Areas of Research

    • Evaluating U.S. Social Security Administration Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication. An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, and consuming knowledge from unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or cell values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      "Anchoring Vignette" methods for when different respondents (perhaps from different cultures, countries, or ethnic groups) understand survey questions in different ways; an approach to developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it"); how surveys work.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Work

Comment on 'Estimating the Reproducibility of Psychological Science'
Daniel Gilbert, Gary King, Stephen Pettigrew, and Timothy Wilson. 2016. “Comment on 'Estimating the Reproducibility of Psychological Science'.” Science, 6277, 351: 1037a-1038a. Publisher's VersionAbstract

recent article by the Open Science Collaboration (a group of 270 coauthors) gained considerable academic and public attention due to its sensational conclusion that the replicability of psychological science is surprisingly low. Science magazine lauded this article as one of the top 10 scientific breakthroughs of the year across all fields of science, reports of which appeared on the front pages of newspapers worldwide. We show that OSC's article contains three major statistical errors and, when corrected, provides no evidence of a replication crisis. Indeed, the evidence is consistent with the opposite conclusion -- that the reproducibility of psychological science is quite high and, in fact, statistically indistinguishable from 100%. (Of course, that doesn't mean that the replicability is 100%, only that the evidence is insufficient to reliably estimate replicability.) The moral of the story is that meta-science must follow the rules of science.

Replication data is available in this dataverse archive. See also the full web site for this article and related materials, and one of the news articles written about it.

The C-SPAN Archives as The Policymaking Record of American Representative Democracy: A Foreword
Gary King. 2016. “The C-SPAN Archives as The Policymaking Record of American Representative Democracy: A Foreword.” In Exploring the C-SPAN Archives: Advancing the Research Agenda, edited by Robert X Browning. West Lafayette, IN: Purdue University Press.Abstract

Almost two centuries ago, the idea of research libraries, and the possibility of building them at scale, began to be realized. Although we can find these libraries at every major college and university in the world today, and at many noneducational research institutions, this outcome was by no means obvious at the time. And the benefits we all now enjoy from their existence were then at best merely vague speculations.

How many would have supported the formation of these institutions at the time, without knowing the benefits that have since become obvious? After all, the arguments against this massive ongoing expenditure are impressive. The proposal was to construct large buildings, hire staff, purchase all manner of books and other publications and catalogue and shelve them, provide access to visitors, and continually reorder all the books that the visitors disorder. And the libraries would keep the books, and fund the whole operation, in perpetuity. Publications would be collected without anyone deciding which were of high quality and thus deserving of preservation—leading critics to argue that all this effort would result in expensive buildings packed mostly with junk.  . . .

A Unified Approach to Measurement Error and Missing Data: Overview and Applications
Matthew Blackwell, James Honaker, and Gary King. 2015. “A Unified Approach to Measurement Error and Missing Data: Overview and Applications.” Sociological Methods and Research, 1-39. Publisher's VersionAbstract

Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model dependence, difficult computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use alternative without these problems; it generalizes the popular multiple imputation (MI) framework by treating missing data problems as a limiting special case of extreme measurement error, and corrects for both. Like MI, the proposed framework is a simple two-step procedure, so that in the second step researchers can use whatever statistical method they would have if there had been no problem in the first place. We also offer empirical illustrations, open source software that implements all the methods described herein, and a companion paper with technical details and extensions (Blackwell, Honaker, and King, 2014b).

Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 2, 29: 239-258. Publisher's VersionAbstract

The financial stability of four of the five largest U.S. federal entitlement programs, strategic decision making in several industries, and many academic publications all depend on the accuracy of demographic and financial forecasts made by the Social Security Administration (SSA). Although the SSA has performed these forecasts since 1942, no systematic and comprehensive evaluation of their accuracy has ever been published by SSA or anyone else. The absence of a systematic evaluation of forecasts is a concern because the SSA relies on informal procedures that are potentially subject to inadvertent biases and does not share with the public, the scientific community, or other parts of SSA sufficient data or information necessary to replicate or improve its forecasts. These issues result in SSA holding a monopoly position in policy debates as the sole supplier of fully independent forecasts and evaluations of proposals to change Social Security. To assist with the forecasting evaluation problem, we collect all SSA forecasts for years that have passed and discover error patterns that could have been---and could now be---used to improve future forecasts. Specifically, we find that after 2000, SSA forecasting errors grew considerably larger and most of these errors made the Social Security Trust Funds look more financially secure than they actually were. In addition, SSA's reported uncertainty intervals are overconfident and increasingly so after 2000. We discuss the implications of these systematic forecasting biases for public policy.

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Political Analysis, 3, 23: 336-362. Publisher's VersionAbstract

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, other government programs, industry decision making, and the evidence base of many scholarly articles. Because SSA makes public little replication information and uses qualitative and antiquated statistical forecasting methods, fully independent alternative forecasts (and the ability to score policy proposals to change the system) are nonexistent. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else --- until a companion paper to this one (King, Kashin, and Soneji, 2015a). We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors are all in the same potentially dangerous direction, making the Social Security Trust Funds look healthier than they actually are. We extend and then attempt to explain these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security, SSA's actuaries hunkered down trying hard to insulate their forecasts from strong political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led the actuaries to miss important changes in the input data. Retirees began living longer lives and drawing benefits longer than predicted by simple extrapolations. We also show that the solution to this problem involves SSA or Congress implementing in government two of the central projects of political science over the last quarter century: [1] promoting transparency in data and methods and [2] replacing with formal statistical models large numbers of qualitative decisions too complex for unaided humans to make optimally.

Automating Open Science for Big Data
Merce Crosas, James Honaker, Gary King, and Latanya Sweeney. 2015. “Automating Open Science for Big Data.” ANNALS of the American Academy of Political and Social Science, 1, 659: 260-273. Publisher's VersionAbstract

The vast majority of social science research presently uses small (MB or GB scale) data sets. These fixed-scale data sets are commonly downloaded to the researcher's computer where the analysis is performed locally, and are often shared and cited with well-established technologies, such as the Dataverse Project (see Dataverse.org), to support the published results.  The trend towards Big Data -- including large scale streaming data -- is starting to transform research and has the potential to impact policy-making and our understanding of the social, economic, and political problems that affect human societies.  However, this research poses new challenges in execution, accountability, preservation, reuse, and reproducibility. Downloading these data sets to a researcher’s computer is infeasible or not practical; hence, analyses take place in the cloud, require unusual expertise, and benefit from collaborative teamwork and novel tool development. The advantage of these data sets in how informative they are also means that they are much more likely to contain highly sensitive personally identifiable information. In this paper, we discuss solutions to these new challenges so that the social sciences can realize the potential of Big Data.

A Unified Approach to Measurement Error and Missing Data: Details and Extensions
Matthew Blackwell, James Honaker, and Gary King. 2015. “A Unified Approach to Measurement Error and Missing Data: Details and Extensions.” Sociological Methods and Research, 1-28. Publisher's VersionAbstract

We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model specifications and estimation procedures, and analyses to assess the approach’s robustness to correlated measurement errors and to errors in categorical variables. These results support using the technique to reduce bias and increase efficiency in a wide variety of empirical research.

A Theory of Statistical Inference for Matching Methods in Applied Causal Research
Stefano M. Iacus, Gary King, and Giuseppe Porro. 2015. “A Theory of Statistical Inference for Matching Methods in Applied Causal Research”.Abstract

To reduce model dependence and bias in causal inference, researchers usually use matching as a data preprocessing step, after which they apply whatever statistical model and uncertainty estimators they would have without matching. Unfortunately, this approach is appropriate in finite samples only under exact matching, which is usually infeasible, or approximate matching only under asymptotic theory if large enough sample sizes are available, but even then requires unfamiliar specialized point and variance estimators. Instead of attempting to change common practices, we show how those analyzing certain specific (but extremely common) types of data can instead appeal to a much easier version of existing theory. This alternative theory is substantively plausible, requires no asymptotic theory, and is simple to understand. Its core conceptualizes continuous variables as having natural breakpoints, which are common in applications (e.g., high school or college degrees in years of education, a governmental poverty level in income, or phase transitions in temperature). The theory allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments.

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It
Gary King and Margaret E Roberts. 2015. “How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It.” Political Analysis, 2, 23: 159–179. Publisher's VersionAbstract

"Robust standard errors" are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, with or without robust standard errors, will still bias estimators of all but a few quantities of interest. The resulting cavernous gap between theory and practice suggests that considerable gains in applied statistics may be possible. We seek to help researchers realize these gains via a more productive way to understand and use robust standard errors; a new general and easier-to-use "generalized information matrix test" statistic that can formally assess misspecification (based on differences between robust and classical variance estimates); and practical illustrations via simulations and real examples from published research. How robust standard errors are used needs to change, but instead of jettisoning this popular tool we show how to use it to provide effective clues about model misspecification, likely biases, and a guide to considerably more reliable, and defensible, inferences. Accompanying this article [soon!] is software that implements the methods we describe. 

Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster)
Gary King, Benjamin Schneer, and Ariel White. 2014. “Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster).” In Society for Political Methodology. Athens, GA.Abstract

This is a poster presentation describing (1) the largest ever experimental study of media effects, with more than 50 cooperating traditional media sites, normally unavailable web site analytics, the text of hundreds of thousands of news articles, and tens of millions of social media posts, and (2) a design we used in preparation that attempts to anticipate experimental outcomes

You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster)
Justin Grimmer, Gary King, and Chiara Superti. 2014. “You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster).” In Society for Political Methodology. Athens, GA.Abstract

This is a poster that describes our analysis of "partisan taunting," the explicit, public, and negative attacks on another political party or its members, usually using vitriolic and derogatory language. We first demonstrate that most projects that hand code text in the social sciences optimize with respect to the wrong criterion, resulting in large, unnecessary biases. We show how to fix this problem and then apply it to taunting. We find empirically that, unlike most claims in the press and the literature, taunting is not inexorably increasing; it appears instead to be a rational political strategy, most often used by those least likely to win by traditional means -- ideological extremists, out-party members when the president is unpopular, and minority party members. However, although taunting appears to be individually rational, it is collectively irrational: Constituents may resonate with one cutting taunt by their Senator, but they might not approve if he or she were devoting large amounts of time to this behavior rather than say trying to solve important national problems. We hope to partially rectify this situation by posting public rankings of Senatorial taunting behavior.

Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Ecological Inference: New Methodological Strategies
Gary King, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier
Gary King, Christopher Lucas, and Richard Nielsen. 2014. “MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier”.Abstract

MatchingFrontier is an easy-to-use R Package for making optimal causal inferences from observational data.  Despite their popularity, existing matching approaches leave researchers with two fundamental tensions. First, they are designed to maximize one metric (such as propensity score or Mahalanobis distance) but are judged against another for which they were not designed (such as L1 or differences in means). Second, they lack a principled solution to revealing the implicit bias-variance trade off: matching methods need to optimize with respect to both imbalance (between the treated and control groups) and the number of observations pruned, but existing approaches optimize with respect to only one; users then either ignore the other, or tweak it, usually suboptimally, by hand.

MatchingFrontier resolves both tensions by consolidating previous techniques into a single, optimal, and flexible approach. It calculates the matching solution with maximum balance for each possible sample size (N, N-1, N-2,...). It thus directly calculates the entire balance-sample size frontier, from which the user can easily choose one, several, or all subsamples from which to conduct their final analysis, given their own choice of imbalance metric and quantity of interest. MatchingFrontier solves the joint optimization problem in one run, automatically, without manual tweaking, and without iteration.  Although for each subset size k, there exist a huge (N choose k) number of unique subsets, MatchingFrontier includes specially designed fast algorithms that give the optimal answer, usually in a few minutes.  

MatchingFrontier implements the methods in this paper:  

King, Gary, Christopher Lucas, and Richard Nielsen. 2014. The Balance-Sample Size Frontier in Matching Methods for Causal Inference, copy at http://j.mp/1dRDMrE

See http://projects.iq.harvard.edu/frontier/

JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans
Andrew Gelman, Gary King, and Andrew Thomas. 2010. “JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans”. Publisher's VersionAbstract
A program for analyzing most any feature of district-level legislative elections data, including prediction, evaluating redistricting plans, estimating counterfactual hypotheses (such as what would happen if a term-limitation amendment were imposed). This implements statistical procedures described in a series of journal articles and has been used during redistricting in many states by judges, partisans, governments, private citizens, and many others. The earlier version was winner of the APSA Research Software Award.
AMELIA II: A Program for Missing Data
James Honaker, Gary King, and Matthew Blackwell. 2009. “AMELIA II: A Program for Missing Data”. Publisher's VersionAbstract
This program multiply imputes missing data in cross-sectional, time series, and time series cross-sectional data sets. It includes a Windows version (no knowledge of R required), and a version that works with R either from the command line or via a GUI.
YourCast
Frederico Girosi and Gary King. 2004. “YourCast”. Publisher's VersionAbstract
YourCast is (open source and free) software that makes forecasts by running sets of linear regressions together in a variety of sophisticated ways. YourCast avoids the bias that results when stacking datasets from separate cross-sections and assuming constant parameters, and the inefficiency that results from running independent regressions in each cross-section.
Michael Tomz, Jason Wittenberg, and Gary King. 2003. “CLARIFY: Software for Interpreting and Presenting Statistical Results.” Journal of Statistical Software.Abstract
This is a set of easy-to-use Stata macros that implement the techniques described in Gary King, Michael Tomz, and Jason Wittenberg's "Making the Most of Statistical Analyses: Improving Interpretation and Presentation". To install Clarify, type "net from http://gking.harvard.edu/clarify" at the Stata command line. The documentation [ HTML | PDF ] explains how to do this. We also provide a zip archive for users who want to install Clarify on a computer that is not connected to the internet. Winner of the Okidata Best Research Software Award. Also try -ssc install qsim- to install a wrapper, donated by Fred Wolfe, to automate Clarify's simulation of dummy variables.
  •  
  • 1 of 2
  • »
How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at University of Wisconsin-Madison, Monday, January 23, 2017:

This talk is based on this paper (forthcoming in the American Political Science Review), by me, Jennifer Pan, and Margaret Roberts, along with a brief summary of our previous work. Here's an abstract: The Chinese government has long been suspected of hiring as many as 2,000,000 people to surreptitiously insert huge numbers of pseudonymous and other deceptive writings into the stream of real social media posts, as if they were the genuine opinions of ordinary people.

An Improved Method of Automated Nonparametric Content Analysis for Social Science, at Texas A&M Inaugural STATA Lecture, Thursday, January 19, 2017:

A vast literature in computer science and statistics develops methods to automatically classify textual documents into chosen categories. In contrast, social scientists are often more interested in aggregate generalizations about populations of documents --- such as the percent of social media posts that speak favorably of a candidate's foreign policy. Unfortunately, trying to maximize the percent of individual documents correctly classified often yields biased estimates of statistical aggregates.

Big Data is Not About the Data!, at Shanghai Jiao Tong University, Wednesday, January 4, 2017:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data.

An Improved Method of Automated Nonparametric Content Analysis for Social Science, at New York University, Text as Data Speaker Series, Thursday, December 1, 2016:

A vast literature in computer science and statistics develops methods to automatically classify textual documents into chosen categories. In contrast, social scientists are often more interested in aggregate generalizations about populations of documents --- such as the percent of social media posts that speak favorably of a candidate's foreign policy. Unfortunately, trying to maximize the percent of individual documents correctly classified often yields biased estimates of statistical aggregates.

How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at Pacific Information Operations Symposium, Honolulu, Tuesday, November 8, 2016:

This talk is based on this paper, by me, Jennifer Pan, and Margaret Roberts, along with a brief summary of our previous work. Here's an abstract: The Chinese government has long been suspected of hiring as many as 2,000,000 people to surreptitiously insert huge numbers of pseudonymous and other deceptive writings into the stream of real social media posts, as if they were the genuine opinions of ordinary people.

Big Data is Not About the Data!, at University of Michigan, Friday, October 7, 2016:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data.

Big Data is Not About the Data!, at Michigan State University, Thursday, October 6, 2016:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data.

How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at Northeastern University, Monday, September 26, 2016:

This talk is based on this paper, by me, Jennifer Pan, and Margaret Roberts, along with a brief summary of our previous work. Here's an abstract: The Chinese government has long been suspected of hiring as many as 2,000,000 people to surreptitiously insert huge numbers of pseudonymous and other deceptive writings into the stream of real social media posts, as if they were the genuine opinions of ordinary people.

Big Data is Not About the Data! , at Venice, Italy, Friday, September 23, 2016:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data.

Big Data is Not About the Data! The Power of Modern Analytics, at Civil Service College, Singapore, Friday, August 19, 2016:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data.

How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at DARPA, Monday, July 11, 2016:

This talk based on this paper, by me, Jennifer Pan, and Margaret Roberts, with this abstract: The Chinese government has long been suspected of hiring as many as 2,000,000 people to surreptitiously insert huge numbers of pseudonymous and other deceptive writings into the stream of real social media posts, as if they were the genuine opinions of ordinary people. Many academics, and most journalists and activists, claim that these so-called ``50c party'' posts vociferously argue for the government's side in political and policy debates.

Introduction to Perusall, at Webinar, Tuesday, April 5, 2016:

Perusall is a new collaborative e­book platform that keeps students on track before class. Perusall ensures students learn more, get instant answers to their questions, come to class prepared (with >90% having done the reading), and enjoy the experience. It enables instructors to teach more effectively, understand student misconceptions, structure class discussion, and save time. Perusall is free. For publishers and authors, it is the ultimate solution to IP piracy, resales, and sell-through.

Simplifying Matching Methods for Causal Inference, at University of Pennsylvania, APPC, Friday, April 1, 2016:

In this talk, Gary King introduces methods of matching for causal inference that are simpler, more powerful, and easier to understand than prior approaches. Software is available to implement everything discussed. Copies of some of his papers on the subject are available at his web site GaryKing.org.

  •  
  • 1 of 13
  • »