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W e show that social scientists often do not take full advantage of
the information available in their statistical results and thus
miss opportunities to present quantities that could shed the

greatest light on their research questions. In this article we suggest an ap-
proach, built on the technique of statistical simulation, to extract the cur-
rently overlooked information and present it in a reader-friendly manner.
More specifically, we show how to convert the raw results of any statistical
procedure into expressions that (1) convey numerically precise estimates of
the quantities of greatest substantive interest, (2) include reasonable mea-
sures of uncertainty about those estimates, and (3) require little specialized
knowledge to understand.

The following simple statement satisfies our criteria: “Other things be-
ing equal, an additional year of education would increase your annual in-
come by $1,500 on average, plus or minus about $500.” Any smart high
school student would understand that sentence, no matter how sophisti-
cated the statistical model and powerful the computers used to produce it.
The sentence is substantively informative because it conveys a key quantity
of interest in terms the reader wants to know. At the same time, the sen-
tence indicates how uncertain the researcher is about the estimated quan-
tity of interest. Inferences are never certain, so any honest presentation of
statistical results must include some qualifier, such as “plus or minus $500”
in the present example.
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Social scientists rarely take full advan-

tage of the information available in

their statistical results. As a conse-

quence, they miss opportunities to

present quantities that are of greatest

substantive interest for their research

and express the appropriate degree

of certainty about these quantities. In

this article, we offer an approach, built

on the technique of statistical simula-

tion, to extract the currently over-

looked information from any statistical

method and to interpret and present it

in a reader-friendly manner. Using this

technique requires some expertise,

which we try to provide herein, but its

application should make the results of

quantitative articles more informative

and transparent. To illustrate our rec-

ommendations, we replicate the re-

sults of several published works,

showing in each case how the au-

thors’ own conclusions can be ex-

pressed more sharply and informa-

tively, and, without changing any data

or statistical assumptions, how our

approach reveals important new infor-

mation about the research questions

at hand. We also offer very easy-to-

use software that implements our

suggestions.
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In contrast, bad intepretations are substantively am-
biguous and filled with methodological jargon: “the coef-
ficient on education was statistically significant at the
0.05 level.” Descriptions like this are very common in so-
cial science, but students, public officials, and scholars
should not need to understand phrases like “coefficient,”
“statistically significant,” and “the 0.05 level” to learn
from the research. Moreover, even statistically savvy
readers should complain that the sentence does not con-
vey the key quantity of interest: how much higher the
starting salary would be if the student attended college
for an extra year.

Our suggested approach can help researchers do bet-
ter in three ways. First, and most importantly, it can ex-
tract new quantities of interest from standard statistical
models, thereby enriching the substance of social science
research. Second, our approach allows scholars to assess
the uncertainty surrounding any quantity of interest, so it
should improve the candor and realism of statistical dis-
course about politics. Finally, our method can convert raw
statistical results into results that everyone, regardless of
statistical training, can comprehend. The examples in this
article should make all three benefits apparent.

Most of this article describes our simulation-based
approach to interpreting and presenting statistical re-
sults. In many situations, what we do via simulation can
also be done by direct mathematical analysis or other
computationally-intensive techniques, and we discuss
these approaches as well. To assist researchers in imple-
menting our suggestions, we have developed an easy-to-
use, public domain software package called CLARIFY,
which we describe in the appendix.

The Problem of Statistical Interpretation

We aim to interpret the raw results from any member of
a very general class of statistical models, which we sum-
marize with two equations:

Yi ~ f (θi , α),     θi = g(Xi , β). (1)

The first equation describes the stochastic component of
the statistical model: the probability density (or mass)
function that generates the dependent variable Yi (i =
1, . . . , n) as a random draw from the probability density
f (θi , α). Some characteristics of this function vary from
one observation to the next, while others remain con-
stant across all the i ’s. We represent the varying charac-
teristics with the parameter vector θi and relegate non-
varying features to the ancillary parameter matrix α. The

second equation gives the systematic component of the
model; it indicates how θi changes across observations,
depending on values of explanatory variables (typically
including a constant) in the 1 × k vector Xi and effect pa-
rameters in the k × 1 vector β. The functional form g(⋅,⋅),
sometimes called the link function, specifies how the ex-
planatory variables and effect parameters get translated
into θi.

One member of this general class is a linear-normal
regression model, otherwise known as least-squares re-
gression. To see this, let f (⋅,⋅) be the normal distribution
N(⋅,⋅); set the main parameter vector to the scalar mean
θi = E(Yi) = µi ; and assume that the ancilliary parameter
matrix is the scalar homoskedastic variance α = V(Yi) =
σ2. Finally, set the systematic component to the linear
form g(Xi ,β) = Xiβ = β0 + Xi1β1 + Xi2β2 + ⋅⋅⋅. The result is
familiar:

Yi ~ N(µi ,σ2), µi = Xi β (2)

Similarly, one could write a logit model by expressing the
stochastic component as a Bernoulli distribution with
main parameter πi = Pr(Yi = 1)—no ancillary parameter
is necessary—and setting the systematic component to
the logistic form:

Yi ~ Bernoulli(πi), π βi Xe i
=

+ −
1

1
(3)

Equation 1 also includes as special cases nearly every
other statistical model in the social sciences, including
multiple-equation models in which Yi is a vector, as well
as specifications for which the probability distribution,
functional form, or matrix of explanatory variables is es-
timated rather than assumed to be known.

Having estimated the statistical model, many re-
searchers stop after a cursory look at the signs and “sta-
tistical significance” of the effect parameters. This
approach obviously fails to meet our criteria for mean-
ingful statistical communication since, for many nonlin-
ear models,   β̂  and   ̂α  are difficult to interpret and only
indirectly related to the substantive issues that motivated
the research (Cain and Watts 1970; Blalock 1967). In-
stead of publishing the effect coefficients and ancillary
parameters, researchers should calculate and present
quantities of direct substantive interest.

Some researchers go a step farther by computing de-
rivatives, fitted values, and first differences (Long 1997;
King 1989, subsection 5.2) which do convey numerically
precise estimates of interesting quantities and require
little specialized knowledge to understand. Even these
approaches are inadequate, however, because they ignore
two forms of uncertainty. Estimation uncertainty arises
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from not knowing β and α perfectly, an unavoidable
consequence of having fewer than an infinite number of
observations. Researchers often acknowledge this un-
certainty by reporting standard errors or t-statistics,
but they overlook it when computing quantities of inter-
est. Since   β̂  and   ̂α  are uncertain, any calculations—
including derivatives, fitted values, and first differences—
based on those parameter estimates must also be
uncertain, a fact that almost no scholars take into ac-
count. A second form of variability, the fundamental un-
certainty represented by the stochastic component (the
distribution f ) in Equation 1, results from innumerable
chance events such as weather or illness that may influ-
ence Y but are not included in X. Even if we knew the ex-
act values of the parameters (thereby eliminating esti-
mation uncertainty), fundamental uncertainty would
prevent us from predicting Y without error. Our methods
for computing quantities of interest must account for
both types of uncertainty.

Simulation-Based Approaches
to Interpretation

We recommend statistical simulation as an easy method
of computing quantities of interest and their uncertain-
ties. Simulation can also help researchers understand the
entire statistical model, take full advantage of the param-
eter estimates, and convey findings in a reader-friendly
manner (see Fair 1980; Tanner 1996; Stern 1997).

What Is Statistical Simulation?

Statistical simulation uses the logic of survey sampling to
approximate complicated mathematical calculations. In
survey research, we learn about a population by taking a
random sample from it. We use the sample to estimate a
feature of the population, such as its mean or its vari-
ance, and our estimates become more precise as we in-
crease the sample size, n. Simulation follows a similar
logic but teaches us about probability distributions,
rather than populations. We learn about a distribution by
simulating (drawing random numbers) from it and us-
ing the draws to approximate some feature of the distri-
bution. The approximation becomes more accurate as we
increase the number of draws, M. Thus, simulation en-
ables us to approximate any feature of a probability dis-
tribution without resorting to advanced mathematics.

For instance, we could compute the mean of a prob-
ability distribution P(y) by taking the integral E(Y) =

    
yP y dy( )

−∞

∞
∫ , which is not always the most pleasant of ex-
periences! Alternatively, we could approximate the mean
through simulation by drawing many random numbers
from P(y) and computing their average. If we were inter-
ested in the theoretical variance of Y, we could calculate
the sample variance of a large number of random draws,
and if we wanted the probability that Y > 0.8, we could
count the fraction of draws that exceeded 0.8. Likewise,
we could find a 95-percent confidence interval for a func-
tion of Y by drawing 1000 values of Y, computing the
function for each draw, sorting the transformed draws
from lowest to highest and taking the 25th and 976th val-
ues. We could even approximate the entire distribution
of, say,   Y , by plotting a histogram of the square roots of
a large number of simulations of Y.

Approximations can be computed to any desired de-
gree of precision by increasing the number of simula-
tions (M), which is analagous to boosting the number of
observations in survey sampling. Assessing the precision
of the approximation is simple: run the same procedure,
with the same number of simulations, repeatedly. If the
answer remains the same to within four decimal points
across the repetitions, that is how accurate the approxi-
mation is. If more accuracy is needed, raise the number
of simulations and try again. Nothing is lost by simu-
lation—except a bit of computer time—and much is
gained in ease of use.

Simulating the Parameters

We now explain how researchers can use simulation to
compute quantities of interest and account for uncer-
tainty. The first step involves simulating the main and
ancillary parameters. Recall that the parameter estimates

  β̂  and   ̂α  are never certain because our samples are finite.
To capture this estimation uncertainty, we draw many
plausible sets of parameters from their posterior or sam-
pling distribution. Some draws will be smaller or larger
than   β̂  and   ̂α , reflecting our uncertainty about the exact
value of the parameters, but all will be consistent with
the data and statistical model.

To simulate the parameters, we need the point esti-
mates and the variance-covariance matrix of the esti-
mates, which most statistical packages will report on re-
quest. We denote   γ̂  as the vector produced by stacking   β̂
on top of   ̂α . More formally,   

ˆ (ˆ , ˆ )γ β α=  vec , where “vec”
stacks the unique elements of   β̂  and   ̂α  in a column vec-
tor. Let   

ˆ (ˆ )V γ  designate the variance matrix associated
with these estimates. The central limit theorem tells us
that with a large enough sample and bounded variance,
we can randomly draw (simulate) the parameters from a
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multivariate normal distribution with mean equal to   γ̂
and variance equal to   

ˆ (ˆ )V γ .1 Using our notation,

  
˜ ~ ˆ , ˆ (ˆ )γ γ γN V( ) . (4)

Thus, we can obtain one simulation of γ by following
these steps:

1. Estimate the model by running the usual software
program (which usually maximizes a likelihood func-
tion), and record the point estimates   γ̂  and variance
matrix   

ˆ ( ˆ )V γ .
2. Draw one value of the vector γ from the multivariate

normal distribution in Equation 4. Denote the   ̃γ =
  vec(˜, ˜)β α .

Repeat the second step, say, M = 1000 times to obtain
1000 draws of the main and ancillary parameters.

If we knew the elements of γ perfectly, the sets of
draws would all be identical; the less information we have
about γ (due to larger elements in the variance matrix),
the more the draws will differ from each other. The spe-
cific pattern of variation summarizes all knowledge
about the parameters that we can obtain from the statis-
tical procedure. We still need to translate γ into substan-
tively interesting quantities, but now that we have sum-
marized all knowledge about γ we are well positioned to
make the translation. In the next three subsections, we
describe algorithms for converting the simulated param-
eters into predicted values, expected values, and first
differences.

Predicted Values

Our task is to draw one value of Y conditional on one
chosen value of each explanatory variable, which we
represent with the vector Xc. Denote the simulated θ as

    θ̃c  and the corresponding Y as     Ỹc , a simulated predicted
value. Predicted values come in many varieties, depend-
ing on the kind of X-values used. For instance, Xc may
correspond to the future (in which case     Ỹc  is a simulated
forecast), a real situation described by observed data
(such that     Ỹc  is a simulated predicted value), or a hypo-
thetical situation not necessarily in the future (making

    Ỹc  a simulated counterfactual predicted value). None of

these is equivalent to the expected value (    ̂Y ) in a linear
regression, which we discuss in the following subsection.

To simulate one predicted value, follow these steps:

1. Using the algorithm in the previous subsection, draw
one value of the vector   ̃ (˜, ˜ ).γ β α= vec

2. Decide which kind of predicted value you wish to
compute, and on that basis choose one value for each
explanatory variable. Denote the vector of such val-
ues Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ, compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Simulate the outcome variable     Ỹc  by taking a random
draw from     f c(˜ , ˜)θ α , the stochastic component of the
statistical model.

Repeat this algorithm, say, M = 1000 times, to produce
1000 predicted values, thereby approximating the entire
probability distribution of Yc . From these simulations
the researcher can compute not only the average pre-
dicted value but also measures of uncertainty around the
average. The predicted value will be expressed in the
same metric as the dependent variable, so it should re-
quire little specialized knowledge to understand.

Expected Values

Depending on the issue being studied, the expected or
mean value of the dependent variable may be more inter-
esting than a predicted value. The difference is subtle but
important. A predicted value contains both fundamental
and estimation uncertainty, whereas an expected value
averages over the fundamental variability arising from
sheer randomness in the world, leaving only the estima-
tion uncertainty caused by not having an infinite num-
ber of observations. Thus, predicted values have a larger
variance than expected values, even though the average
should be nearly the same in both cases.2

When choosing between these two quantities of in-
terest, researchers should reflect on the importance of
fundamental uncertainty for the conclusions they are
drawing. In certain applications, such as forecasting the
actual result of an election or predicting next month’s
foreign exchange rate, scholars and politicians—as well
as investors—want to know not only the expected out-
come, but also how far the outcome could deviate from
expectation due to unmodeled random factors. Here, a1This distributional statement is a shorthand summary of the

Bayesian, likelihood, and Neyman-Pearson theories of statistical
inference. The interpretive differences among these theories (such
as whether θ or   ̂θ  is the random variable) are important but need
not concern us here, as our approach can usually be employed
with any of these and most other theories of inference (see Barnett
1982).

2In linear models, the average predicted value is identical to the ex-
pected value. For nonlinear cases, the two can differ but are often
close if the nonlinearity is not severe.
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predicted value seems most appropriate. For other appli-
cations, the researcher may want to highlight the average
effect of a particular explanatory variable, so an expected
value would be the best choice.

We now offer an algorithm for creating one simula-
tion of an expected value:

1. Following the procedure for simulating the param-
eters, draw one value of the vector   ̃ (˜ , ˜).γ β α= vec

2. Choose one value for each explanatory variable and
denote the vector of values as Xc .

3. Taking the simulated effect coefficients from the top
portion of   ̃γ , compute     

˜ ( , ˜)θ βc cg X= , where g(⋅,⋅) is
the systematic component of the statistical model.

4. Draw m values of the outcome variable     
˜( )Yc

k  (k =
1, . . . , m) from the stochastic component     f c(˜ , ˜)θ α .
This step simulates fundamental uncertainty.

5. Average over the fundamental uncertainty by calcu-
lating the the mean of the m simulations to yield one

simulated expected value 
    
˜( ) ˜( )E Y Y mc c

k
k

m= =∑ 1
.

When m = 1, this algorithm reduces to the one for pre-
dicted values. If m is a larger number, Step 4 accurately
portrays the fundamental variability, which Step 5 aver-
ages away to produce an expected value. The larger the
value of m, the more successful the algorithm will be in
purging ˜ )E Yc(  of any fundamental uncertainty.

To generate 1000 simulations of the expected value,
repeat the entire algorithm M = 1000 times for some
fixed value of m. The resulting expected values will differ
from each other due to estimation uncertainty, since each
expected value will correspond to a different   ̃γ . These M
simulations will approximate the full probability distri-
bution of E(Yc), enabling the researcher to compute aver-
ages, standard errors, confidence intervals, and almost
anything else desired.

The algorithm works in all cases but involves some
approximation error, which we can reduce by setting
both m and M sufficiently high. For some statistical
models, there is a shortcut that curtails both computa-
tion time and approximation error. Whenever E(Yc) = θc ,
the researcher can skip steps 4–5 of the expected value al-
gorithm, since steps 1–3 suffice to simulate one expected
value. This shortcut is appropriate for the linear-normal
and logit models in Equations 2 and 3.

First Differences

A first difference is the difference between two expected,
rather than predicted, values. To simulate a first differ-
ence, researchers need only run steps 2–5 of the expected
value algorithm twice, using different settings for the ex-
planatory variables.

For instance, to simulate a first difference for the first
explanatory variable, set the values for all explanatory
variables except the first at their means and fix the first
one at its starting point. Denote this vector of starting
values for the explanatory variables as Xs and run the ex-
pected value algorithm once to generate     

˜( )E Ys , the aver-
age value of Y conditional on Xs. Next change the value of
the first explanatory variable to its ending point, leaving
the others at their means as before. Denote the new vec-
tor as Xe and rerun the algorithm to get     

˜( )E Ye , the mean
of Y conditional on Xe. The first difference is simply

    
˜( ) ˜( )E Y E Ye s− . Repeat the first difference algorithm, say,

M = 1000 times to approximate the distribution of first
differences. Average the simulated values to obtain a
point estimate, compute the standard deviation to obtain
a standard error, or sort the values to approximate a con-
fidence interval.

We previously discussed expected values of Y, and
until now this section has considered first differences
based on only this type of expected value. Different ex-
pectations, such as Pr(Y = 3) in an ordered-probit model,
may also be of interest. For these cases, the expected
value algorithm would need to be modified slightly. We
have made the necessary modifications in CLARIFY, the
software package described in the appendix, which al-
lows researchers to calculate a wide variety of expected
values and first differences, as well as predicted values
and other quantities of interest.

The algorithms in this article do not require new as-
sumptions; rather, they rest on foundations that have be-
come standard in the social sciences. In particular, we as-
sume that the statistical model is identified and correctly
specified (with the appropriate explanatory variables and
functional form), which allows us to focus on interpret-
ing and presenting the final results. We also assume that
the central limit theorem holds sufficiently for the avail-
able sample size, such that the sampling distribution of
parameters (not the stochastic component) can be de-
scribed by a normal distribution.3 Although we focus on
asymptotic results, as do the vast majority of the applied
researchers using nonlinear models, simulation works
with finite sample distributions, which are preferable
when feasible. In short, our algorithms work whenever
the usual assumptions work.

Alternative Approaches

In this section, we discuss several other techniques for
generating quantities of interest and measuring the un-
certainty around them. These approaches can be valuable

3From a Bayesian perspective, we exclude unusual cases where a
flat prior generates an improper posterior.
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complements to simulation, because they provide impor-
tant mathematical intuition or, in some cases, enable fi-
nite sample approximations. We briefly summarize some
of the leading computer-intensive and analytical alterna-
tives to simulation.

Computer-intensive alternatives. Our version of simula-
tion is not the only computer-intensive technique for ob-
taining quantities of interest and measures of uncer-
tainty. Fully Bayesian methods, using Markov-Chain
Monte Carlo techniques, are more powerful than our al-
gorithms because they allow researchers to draw from
the exact finite-sample distribution, instead of relying on
the central limit theorem to justify an asymptotic normal
approximation (Carlin and Louis 1996). Unfortunately
these methods remain difficult to use, particularly since
statisticians still disagree about appropriate criteria for
determining when a Markov chain has converged in dis-
tribution to the true posterior (Cowles and Carlin 1996;
Kass et al. 1998). Nonetheless, this field has shown re-
markable progress over the last decade and is well worth
monitoring by political scientists.

Another useful alternative is bootstrapping, a non-
parametric approach that relies on the logic of re-
sampling to approximate the distribution of parameters
(Mooney and Duval 1993; Mooney 1996). In theory, the
sampling distribution of   γ̂ can be viewed as a histogram
of an infinite number of   γ̂’s, each estimated from a dif-
ferent sample of size n from the same population. Boot-
strapping mimicks this process by drawing many sub-
samples (with replacement) from the original sample,
estimating   γ̂ for each subsample, and then constructing
a histogram of the various   γ̂’s. Bootstrapping has many
advantages. It does not require strong distributional as-
sumptions, and Monte Carlo studies have demonstrated
that it has superior small sample properties for some
problems. It also has the advantage of not requiring
strong parametric distributional assumptions. Program-
ming a bootstrapped estimator is not difficult, although
commercial software packages have not been quick to
adopt this method. The weakness of bootstrapping is
that it gives biased estimates for certain quantities of in-
terest, such as max(Y ).

For both Bayesian methods and bootstrapping, all of
the methods of interpretation we discuss in this article
can be used directly. The only change is that instead of
drawing the parameters from the multivariate normal in
Equation 4, we would use MCMC-based simulation or
bootstrapping. Even our software, CLARIFY, could be
used without additional programming.

Like our method, MCMC and bootstrapping gener-
ate simulations of the parameters. In cases where the pa-

rameters are not of intrinsic interest, researchers must
convert them into quantities such as predicted values, ex-
pected values, and first differences. The algorithms above
show how to make the conversion and are therefore es-
sential supplements. Indeed, our software, CLARIFY,
could easily be modified to interpret the parameters gen-
erated by these alternative approaches.

Analytical approaches. The main analytical (mathemati-
cal) alternative to simulation is the delta method, which
uses the tools of calculus to approximate nonlinear func-
tions of random variables (van der Vaart 1998). Suppose
that we are interested in the mean and variance of θ =
g(Xc , β), where g is a nonlinear function. Assuming that g
is approximately linear in a range where β has high prob-
ability, then a Taylor-series expansion of g about   β̂  is of-
ten reasonable. To the first order,     θ β β β β≈ + ′ −g g(ˆ ) (ˆ )( ˆ ),
where     ′ = ∂ ∂g a g a a( ) ( )/ . As a result, the maximum-
likelihood estimate of θ is approximately     g (ˆ )β , and its
variance is approximately     ′ ′ ′g V g(ˆ ) (ˆ ) (ˆ )β β β . For example,
in the exponential Poisson regression model (King 1989,
Chapter 5), where Y is Poisson with mean     λ = E Y X( | )

  = e X iβ, suppose we wish to compute the expected num-
ber of events given X = X0. In this case, the maximum
likelihood estimate of the expected number of events is

    g e X(ˆ )
ˆ

β β= 0  and its variance is     ( ) ˆ (ˆ )( )X e V X eX X
0 0

0 0β ββ ′ .
Note that this maximum-likelihood estimate still does
not reflect the uncertainty in β̂ , as done automatically by
simulation and the other computationally intensive
methods. To incorporate this additional uncertainty re-
quires another level of mathematical complexity in that
we must now approximate the integral 

    
e P dX 0

ˆ
(ˆ ) ˆβ β β∫  and

its variance. A detailed example is given by King and
Zeng (1999) in the case of logistic regression.

Despite its utility for increasing computing speed
and revealing statistical intuition through mathematical
analysis, the delta method suffers from two shortcomings
that simulation can help overcome. First, the method is
technically demanding, since it requires researchers to
calculate derivatives and compute the moments of lin-
earized functions.4 Thus, it is not surprising that most
scholars do not use the delta method, even when they ap-
preciate the importance of reporting uncertainty. Sec-
ond, the Taylor series used in the delta method only ap-
proximates a nonlinear form. Although researchers can
sometimes improve the approximation with additional
terms in the Taylor series, this can be difficult, and find-

4When g is linear there is obviously no need for a linearizing ap-
proximation; an exact analytical solution exists for the mean and
variance of many quantities of interest that we described earlier.
Simulation produces the same answer, however, and requires less
mathematical proficiency.
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ing estimates of the additional terms is often impossible.
In practice most researchers stop after expanding the se-
ries to the first or second order, which can compromise
the accuracy of the approximation. With simulation one
can achieve an arbitrarily high degree of precision simply
by increasing M and letting the computer run longer.

Several general arguments weigh in favor of simula-
tion. First, there is a simulation-based alternative to
nearly every analytical method of computing quantities
of interest and conducting statistical tests, but the reverse
is not true (Noreen 1989). Thus, simulation can provide
accurate answers even when no analytical solutions exist.
Second, simulation enjoys an important pedagogical ad-
vantage. Studies have shown that, no matter how well
analytical methods are taught, students get the right an-
swer far more often via simulation (Simon, Atkinson,
and Shevokas 1976). One scholar has even offered a
$5,000 reward for anyone who can demonstrate the su-
periority of teaching analytical methods, but so far no
one has managed to earn the prize (Simon 1992). Of
course, there are advantages to the insight the mathemat-
ics underlying the delta method can reveal and so, when
feasible, we encourage researchers to learn both simula-
tion and analytical methods.

Tricks of the Trade

The algorithms in the previous section apply to all statis-
tical models, but they can be made to work better by fol-
lowing a few tricks and avoiding some common mis-
understandings.

Tricks for Simulating Parameters

Statistical programs usually report standard errors for
parameter estimates, but accurate simulation requires
the full variance matrix     

ˆ (ˆ )V γ . The diagonal elements of

  
ˆ (ˆ )V γ  contain the squared standard errors, while the off-

diagonal elements express the covariances between one
parameter estimate and another in repeated draws from
the same probability distribution. Simulating each pa-
rameter independently would be incorrect, because this
procedure would miss the covariances among param-
eters. Nearly all good statistical packages can report the
full variance matrix, but most require researchers to re-
quest it explicitly by setting an option or a global. The
software described in the appendix fetches the variance
matrix automatically.

One common mistake is to exclude some parameters
when drawing from the multivariate normal distribu-

tion. Parameters have different logical statuses, such as
the effect parameters β versus the ancillary parameters α,
but our algorithms do not need to distinguish between
the two: both are uncertain and should be simulated,
even if only one proves useful in later calculations. It may
be possible to accelerate our algorithms by excluding cer-
tain parameters from the simulation stage, but for the
vast majority of applications these tricks are unnecessary
and could lead to errors. Researchers usually will risk
fewer mistakes by following, without deviation, our algo-
rithm for simulating the parameters.

In some statistical models, the elements of γ are or-
thogonal, so software packages provide separate variance
matrices for each set. When implementing the algorithm
for simulating the parameters, researchers may want to
create a bloc diagonal matrix by placing the separately es-
timated variance matrices on the diagonal and inserting
zeros everywhere else. Obviously, if the subsets of γ truly
are orthogonal, equivalent draws from the two sets can
be made from independent multivariate normal distri-
butions, but it may be easier to work with a single sam-
pling distribution.

Researchers should reparameterize the elements of γ
to increase the likelihood that the asymptotic multivari-
ate normal approximation will hold in finite samples. In
general, all parameters should be reparameterized unless
they are already unbounded and logically symmetric, as a
Normal must be. For instance, a variance parameter like
σ2 must be greater than zero, so it will pay to reparam-
eterize by using an expression like σ2 = eη. This allows re-
searchers to estimate η, which is on the scale from –∞ to
∞, as one element of γ , which is assumed to be multi-
variate normal. When making reparameterizations, of
course, we add an extra step to the algorithm for simulat-
ing the parameters: after drawing γ from the multivariate
normal, we reparameterize back to the original scale by
computing     ̃

˜σ η2 = e .5

Several other reparameterizations may come in
handy. A correlation parameter ρ, ranging from –1 to 1,
can be reparameterized to η (reusing the same symbol)
on an unbounded scale with the inverse of Fisher’s Z
transformation: ρ = (e2η – 1)/(e2η + 1). Likewise, a
parameter representing a probability π can be made

5Reparameterization also makes likelihood-maximization algo-
rithms easier to use by avoiding problems caused by the optimiza-
tion procedure choosing inadmissable parameter values (which of-
ten result in the program terminating abnormally because of
attempts to divide by zero or logging negative numbers). Since
maximum likelihood estimates are invariant to reparameteri-
zation, the reparameterization has no effect except on the finite
sample distribution around the point estimate. For example, esti-
mating   ̂σ2  directly gives the same estimate as estimating   η̂  and
transforming to   ̂σ2  by using     ̂

ˆσ η2 = e .
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unbounded using the logistic transformation, π =
[1 + e–η]–1. These and other tricks should enhance the ef-
fectiveness of simulating the parameters.

Tricks for Simulating Quantities of Interest

When converting the simulated parameters into quanti-
ties of interest, it is safest to simulate Y and use this as a
basis for obtaining other quantities. This rule is equiva-
lent to incorporating all simulated parameters—and thus
all information from the statistical model—into the cal-
culations. Of course, some shortcuts do exist. We have al-
ready mentioned that, in a logit model, one can obtain

    
˜( )E Y  by stopping with   ̃π , since drawing dichotomous

Y ’s and averaging would yield exactly   ̃π . If one is not
sure, though, it is helpful to continue until one has simu-
lations of the outcome variable.

If some function of Y, such as ln(Y), is used as the de-
pendent variable during the estimation stage, the re-
searcher can simulate ln(Y) and then apply the inverse
function exp(ln(Y)) to reveal Y. We adopt this procedure
in the first example, below, where we estimate a log-log
regression model. This sequence of simulation and trans-
formation is crucial, since the usual procedure of calcu-
lating E(ln(Y)) =   µ̂ without simulation and then expo-
nentiating gives the wrong answer:     exp(ˆ ) ˆµ ≠ Y . With
simulation, both Y and E(Y) can be computed easily, re-
gardless of the scale that the researcher used during the
estimation stage.

Researchers should assess the precision of any simu-
lated quantity by repeating the entire algorithm and see-
ing if anything of substantive importance changes. If
something does change, increase the number of simula-
tions (M and, in the case of expected values, m) and try
again. In certain instances—particularly when the re-
searcher has misspecified a nonlinear statistical model—
the number of simulations required to approximate an
expected value accurately may be larger than normal.
Numerical estimates should be reported to the correct
level of precision, so for instance if repeated runs with
the same number of simulations produce an estimate
that changes only in the fourth decimal point, then—
assuming this is sufficient for substantive purposes—the
number reported should be rounded to two or three
decimal points.

The simulation procedures given in this article can
be used to compute virtually all quantities that might be
of interest for nearly all parametric statistical models that
scholars might wish to interpret. As such, they can be
considered canonical methods of simulation. Numerous
other simulation algorithms are available, however, in the
context of specific models. When these alternatives could

speed the approximation or make it more accurate for a
fixed number of simulations, they should be incorpo-
rated into computer programs for general use. In some
cases, analytical computations are also possible and can
get speedier results. But our algorithms provide social
scientists with all they need to understand the funda-
mental concepts: which quantities are being computed
and how the computation is, or could be, done. More-
over, as long as M and m are large enough, these and all
other correct algorithms will give identical answers.

Empirical Examples

To illustrate how our algorithms work in practice, we in-
clude replications or extensions of five empirical works.
Instead of choosing the most egregious, we choose a
large number of the best works, from our most presti-
gious journals and presses, written by some of our most
distinguished authors. Within this group, we eliminated
the many publications we were unable to replicate and
then picked five to illustrate a diverse range of models
and interpretative issues. The procedures for model in-
terpretation in all five were exemplary. If we all followed
their examples, reporting practices in the discipline
would be greatly improved. For each article, we describe
the substantive problem posed and statistical model cho-
sen; we also accept rather than evaluate their statistical
procedures, even though in some cases the methods
could be improved. We then detail how the authors inter-
preted their results and demonstrate how our procedures
advance this state of the art.

Linear Regression

Following Tufte (1974), we estimated a log-log regression
model of the size of government in the U.S. states. Our
dependent variable, Yi , was the natural log of the number
of people (measured in 1000s) that the state government
employed on a full-time basis in 1990. Tufte was inter-
ested (for a pedagogical example) in whether Yi would
increase with state population; but consider another hy-
pothesis that may be of more interest to political scien-
tists: the number of employees might depend on the pro-
portion of Democrats in the state legislature, since
Democrats are reputed to favor bigger government than
Republicans, even after adjusting for state population.
Thus, our two main explanatory variables were the log of
state population Pi in 1000s and the logged proportion of
lower-house legislators who identified themselves as
Democrats Di.
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We applied the predicted value algorithm to predict
the number of government employees in a state with six
million people and an 80 percent Democratic house.
First, we used the statistical software described in the ap-
pendix to estimate the log-linear model and simulate one
set of values for the effect coefficients   (

˜)β  and the ancil-
lary parameter   (˜)σ . Next, we set the main explanatory
variables at Pc = ln(6000) and Dc = ln(0.8), so we could
construct Xc and compute     

˜ ˜θ βc cX= . We then drew one
value of     Ỹc  from the normal distribution     N c(˜ , )θ σ2 . Fi-
nally, we calculated     exp( ˜ )Yc  to transform our simulated
value into the actual number of government employees,
a quantity that seemed more understandable than its
natural logarithm. By repeating this process M = 1000
times, we generated 1000 predicted values, which we
sorted from lowest to highest. The numbers in the 25th
and the 976th positions represented the upper and lower
bounds of a 95-percent confidence interval. Thus, we
predicted with 95-percent confidence that the state gov-
ernment would employ between 73,000 and 149,000
people. Our best guess was 106,000 full-time employees,
the average of the predicted values.

We also calculated some expected values and first
differences and found that increasing Democratic con-
trol from half to two-thirds of the lower house tended to
raise state government employment by 7,000 people on
average. The 95-percent confidence interval around this
first difference ranged from 3,000 to 12,000 full-time em-
ployees. Our result may be worth following up, since, to
the best of our knowledge, researchers have not ad-
dressed this relationship in the state-politics literature.

Logit Models

The algorithms in the third section can also help re-
searchers interpret the results of a logit model. Our ex-
ample draws on the work of Rosenstone and Hansen
(1993), who sought to explain why some individuals are
more likely than others to vote in U.S. presidential elec-
tions. Following Rosenstone and Hanson, we pooled data
from every National Election Study that was conducted
during a presidential election year. Our dependent vari-
able, Yi , was coded 1 if the respondent reported voting in
the presidential election and 0 otherwise.

For expository purposes we focus on a few demo-
graphic variables that Rosenstone and Hanson empha-
sized: Age (Ai) and Education (Ei) in years, Income (Ii)
in 10,000s of dollars, and Race (coded Ri = 1 for whites
and 0 otherwise). We also include a quadratic term to
test the hypothesis that turnout rises with age until the
respondent nears retirement, when the tendency re-
verses itself. Thus, our set of explanatory variables is Xi

= {1, Ai ,     Ai
2 , Ei , Ii , Ri}, where 1 is a constant and     Ai

2  is
the quadratic term.

In our logit model, the probability of voting in a
presidential election is E(Yi) = πi , an intuitive quantity of
interest. We estimated this probability, and the uncer-
tainty surrounding it, for two different levels of educa-
tion and across the entire range of age, while holding
other variables at their means. In each case, we repeated
the expected value algorithm M = 1000 times to approxi-
mate a 99-percent confidence interval around the prob-
ability of voting. The results appear in Figure 1, which il-
lustrates the conclusions of Rosenstone and Hansen
quite sharply: the probability of voting rises steadily to a
plateau between the ages of 45 and 65, and then tapers
downward through the retirement years. The figure also
reveals that uncertainty associated with the expected
value is greatest at the two extremes of age: the vertical
bars, which represent 99-percent confidence intervals,
are longest when the respondent is very young or old.6

A Time-Series Cross-Sectional Model

We also used our algorithms to interpret the results of a
time-series cross-sectional model. Conventional wisdom
holds that the globalization of markets has compelled
governments to slash public spending, but a new book
by Garrett (1998) offers evidence to the contrary. Where
strong leftist parties and encompassing trade unions
coincide, Garrett argues, globalization leads to greater

6 The confidence intervals are quite narrow, because the large
number of observations (N = 15,837) eliminated most of the esti-
mation uncertainty.

FIGURE 1 Probability of Voting by Age
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government spending as a percentage of GDP, whereas
the opposite occurs in countries where the left and labor
are weak.

To support his argument, Garrett constructed a
panel of economic and political variables, measured an-
nually, for fourteen industrial democracies during the
period 1966–1990. He then estimated a linear-normal re-
gression model where the dependent variable, Yi , is gov-
ernment spending as a percentage of GDP for each coun-
try-year in the data set. The three key explanatory
variables were Capital mobility, Ci (higher values indicate
fewer government restrictions on cross-border financial
flows), Trade, Ti (larger values mean more foreign trade
as a percentage of GDP), and Left-labor power, Li (higher
scores denote a stronger combination of leftist parties
and labor unions).7

To interpret his results, Garrett computed

a series of counterfactual estimates of government
spending under different constellations of domestic
political conditions and integration into global mar-
kets. This was done by set ting all the other variables
in the regression equations equal to their mean lev-
els and multiplying these means by their corre-
sponding coefficients, and then by examining the
counterfactual impact of various combinations of
left-labor power and globalization. . . . (1998, 82)

In particular, Garrett distinguished between low and high
levels of Li , Ti , and Ci. For these variables, the 14th per-
centile in the dataset represented a low value, whereas the
86th percentile represented a high one.8

The counterfactual estimates appear in Table 1,
which Garrett used to draw three conclusions. First,
“government spending was always greater when left-
labor power was high than when it was low, irrespective
of the level of market integration” (entries in the second
row in each table exceeded values in the first row). Sec-
ond, “the gap between the low and high left-labor power
cells was larger in the high trade and capital mobility
cases than in the cells with low market integration,” im-
plying that “partisan politics had more impact on gov-

ernment spending where countries were highly inte-
grated into the international economy than in more
closed contexts.” Finally, “where left-labor power was low,
government spending decreased if one moved from low
to high levels of market integration, but the converse was
true at high levels of left-labor power” (1998, 83).

Garrett’s counterfactuals go far beyond the custom-
ary list of coefficients and t-tests, but our tools can help
us extract even more information from his model and
data. For instance, simulation can reveal whether the dif-
ferences in values across the cells might have arisen by
chance alone. To make this assessment, we reestimated
the parameters in Garrett’s regression equation9 and
drew 1000 sets of simulated coefficients from their poste-
rior distribution, using the algorithm for simulating the
parameters. Then we fixed Lc and Tc at their 14th percen-
tiles, held other variables at their means, and calculated
1000 (counterfactual) expected values, one for each set of
simulated coefficients. Following the same procedure, we
produced counterfactuals for the other combinations of
Lc, Tc, and Cc represented by the cells of Table 1. Finally,
we plotted “density estimates” (which are smooth ver-
sions of histograms) of the counterfactuals; these appear
in Figure 2. One can think of each density estimate as a
pile of simulations distributed over the values govern-
ment spending. The taller the pile at any given level of
government spending, the more simulations took place
near that point.

Figure 2 shows that when globalization of trade or
capital mobility is low, leftist governments spend only
slightly more than rightist ones. More importantly, the

7Garrett also focused on two interactions among the variables, CiLi
and TiLi , and he included a battery of business cycle and demo-
graphic controls, as well as the lagged level of government spend-
ing and dummy variables for countries and time.

8“So as not to exaggerate the substantive effects” of the relation-
ships he was studying, Garrett “relied on combinations of the 20th
and 80th percentile scores” (1998, 82). Unfortunately, due to a mi-
nor arithmetic error, the values he reports (1998, 84) correspond
only to the 14th and 86th percentiles. To facilitate comparison with
Garrett, we use the 14th and 86th percentiles in our simulations.

TABLE 1 Garrett’s Counterfactual Effects on
Government Spending (% of GDP)

Trade

Low

LowLeft-labor
power

High

High

43.1       41.9

43.5       44.2

Capital Mobility

Low High

42.8       42.3

43.1       44.5

Each entry is the expected level of government spending for given con-
figurations left-labor power and trade or capital mobility, holding all other
variables constant at their means.

9Our coefficients differed from those in Garrett (1998, 80–81) by
only 0.3 percent, on average. Standard errors diverged by 6.8 per-
cent, on average, apparently due to discrepancies in the method of
calculating panel-corrected standard errors (Franzese 1996).
None of the differences made any substantive difference in the
conclusions.
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density estimates overlap so thoroughly that it is difficult
to distinguish the two spending patterns with much con-
fidence. (Another way to express one aspect of this point
is that the means of the two distributions are not statisti-
cally distinguishable at conventional levels of signifi-
cance.) In the era of globalization, by contrast, domestic
politics exerts a powerful effect on fiscal policy: leftist
governments outspend rightist ones by more than two
percent of GDP on average, a difference we can affirm
with great certainty, since the density estimates for the
two regime-types are far apart. In summary, our simula-
tions cause us to question Garrett’s claim that left-labor
governments always outspend the right, regardless of the
level of market integration: although the tendency may
be correct, the results could have arisen from chance
alone. The simulations do support Garrett’s claim that
globalization has intensified the relationship between
partisan politics and government spending.

Multinomial Logit Models

How do citizens in a traditional one-party state vote when
they get an opportunity to remove that party from office?
Domínguez and McCann (1996) addressed this question
by analyzing survey data from the 1988 Mexican presi-
dential election. In that election, voters chose among three

presidential candidates: Carlos Salinas (from the ruling
PRI), Manuel Clouthier (representing the PAN, a right-
wing party), and Cuauhtémoc Cárdenas (head of a leftist
coalition). The election was historically significant, be-
cause for the first time all three presidential candidates
appeared to be highly competitive. Domínguez and
McCann used a multinomial logit model to explain why
some voters favored one candidate over the others. The
following equations summarize the model, in which Yi

and πi are 3 × 1 vectors:

Yi ~ Multinomial(πi)

    

π
β

βi

X

X
k

e

e

i j

i k

=
=∑ 1

3
 where j = 1, 2, 3 candidates. (5)

The effect parameters can vary across the candidates, so
β1, β2 , and β3 are distinct vectors, each with k × 1
elements.10

The book focuses on individual voting behavior, as
is traditional in survey research, but we used simulation
to examine the quantity of interest that motivated

FIGURE 2 Simulated Levels of Government Spending

These panels contain density estimates (smooth versions of histograms) of expected govern-
ment spending for countries where left-labor power is high (the solid curve) and low (the dotted
curve). The panels, which add uncertainty estimates to the concepts in Table 1, demonstrate
that left-labor power has a distinguishable effect only when exposure to trade or capital mobil-
ity is high.
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10Domínguez and McCann included thirty-one explanatory vari-
ables in their model. For a complete listing of the variables and
question wording, see Domínguez and McCann (1996, 213–216).
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Domínguez and McCann in the first place: the electoral
outcome itself. In particular, if every voter thought the
PRI was weakening, which candidate would have won
the presidency? To answer this question, we coded each
voter as thinking that the PRI was weakening and let
other characteristics of the voter take on their true
values. Then we used the predicted value algorithm to
simulate the vote for each person in the sample and used
the votes to run a mock election. We repeated this exer-
cise 100 times to generate 100 simulated election out-
comes. For comparison, we also coded each voter as
thinking the PRI was strengthening and simulated 100
election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a
“ternary plot” (see Miller 1977; Katz and King 1999), and
coordinates in the figure represent predicted fractions of
the vote received by each candidate under a different
simulated election outcome. Roughly speaking, the closer
a point appears to one of the vertices, the larger the frac-
tion of the vote going to the candidate whose name ap-
pears on the vertex. A point near the middle indicates that
the simulated election was a dead heat. We also added
“win lines” to the figure that divide the ternary diagram
into areas that indicate which candidate receives a plural-
ity and thus wins the simulated election (e.g., points that
appear in the top third of the triangle are simulated elec-
tion outcomes where Cárdenas receives a plurality).

In this figure, the o’s (all near the bottom left) are
simulated outcomes in which everyone thought the PRI
was strengthening, while the dots (all near the center)
correspond to beliefs that the PRI was weakening. The
figure shows that when the country believes the PRI is
strengthening, Salinas wins hands down; in fact, he wins
every one of the simulated elections. If voters believe the
PRI is weakening, however, the 1988 election is a toss-up,
with each candidate having an equal chance of victory.

This must be a sobering thought for those seeking to
end PRI dominance in Mexico. Hope of defeating the
PRI, even under these optimistic conditions, probably re-
quires some kind of compromise between the two oppo-
sition parties. The figure also supports the argument
that, despite much voter fraud, Salinas probably did win
the presidency in 1988. He may have won by a lesser mar-
gin than reported, but the figure is strong evidence that
he did indeed defeat a divided opposition.11

Censored Weibull Regression Models

How do wars affect the survival of political leaders?
Bueno de Mesquita and Siverson (1995) examine this

question by estimating a censored Weibull regression (a
form of duration model) on a dataset in which the de-
pendent variable, Yi , measures the number of years that
leader i remains in office following the onset of war. For
fully observed cases (the leader had left office at the time
of the study), the model is

Yi ~ Weibull(µi ,σ)

    
µ σβ σ

i i i
XE Y X e i≡ = +−( ) ( ) ( )Γ 1 (6)

where σ is an ancilliary shape parameter and Γ is the
gamma function, an interpolated factorial that works for
continuous values of its argument. The model includes
four explanatory variables: the leader’s pre-war tenure in
years, an interaction between pre-war tenure and democ-
racy, the number of battle deaths per 10,000 inhabitants,
and a dummy variable indicating whether the leader won
the war.12 The authors find that leaders who waged for-
eign wars tended to lose their grip on power at home, but
authoritarian leaders with a long pre-war tenure were
able to remain in office longer than others.

Bueno de Mesquita and Siverson discuss the mar-
ginal impact of their explanatory variables by computing
the “hazard rate” associated with each variable. Hazard
rates are the traditional method of interpretation in the
literature, but understanding them requires considerable
statistical knowledge. Simulation can help us calculate
more intuitive quantities, such as the number of months
that a leader could expect to remain in office following

FIGURE 3 Simulated Electoral Outcomes

Coordinates in this ternary diagram are predicted fractions of the vote
received by each of the three candidates. Each point is an election out-
come drawn randomly from a world in which all voters believe Salinas’
PRI party is strengthing (for the “o”’s in the bottom left) or weakening (for
the “·”’s in the middle), with other variables held constant at their means.
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11See Scheve and Tomz (1999) on simulation of counter factual
predictions and Sterman and Wittenberg (1999) on simulation of
predicted values, both in the context of binary logit models. 12 The first three variables are expressed in logs.
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the outbreak of war. As a first step, we predicted the sur-
vival time in office for a democrat with the median level
of pre-war tenure, holding other variables at their means.
After repeating this exercise for an authoritarian leader,
we asked what would have happened if the leaders had
ten extra years of pre-war tenure under their belts. In
each of our four cases, we generated 500 simulations to
reflect both estimation and fundamental uncertainty.

The results appear in Figure 4, which displays den-
sity estimates of survival time for authoritarians and
democrats, conditional on pre-war tenure. The dotted
curves correspond to leaders with average levels of pre-
war tenure, whereas the solid lines represent densities for
leaders with ten extra years of pre-war experience. The
arrows in the graphs indicate the median outcome under
each scenario. These arrows are further apart in the left
panel (a) than in the right one (b), lending strong sup-
port to the authors’ original claim that prewar tenure
matters more for authoritarians than it does for demo-
crats. On average, experienced authoritarians managed
to retain power 11.8 years longer than their less experi-
enced counterparts; by contrast, an extra decade of pre-
war experience extended the post-war tenure of demo-
crats by only 2.8 years.

Figure 4 also illustrates the value of plotting the en-
tire distribution of a quantity of interest, instead of fo-
cusing on a single summary like the mean. Due to assym-
metries in the distributions, the modal survival time (the
peak of each distribution) does not correspond closely to
the median survival time, which is arguably more inter-
esting. The exact nature of the dramatic skewness is also
important, since it shows clearly that most survival times

are relatively short (under 5 years) and densely clustered,
with longer times distributed over a much wider range
(5–20 years and more).

Concluding Remarks

Political scientists have enjoyed increasing success in ex-
tracting information from numerical data. Thanks to the
work of political methodologists in the last decade or
two, we have imported and adapted statistical ap-
proaches from other disciplines, created new models
from scratch, and applied these models in every empiri-
cal subfield. We now collect and analyze quantitative data
from a wide range of sources and time periods, and we
deposit numerous data sets in archives such as the Inter-
University Consortium for Political and Social Research.
Most impressively, about half of all articles in political
science journals now include some form of statistical
analysis, and the methods are becoming increasingly so-
phisticated and appropriate to the problems at hand.

Unfortunately, our success at developing and imple-
menting new quantitative methods has come at some cost
in communication. Many quantitative articles contain
impenetrable statistical jargon and unfamiliar math-
ematical expressions that confuse readers and seem to ob-
scure more of social reality than they reveal. This problem
may even account for much of the acrimony between
quantitative and qualitative researchers, despite the com-
mon goals both groups have in learning about the world.
Statistical methods are difficult to learn, harder to use,

FIGURE 4 Regime Type and and Political Survivability in Wars

Density estimates of the number of years of survival in office for (a) authoritarian and (b) democratic leaders with median pre-war
tenure (dotted line) and long pre-war tenure (solid line).
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and seemingly impossible to present so that nonquanti-
tative social scientists can understand. Few argue against
the centrality of statistics for analyzing numerical data,
just as few claim any longer that either quantitative or
qualitative information will ever be sufficient in isola-
tion. Yet statistical analysts have a responsibility to present
their results in ways that are transparent to everyone. In
too much research, understanding even the substantive
conclusions of sophisticated quantitative models can be
challenging at best and impossible at worst.

Political scientists have attacked this communication
problem from many angles. Most graduate programs now
offer a sequence of courses in political methodology, and
an increasing number offer informal math classes during
the summer. Methodologists regularly sponsor retraining
programs and write pedagogical articles. Yet, all this activ-
ity will not make statisticians out of qualitative research-
ers, nor would it be even remotely desirable to do so.

As a new line of attack, we suggest that the “produc-
ers” rather than the “consumers” of statistical research
should bear some of the cost of retraining. Our proposals
for extracting new information from existing statistical
models should enable scholars to interpret and present
their results in ways that convey numerically precise esti-
mates of the quantities of substantive interest, include rea-
sonable assessments of uncertainty about those estimates,
and require little specialized knowledge to understand.

The methods we propose are more onerous than the
methods currently used in political science. They require
more computation, and researchers who put them into
practice will have to think much harder about which
quantities are of interest and how to communicate to a
wider audience. But our approach could help bridge the
acrimonious and regrettable chasm that often separates
quantitative and nonquantitative scholars, and make the
fruits of statistical research accessible to all who have a
substantive interest in the issue under study. Perhaps most
importantly, the proposals discussed here have the poten-
tial to improve empirical research and to reveal new facts
currently ignored in our already-run statistical proce-
dures. That is, without new assumptions, new statistical
models, or new data collection efforts, the interpretive
procedures we propose have the potential to generate new
conclusions about the political and social world.

Appendix
Software

We have written easy-to-use statistical software, called
CLARIFY: Software for Interpreting and Presenting Statistical
Results, to implement our approach. This software, a set of

macros for the Stata statistics package, will calculate quanti-
ties of interest for the most commonly used statistical mod-
els, including linear regression, binary logit, binary probit,
ordered logit, ordered probit, multinomial logit, Poisson re-
gression, negative binomial regression, and a growing num-
ber of others. The software and detailed documentation are
available at http://GKing.Harvard.Edu. We provide a brief
description here.

The package includes three macros that are intended to
be run in this order:

ESTSIMP estimates a chosen model and generates random
draws from the multivariate normal distribution (i.e., com-
putes   γ̃ ).

SETX sets Xc to desired values such as means, medians, per-
centiles, minima, maxima, specified values, and others.

SIMQI computes desired quantities of interest such as pre-
dicted values, expected values, and first differences.

These programs come with many options, but to show
how easy they can be to use, we provide one brief example.
Suppose we have an ordered-probit model in which the de-
pendent variable y takes on the values 1, 2, 3, 4, or 5 and the
explanatory variables are x1 and x2. Suppose we want to
find the probability that y has the value 4 when x1 = 12.8
and x2 is fixed at its mean, and want a 90 percent confidence
interval around that probability. To generate this quantity of
interest, we would type the following three commands from
the Stata command prompt:

estsimp oprobit y x1 x2
setx x1 12.8 x2 mean
simqi, prval(4) level(90)

The first line estimates the ordered probit model of y on
x1 and x2 and generates and stores simulated values of all
estimated parameters. The second line sets x1 to 12.8 and x2
to its mean. The third line computes the desired quantity of
interest (a probability value of 4) and the (90-percent) level
of confidence associated with an interval to be computed
around it.

These programs are very flexible and will compute
many more quantities of interest than included in this brief
example. The online help gives detailed descriptions. We in-
vite others to write us with contributions to this set of mac-
ros to cover additional statistical models or other quantities
of interest. We also plan to continue adding to them.
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