ancillary parameter. Numer- 
ous functional forms for V(Yi) are thus possible (see Cameron and Trivedi, 
1986, p. 33), but I use the more specialized form where a2 in equation 6 is 
a scalar parameter. In any of the models below, this form can easily be 
changed by substituting the alternate form in for a2 before differentiation. 
Furthermore, "even relatively substantial errors in the assumed functional 
form of [the variance] generally have only a small effect on the conclusions" 
(McCullagh and Nelder, 1983, p. 132). 

3. Modeling Event Counts with Overdispersion 

Heterogeneity and contagion, two very different and substantively in- 
teresting unobserved processes, can produce identical models for overdis- 
persion (a2 > 1 in equation 6). Suppose the number of events recorded 
at each observation is the aggregation of a large number of individual units, 
each at risk Xi for one event occurrence (e.g., persons in county i each at 
risk of committing suicide; bills sent to the president in year i each at risk 
of being vetoed). The aggregation process produces the realized number of 
events that occurred during the period, pi (e.g., suicides or vetoes per year) 
and a random variable, Yi, described by a complete probability distribution; 
this distribution will generally have an expected number of events, 
E(Yij = hi = exp(xip) and a variance, V(Yij = &a2. As noted above the 
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distribution will be Poisson if all micro events have equal probabilities of oc- 
currence and are independent, and thus a2 = 1. For example, in any one 
day, the probability of any airplane in the domestic United States being hi- 
jacked is essentially identical. In addition, since information of one hijack- 
ing probably takes at least a day to be transmitted, we can expect that one 
hijacking incident would not influence the probability that other planes 
would be hijacked in the same day. Thus, the number of hijackings plausibly 
follows a Poisson distribution (see Holden, 1987), and thus a2 is probably 
1.0. 

However, if individual units within observation i are heterogeneous, Xi 
will vary more across individual units (within observation i), and overdis- 
persion will result.3 For example, if we included all airplanes worldwide, 
some nations certainly have higher probabilities of hijacking occurrences 
than others. 

In order to model heterogeneous processes, resulting in overdispersed 
event counts, I drop the assumption that hi is constant within observation 
i. Instead, I assume that it is a random variable. In order to build a stochastic 
model for heterogeneous processes, we must make some assumption about 
how hi (e.g., the rate of hijacking) is distributed across the micro units (air- 
planes) within each observation period (day). The usual assumption is that 
hi follows a gamma distribution (Johnson and Kotz, 1970, ch. 17). Under 
the gamma distribution [f,(hi I +i, u2)], the random variable Xi takes on only 
nonnegative real numbers and is assumed to have mean E(hi) = +i and vari- 
ance V(hi) = a2 .  The form of this distribution is quite flexible and is thus 
not overly restrictive, but one must recognize that this is a particular assump- 
tion about the nature of the unobserved heterogeneity. Other assumptions 
are possible, but do not reduce to closed form, and thus require more com- 
plicated estimation procedures (see Schoenberg, 1985). 

Greenwood and Yule (1920) first derived the new distribution, called 
the negative binomial, by adding this additional first principle (hi follow- 
ing a gamma distribution) to the initial four with the following proce- 
dure. First, derive the joint distribution ifi) of Yi and Xi (both now ran- 
dom variables) using the basic rule for conditional probability 
[Pr(AB) = Pr(A I B)Pr(B)]: 

Then, one derives the negative binomial distribution ifnb) by collapsing this 
joint distribution over hi: 

3Apparent overdispersion can be caused by measurement error in the explanatory vari- 
ables (Prentice, 1986, p. 324) or the omission of relevant explanatory variables (uncorrelated 
with the ones included). 
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In the negative binomial distribution, the left-hand side of equation 8, the 
parameter $i plays the same role of the mean rate of event occurrence as 
Xi does in the Poisson distribution. Thus, to maintain comparability, I re- 
parameterize by substituting Xifor each occurrence of $i and write out the 
entire distribution: 

where hi > 0 and a2 > 1 and T(.) is the gamma function. 
The result in equation 9 is a probability distribution with an additional 

parameter. The expected number of events can be modeled as before, 
E(Yi) = Xi = exp (xi P) .  However, the variance is now greater than the 
mean since 

and a2 > 1. As u2 approaches one, this distribution approximates the Pois- 
son distribution. Larger values of a2 produce a distribution with larger and 
larger amounts of overdispersion in the counts, resulting from more heter- 
ogeneity within each observation. 

Contagion is another process that also leads to overdispersion. Conta- 
gion occurs when the expected number of events at one time is dependent 
on the realized number of events at some previous time. For example, a sin- 
gle act of political terrorism is likely to stimulate future terrorist acts. For 
another example, one conflictual act between the United States and the So- 
viet Union is likely toeyield a flurry of tit-for-tat behavior. Since with event 
count data we only observe the total number of events at the end of the pe- 
riod, contagion, like heterogeneity, is an unobserved, within-observation 
p r o c e s ~ . ~  

Two distributions designed to model this sort of contagion are the con- 
tagious Polya-Eggenberger distribution and Neyman's contagious distribu- 
tions. A remarkable result due to Thompson (1954) is that a limiting form 
of both distributions is the same negative binomial that was derived above 
for a heterogeneous event count process. For research problems where both 
heterogeneity and contagion are plausible, the different underlying pro- 

4 0 n e  can model cross-observation dependence by including a lagged value of y, as an in- 
dependent variable or  through more complicated procedures. 
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cesses are not distinguishable with aggregate event count data because they 
both lead to the same probability distribution for the counts (see Neyman, 
1965, p. 5). One can still use this distribution to derive fully efficient and 
consistent estimates, but this analysis will only be suggestive of the under- 
lying process. In other situations, where a researcher can rule out one of 
these processes, this result is quite convenient for analyzing event counts, 
since the same model can be used. 

A negative binomial maximum likelihood solution yields consistent and 
fully efficient parameter estimates in the case of overdispersion due to con- 
tagion or heterogeneity.The log-likelihood is then as follows: 

where Xi = exp(xip), for yi = 0, 1, 2, . . . and a2 > 1. 
Whereas in the Poisson regression model one maximizes the log- 

likelihood with respect to P, this log-likelihood is maximized with respect 
tp both p and a2. The information from the maximum likelihood estimate, 
p, is interpreted as with the Poisson model. In this case the maximum like- 
lihood estimate, e2, provides information about how overdispersed (heter- 
ogeneous or contagious) the data are. Both 6 and e2 can be useful evidence 
when attempting to extract information from event count data. 

4. Modeling Event Counts with Underdispersion 

Models for underdispersion have generally been neglected in the event 
count literature. Some work exists on truncated event count models that 
produce underdispersion, but these apply only to more special cases where 
the untruncated parent distribution is Poisson or overdispersed (Mullahy, 
1986; King, 1989a). Statisticians sometimes argue that underdispersion is 
unusual in their data. I find this tendency in political science data as well, 
although in my experience examples of underdispersion can be found. In- 
deed, one can readily conceive of many interesting political science exam- 
ples that could generate underdispersed data. Negative contagion, where 
the occurrence of one event makes future events somewhat less likely, is 
generally the microlevel cause of underdispersion. For example, when one 
politician becomes a candidate for his or her party's presidential nomina- 
tion, other potential candidates may be less likely to enter the race. Negative 
contagion also characterizes the situation where events are very unlikely to 
occur immediately following other events of the same type. For example, 
when some congressional Democrats decided to attempt to block the ele- 
vation of William Rehnquist from associate to chief justice of the U.S. Su- 



770 Gary King 

preme Court, they decided not to attempt to block the confirmation of An- 
tonin Scalia as associate justice, even though they opposed him as well. The 
Democrats reasoned that success in opposing the second nomination would 
be much less likely to be successful, given the very short interval of time be- 
tween the two. 

It is well known that the process of negative contagion can give rise to 
a binomial probability distribution and underdispersion in the event counts 
(e.g., Patil and Boswell, 1975). However, in the present context, this ap- 
proach has a serious limitation. To illustrate this problem and provide a so- 
lution, I first reparameterize the binomial distribution along the lines of the 
Poisson and negative binomial distributions: 

and where EIYi) - Xi = expIxip) > 0, V(Yi) = hiu2, and 0 < 
u2 < 1. This expression directly addresses the situation of underdispersion 

but has one disqualifying feature. If ( - hi)/(u2 - 1)  is not an integer, 
2; = ofb(ml Xi, u2) # 1; thus, it is not a proper probability distribution. 

This problem can be solved by defining a new probability distribution, 
which I call the "continuous parameter binomial." A version of this distri- 
bution appears in Johnson and Kotz (1969, p. 40). The continuous param- 
eter binomial may be defined as follows; 

where 

This distribution is defined on the integers 0, 1, . . . ,[-h,i(u2-1)) 
+ 1 . 5  Thus, the random count variable now has a theoretical maximum. 

'If a is an integer, the function int[a) yields a - 1; otherwise, it returns the largest whole 
number. For example, int[2.9) = 2,  int[3) = 2,  and int[3.1) = 3. Johnson and Kotz (1969, 
p. 41) defined this function with the more usual int(a), producing a distribution quite incon- 
venient for representation as a likelihood because the last term in the denominator is exactly 
zero if - h,/iu2 - 11 is an integer. 
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This is because in this situation of negative contagion, the initial events re- 
duce the probability of future events and hence also reduce the maximum 
number of events that could occur in the period. Note that this maximum 
is a function of the parameters and is thus estimated rather than assumed. 
When a2 approaches one (indicating Poisson dispersion), this maximum ap- 
proaches infinity just as in the Poisson distribution. The smaller a2 gets, the 
smaller becomes the maximum, although the maximum count is always 
larger than the expected value. Note also that Di = 1, and the continuous 
parameter binomial reduces to the simpler binomial distribution if 
( - hi)/(a2 - 1) is an integer. To my knowledge, this distribution has never 
been used for an event count regression model or for any other purpose in 
the social sciences. 

The log-likelihood function for this distribution is as follows: 

Maximizing this log-likelihood function, then, yields optimal estimates for 
p and a2 in the presence of underdispersion due to negative cont2gion.6 Just 
as with the negative binomial model for overdispersion, both p and e2 can 
yield interesting information. Again p are the effect parameters, and u2, in 
this model, indicates the degree of underdispersion existing in the data and 
negative contagion giving rise to it.' 

5. Modeling Event Counts with Unknown Dispersion 

In this section I develop a new generalized event count estimator that 
enables researchers to model event counts with unknown degrees of under-, 
over-, or Poisson dispersion. With only the models described above, one 
would need to conduct a pretest of some sort to decide on the type of dis- 
persion to assume and, thus, which of the above models to estimate. How- 
ever, the multiple steps that pretest estimators require result in less efficient 

6The continuous parameter binomial distribution is continuous in both A, and a*. How- 
ever, the first derivative is discontinuous at a small, finite number of points. In theory, one 
needs to be careful in using nonlinear optimization procedures in this situation, preferably 
choosing ones that do not rely on gradient searches. In practice I find that the small discon- 
tinuities in the derivative function rarely cause a problem even with optimization methods that 
rely on gradients. 

'Since this model meets all of Wald's (1949) assumptions, the maximum likelihood esti- 
mator is consistent. Furthermore, in those situations where Mu2 - 11 is not an integer, the 
estimator is also asymptotically normal. 
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estimators than simultaneous procedures (see Judge et al., 1985). But, more 
important, the incorrect choice among the Poisson, negative binomial, and 
continuous parameter binomial alternatives can lead to inconsistency as well 
as inefficiency (Gourieroux, Montfort, and Trognon, l984b) .8 

To construct this generalized estimator, I derive a new probability dis- 
tribution with parameters hi and a2 .  The difference here is that u2 is no 
longer restricted to be in a narrow range, but can now take on any value 
greater than zero. Special cases of this distribution occur when the disper- 
sion parameter, u2, falls into different ranges. Thus, when 0 < a2 < 1,  
this generalized event count distribution produces the same probabilities as 
the continuous parameter binomial; when u2 = 1, probabilities are the 
same as the Poisson; and, when a2 > 1, probabilities are the same as the 
negative binomial. This new probability distribution offers smooth transi- 
tions between these cases. 

The likelihood function may then be formed with this distribution and 
simultaneously maximized with respect to a2 and P (since we specify 
E(Y i )  = hi = exp(xiP) as usual). The virtue of this approach is that one 
need not choose among the three sets of assumptions about the process gen- 
erating the counts ahead of time. Contagion, heterogeneity, negative con- 
tagion, independence, and other processes will produce an event count with 
a particular type of dispersion. From the event count data a2 may then be 
estimated in a single step simultaneously with the effect parameters, P. Since 
no additional parameters are introduced in this new distribution, and since 
it reduces to the three distributions discussed above in special cases (i.e., 
ranges of u2), this method actually offers something for nothing-that is a re- 
duced chance for inconsistency with no cost in additional assumptions. The 
remainder of this section derives this new estimator; the next section dem- 
onstrates its rather dramatic advantages in two empirical applications. 

To derive this new single probability distribution for the first time, I 
build on a result from theoretical statistics due to Leo Katz (1945, 1965). 
Katz showed that from the following very simple "bilinear recurrence re- 
lationship," one could calculate certain probabilities from the binomial, 
Poisson, and Pascal distributions: 

'If one had to use one of these models, but the type of dispersion were unknown, the best 
choice is probably the Poisson, or the negative binomial with u2 set arbitrarily to some number 
greater than one,  since they are consistent in the face of some types of variance misspecification 
(see Gourieroux, Montfort, and Trognon, 1984a). However, these estimates are still inefficient 
and the standard errors can be extremely inconsistent. Fortunately, with the introduction of 
the more general estimator in this section, one need not choose among these inferior alterna- 
tives. 
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for yi = 0, 1, 2, . . . and Oi + y iyi 3 0. He noted that certain negative 
binomial probabilities (a generalization of the Piscal distribution) can also 
be calculated, but did not notice, as Johnson and Kotz (1969, pp. 37,4043) 
did, that the binomial can be generalized to what I call the continuous pa- 
rameter binomial. The main use of Katz's (1945, 1965) result has been in 
theoretical statistics and thus has not been used in empirical research. How- 
ever, in three steps I now derive a more general probability distribution from 
these early results that enables the creation of a more useful estimator.9 

First, I reparameterize equation 16 in order to make it comparable to 
the notation in previous sections. Analysis reveals that the expected value 
and variance of a random variable Yi that adheres to the relationship in 
equation 16 are as follows: 

V(Yi )  = ~~u~ = 
0i 

(1 - yiI2 

Then solving for Oi and yi yields 

Finally, I substitute the right-hand sides of these equations into equation 16, 
replace yi with yi - 1, and rearrange: 

Since I call the distribution to be derived the generalized event count dis- 
tribution, I use f,,, as its notation. The expected value and variance of the 
distribution implied in equation 19 is now consistent with the models in pre- 
vious sections: E(Yi) = X i  and V[Yi)  = hiu2. 

Second, equation 19 is still in the form of a recurrence relationship, so 
I now put it in a form closer to more traditional probability distributions. 
To do this, note that the term fg,,(yi - 1 I hi, u2) on the right-hand side 

9Gurland and Tripathi (1975) extend the Katz system to three and four parameter families. 
Lee (1986) uses the Katz system to develop score tests of the Poisson model against the over- 
and underdispersion alternatives that could be used as a pretest estimator; see also Cameron 
and Trivedi (1986, p. 41). 
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requires one to recursively substitute in values in order to calculate prob- 
abilities. For example, 

A + (a' - lj2) (A; + 1 1  
a22 

The last line of this equation still contains PrjY, = 01 A,, a'] = 
fgec(O I A,, a'), so further analysis is required before probabilities can be as- 
signed numerical values. By using the insight from equation 20, I eliminate 
most of the recursion by rewriting equation 19 as follows: 

for y,  = 1,  2, 3, . . . and zero otherwise. 
Finally, I solve the problem with PrjY; = 0 I A;, a') = 

fgec(O I Xi,  a') by using one of the basic axioms of probability: 

which basically means that something happens in period i with probability 
one, whether that "something" is zero events, one, or more. Using this ax- 
iom to solve for fgec(O I Xi,  a') in equation 21 leads to this expression: 

A, + (a' - 1) 
a'; 

Then, using standard results on the convergence of infinite series leads to 
the following solution for the probability of zero events: 

It thus turns out that this expression cannot be written in one equation, but 
this causes no particular problems because the function is still continuous 
in both a' and A;, since, for example, 
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Finally, the full probability distribution can be written by collecting the 
above results in one expression: 

for y j  = 1 , 2 , .  . . 
- hr for y, = 0 and u2 = 1 

for y ,  = 0 and a' > 1 
for y ,  = 0 and 0 < u2 < 1 

and y, r- [ L) a'- 1 + 1 

otherwise 

For fixed X,, 0 < u2 < 1 yields the same probability as the continuous pa- 
rameter binomial; u2 = 1 yields probabilities identical to those under the 
Poisson distribution; and, u2 > 1 yields negative binomial probabilities. 
Thus, the separate parts notwithstanding, equation 26 is a single probability 
distribution. Due to equation 25, this distribution is also continuous in both 
u' and X,. lo 

From this new probability distribution, a more general maximum like- 
lihood estimator can be derived. The log-likelihood, reduced to sufficient 
statistics, takes a relatively simple form: 

where 

- exp(x,P) for u2 = 1 
- expix,p)ln(u2) iu2 - 11 - for u2 > 1 
-exp(x,p)ln(u2)iu2 - l ) - l - l n ( ~ , )  for 0 < o' < 1 

''If there were a single function of A, and a' that closely approximated 
(a211-A,' 1 " ~ - 1 1  and expi - A,), representlng equation 26 as a single equation would be poss~ble, 
but t h ~ s  is not necessary 
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The maximum of this function gives the values of P and a2 that have the 
highest relative likelihood of having generated the data. In practice I find 
that numerical maximization algorithms converge relatively easily and 
quickly with most applications.ll 

This method produces estimates of P and a2 without specifying whether 
the data are over-, under-, or Poisson dispersed.12 The estimates are iden- 
tical to those which result from the correct choice among the Poisson, con- 
tinuous parameter binomial, and negative binomial models. Of course, with 
this method one need not worry that the correct choice has indeed been 
made, since the range and value of a2 is estimated rather than assumed. 

6. Applications: Veto Challenges and Superpower Conflict 

I present two examples in this section, one with underdispersion and the 
other with overdispersion. For both examples I estimate the standard Pois- 
son regression model and a generalized event count (GEC) model. Since the 
Poisson is a special case of the GEC (with a2 = I),  any difference between 
the estimates demonstrates the advantages of the GEC. Both examples 
point to the clear superiority of this new model. 

Veto Challenges and Underdispersion 

Consider the number of U.S. presidential vetoes that Congress chal- 
lenges each year (1946-84). Some of these challenges successfully overturn 
presidential vetoes; others do not. However, each challenge is a significant 
event in executive-legislative relations and U.S. national politics.l3 For the 
purposes of this demonstration, I include three explanatory variables: elec- 
tion year (coded one for presidential election years and zero otherwise), 

"Anyone with some facility with matrix algebra could easily and quickly program Gauss, 
or a similar general purpose maximum likelihood routine, to implement this estimator. As one 
reviewer put it, "Quite frequently we see some new technique but we all know that it will take 
us six months to get the thing up and running so we never bother. This is not the case here. 
. . . . Anyone can do this stuff at home in their spare time." For those not so inclined, I have 
written a computer program called COUNT to estimate these, and many other, models for 
event count data (see King, 1988,1989a, 1989b, 1989~).  The program is available from Aptech 
Systems, Inc., 26250 196th Place South East, Kent, Washington 98042; (206)631-6679. 

"For u2 3 1, this estimator meets all standard regularity conditions and thus has all the 
usual desirable properties of maximum likelihood estimators. For 0 < u2 < 1, the estimator 
is still consistent but is only asymptotically normal if k,/(u2 - 11 is not an integer for all i, 
a highly probable situation. 

13The data are taken from King and Ragsdale (1988). A congressional challenge is defined 
as any veto for which at least one house of Congress held a formal roll call vote attempting 
to overturn the veto. A roll call vote is usually held if the issue has some reasonable chance 
of passing, although many challenges are not successful. 
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Congress (coded as the percentage of both houses of Congress who are 
members of the president's party), and Approval (the average annual per- 
centage of the public who approve of the president). Theory suggests that 
fewer congressional challenges should occur during election years, when the 
president has many members of his party in Congress and when public ap- 
proval of the president is relatively high. Since the number of vetoes per year 
provides a theoretical (although nowhere near the empirical) maximum on 
annual veto challenges, I also include the natural log of the number of 
vetoes. l4 

The key question for present purposes is the underlying process that 
generates the annual number of congressional challenges. If one were to col- 
lect data on individual challenges, this process could be modeled in the sys- 
tematic component of the statistical model (see Rohde and Simon, 1985), 
but in the present data set this within-year process remains unobserved. 
Nevertheless, one can still theorize and test hypotheses about this process. 
The basic Poisson model is appropriate if one challenge has no influence on 
subsequent challenges. Since challenges are major events in U.S. politics, 
independence is probably not a reasonable assumption. Indeed, since each 
congressional challenge involves a substantial amount of political organiza- 
tion and lobbying efforts among both the president's friends and enemies, 
individuaI challenges are likely to be spread out. Thus, negative contagion 
seems probable: one challenge reduces the probability of another challenge 
during the next interval of time. The aggregate consequence of this substan- 
tive political process is underdispersion, u2 < 1. I test this hypothesis below. 

To demonstrate the effects of too narrowly specifying the statistical 
model, Table 1 presents both the standard Poisson and generalized event 
count (GEC) estimators. The estimated effect parameters for both models 
are similar. As expected, additional vetoes permit more challenges. Pres- 
idential election years, and those years where presidents are popular with 

141n the standard Poisson regression model, Maddala (1983, p. 52) and King (1989~) pro- 
vide alternative justifications for using the natural log of the maximum count as a control vari- 
able. In both cases the probability of an event is assumed small enough so that this upper bound 
does not effectively change the shape of the underlying distribution. Maddala assumes that the 
systematiccomponent of the model is really AJN, = exp(xip), so that the maximum count, N,, 
is divided out. This form then implies that hi = exp(x,p + y In N,)  with y constrained to one. 
Maddala points out that estimating, rather than constraining, y to one is also a reasonable ap- 
proach. King derives the same result by retaining the A, = e x ~ ( ~ $ )  systematic component, but 
letting t, = N, in equation 1. However one prefers to incorporate this assumption, the same 
likelihood function results. One can extend this logic to the generalized event count model ei- 
ther directly with Maddala's derivation or with a new distribution with King's derivation. The 
latter would require one to begin with equation 1 instead of equation 2 in deriving the gen- 
eralized event count distribution. Again, the results are identical. 
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the public, have fewer challenges than other years (see King, 1989c: section 
5.2, for a discussion of parameter interpretation-). 

Although generally in accord with what one might expect from theory, 
results from the Poisson model indicate that these effects are quite impre- 
cisely estimated. Test statistics (estimate1SE) calculated from this table in- 
dicate very high probabilities that these data were drawn from a population 
where all the coefficients are in fact zero. Except for ln(Vetoes), the prob- 
ability levels are all above 0.72. These results would probably cause most 
investigators to conclude that challenges are some kind of random process 
or at least independent of the exogenous variables, to drop these and add 
different variables, or just to give up the project entirely. 

However, a more interesting and flexible stochastic model of the pro- 
cess generating congressional challenges to presidential vetoes yields very 
different substantive conclusions. Since u2 is precisely estimated to be sub- 
stantially less than one in the generalized event count model, the under- 
dispersion hypothesis is clearly confirmed. Either a t-test of the u2 estimate 
or a likelihood ratio test for the difference between the two models confirms 
the substantial improvement to be gained by moving to the more realistic 
GEC model. In addition, although the coefficients are similar to those ob- 
tained from the Poisson model, their standard errors are strikingly smaller. 
A comparison of the standard errors in the last column of Table 1 indicates 
that by allowing the model to be underdispersed, the resulting standard er- 
rors are between 5.5 and 10.23 times smaller than under the Poisson model. 
t-tests lead one to conclude that all the coefficients, except possibly that for 
the election year variable, are very precise and significantly different from 
zero. 

TABLE 1 
Models of Congressional Veto Challenges 

Poisson GEC Poisson SE + 
Variable Estimate SE Estimate SE GEC SE 

Constant 0.516 1.888 0.838 0.211 8.95 
In (Vetoes) 0.888 0.351 0.847 0.034 10.23 
Election year -0.050 0.577 -0.077 0.083 6.95 
Congress -0.009 0.026 -0.011 0.004 5.50 
Approval -0.005 0.022 -0.007 0.003 8.67 
b2 0.121 0.043 

Poisson log-likelihood = 605.11. 

GEC log-likelihood = 621.35. 



EVENT COUNT MODELS 779 

Whereas an analysis with only the Poisson model would have led most 
researchers to draw conclusions about the absence of empirical effects, the 
generalized event count model was able to extract significantly more infor- 
mation from the same data. Some of the improved information came from 
more precise estimates of the effect parameters. But additional information 
about the underlying process generating congressional challenges to pres- 
idential vetoes-negative contagion-was also made available with this 
method. As this example demonstrates, these points are not merely tech- 
nical improvements; they permit one to extract considerably more informa- 
tion from existing data and to model interesting political science processes 
more creatively and appropriately. 

Explaining Superpower Conflict 

Does military spending by the United States and the Soviet Union deter 
or provoke conflict between the superpowers? In addition, how much of ob- 
servable superpower conflict is merely tit-for-tat responses to the other su- 
perpower? These are fundamental questions in international relations re- 
search with obvious and critical implications for national policy. To study 
these questions, one needs a measure of superpower conflict. The most 
likely candidate for such a measure is the list of conflictual events occurring 
between the United States and the Soviet Union. Fortunately, scholars in 
international relations have put considerable intellectual and financial re- 
sources into the collection of massive international event count data sets 
such as this. More than 40 such collections appear in the ICPSR collection 
alone (see Vincent, 1983). 

The specific data source used for this study is the conflict and peace data 
bank (COPDAB; see Azar, 1982). The dependent variable is the number 
of conflictual actions directed from one superpower toward the other for 
each year 1951-78 (Conflict,). For explanatory variables, I use lagged mea- 
sures of Soviet military expenditures (SUmilitary,-,), and U.S. military ex- 
penditures (USmilitary,-,), both in constant 1970 billions of U.S. dollars (see 
Ward, 1984, p. 311). I also include a dummy variable for the party of the 
U.S. president, coded zero for Democratic presidents and one for Repub- 
licans. Recall that the Poisson model assumes that no contagion exists within 
an observation. Thus, the only way to include the hypothesis of at least some 
tit-for-tat behavior is to include a lag of the dependent variable as an explan- 
atory variable; the coefficient on this variable would be a rough measure of 
the degree of tit-for-tat behavior. Of course, this would be only a very rough 
indicator, excluding almost entirely those individual events that are specific 
responses to the other superpower's actions. 

The empirical results for the Poisson model appear in the first part of 
Table 2. The results seem to indicate that both U.S. and Soviet military ex- 
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penditures deter superpower conflict to a modest degree. Presumably also 
due to deterrence, Republican presidents seem to preside over less super- 
power conflict than Democrats. These findings are strongly reinforced by 
the very small standard errors and correspondingly large t-statistics on all 
three coefficients. However, the final coefficient, on the variable represent- 
ing conflict between the superpowers for the year before, is nearly zero with 
a very small t-statistic. 

Thus, if one had only the Poisson model with which to analyze this data 
set. the seemingly inescapable conclusion (based on the last coefficient) is 
that superpower conflict is not contagious. Tit-for-tat behavior is either non- 
existent or, at most, is a relatively minor feature of U.S.-Soviet politics. In- 
stead, international conflict between the superpowers is mostly a function 
of domestically generated factors like previous levels of military spending. 

Remarkably different inferences emerge from an analysis of the same 
data with the GEC model. Estimates appear in the second part of Table 2. 
Four of the five coefficients have decreased somewhat. More striking is that 
the Poisson standard errors are only about 6 or 7 percent of the GEC stan- 
dard errors (see the last column of the table). The evidence from this im- 
proved model indicates that each of the effect parameters is not different 
from zero by conventional significance levels. Even the coefficient on the 
lagged value of conflict is essentially zero. 

However, these results do not imply that superpower conflict is purely 
random. Instead, the estimate of u2 is very large, indicating that a substan- 
tial degree of contagion exists at the unobserved level of the individual 
events within each year. This parameter thus seems to be picking up some 

TABLE 2 
Models of U.S.-Soviet Conflict 

Poisson t- GEC t- P . S E +  
Variable Est. SE stat. Est. SE stat. GEC SE 

Constant 5.3827 0.0689 5.0472 1.0197 0.07 
US militar~,.~ -0.0087 0.0011 -8.01 -0.0039 0.0157 -0.25 0.07 
SUmilitary,.l -0.0070 0.0004 -20.03 -0.0061 0.0052 -1.17 0.07 
President -0.3271 0.0110 -29.80 -0.2526 0.1855 -1.36 0.06 
C~nflict,.~ 0.0001 0.0001 1.05 0.0001 0.0015 0.05 0.07 
b2 15.8493 5.4670 2.72a 

Poisson log-likelihood = 9268.76. 

GEC log-likelihood = 9431.12. 

"This is a test of the hypothesis that 02 = 1, calculated as (15.8493-1)15.4670 = 2.72. 
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of the true nature of tit-for-tat behavior between the two superpowers. For 
example, the United States claims to have caught a Soviet spy and expels 
a half dozen members of the Soviet embassy. In response, the Soviets im- 
mediately expel a dozen members of the U.S. embassy in Moscow. This tit- 
for-tat conflictual behavior or specific reciprocity may continue for several 
more iterations until one side eventually stops. The whole incident may take 
place over the course of a week or perhaps two or three at the most. With 
only the Poisson model and a lag of the dependent variable from a year ago, 
this feature of superpower conflict could not be found. 

Indeed, with only data aggregated up to annual counts of events, finding 
any evidence of contagion with any model of these data is remarkable. For- 
tunately, the unobserved processes occurring within each observation have 
some observable consequences on the aggregate level. Unlike the more 
commonly used Poisson model, the GEC model is able to extract this sort 
of critical substantive information. It also enables a researcher to extract this 
information even when the precise form and nature of the underlying pro- 
cess is in doubt or even the subject of the inquiry. 

7. Concluding Remarks 

This paper introduces a common notation and presentation for the stan- 
dard Poisson model of event counts, the negative binomial overdispersed 
model, and a new continuous parameter binomial underdispersed event 
count model. Until now, one had to make an assumption about the unob- 
served process generating one's data and consequently choose from among 
the first two models. Even with all three models available, an incorrect 
choice could result in inefficiency and inconsistency in the parameter esti- 
mates and substantial inconsistency in the standard errors. The new gener- 
alized event count model introduced here still requires one to make assump- 
tions, but it permits a much more flexible specification that enables a 
researcher to estimate, rather than assume, interesting features of the un- 
observed processes. Thus, the method provides a way to extract information 
that was previously not ascertainable. It also turns out that this estimator 
produces more statistically efficient and consistent empirical estimates and 
standard errors without any cost in additional assumptions. By essentially 
expanding the parameter space of the dispersion parameter to cover the 
Poisson, continuous parameter binomial, and negative binomial distribu- 
tions, the single generalized event count probability distribution provides a 
more flexible stochastic model from which a superior estimator was derived. 

The advantage of this new approach is illustrated in applications to con- 
gressional challenges to presidential vetoes and U.S.-Soviet conflict. The 
former example is severely underdispersed, probably resulting from strong 
negative contagion. The overdispersion in the latter example is probably 
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due to a large amount of tit-for-tat interactions between the superpowers. 
In both cases information extracted with this new model is much richer than 
with the more commonly used Poisson regression model. 

The models introduced here are all fully parametric and estimable with 
maximum likelihood. This approach has the benefit of producing the most 
efficient estimators possible, given the veracity of the model. A separate lit- 
erature on robust estimation of event count models is concerned with mak- 
ing weaker assumptions by trading off varying levels of statistical efficiency. 
Whether one should make the trade-off that robust estimators require 
(weak assumptions, less efficiency) or the ones full information methods re- 
quire (stronger assumptions, maximum efficiency) is never obvious and gen- 
erally should depend on the particular research situation. I do not review 
these robust approaches here because that theory is still in the development 
stage and would nevertheless require far more space than is available. One 
troubling feature of these estimators is that they often do not provide very 
good information on the underlying process and degree and type of disper- 
sion; these underlying processes are often considered ancillary, if not nui- 
sance parameters. As I have argued above, these underlying processes can 
be of substantial substantive interest. In addition, most of these estimators 
are not robust to underdispersion or the negative contagious process from 
which it is generated and require much more complicated multistage esti- 
mation procedures. l5 
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