Areas of Research

    • Evaluating U.S. Social Security Administration Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication. An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, and consuming knowledge from unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or cell values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      "Anchoring Vignette" methods for when different respondents (perhaps from different cultures, countries, or ethnic groups) understand survey questions in different ways; an approach to developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it"); how surveys work.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Work

Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 2, 29: 239-258. Publisher's VersionAbstract

The financial stability of four of the five largest U.S. federal entitlement programs, strategic decision making in several industries, and many academic publications all depend on the accuracy of demographic and financial forecasts made by the Social Security Administration (SSA). Although the SSA has performed these forecasts since 1942, no systematic and comprehensive evaluation of their accuracy has ever been published by SSA or anyone else. The absence of a systematic evaluation of forecasts is a concern because the SSA relies on informal procedures that are potentially subject to inadvertent biases and does not share with the public, the scientific community, or other parts of SSA sufficient data or information necessary to replicate or improve its forecasts. These issues result in SSA holding a monopoly position in policy debates as the sole supplier of fully independent forecasts and evaluations of proposals to change Social Security. To assist with the forecasting evaluation problem, we collect all SSA forecasts for years that have passed and discover error patterns that could have been---and could now be---used to improve future forecasts. Specifically, we find that after 2000, SSA forecasting errors grew considerably larger and most of these errors made the Social Security Trust Funds look more financially secure than they actually were. In addition, SSA's reported uncertainty intervals are overconfident and increasingly so after 2000. We discuss the implications of these systematic forecasting biases for public policy.

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Political Analysis, 3, 23: 336-362. Publisher's VersionAbstract

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, other government programs, industry decision making, and the evidence base of many scholarly articles. Because SSA makes public little replication information and uses qualitative and antiquated statistical forecasting methods, fully independent alternative forecasts (and the ability to score policy proposals to change the system) are nonexistent. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else --- until a companion paper to this one (King, Kashin, and Soneji, 2015a). We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors are all in the same potentially dangerous direction, making the Social Security Trust Funds look healthier than they actually are. We extend and then attempt to explain these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security, SSA's actuaries hunkered down trying hard to insulate their forecasts from strong political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led the actuaries to miss important changes in the input data. Retirees began living longer lives and drawing benefits longer than predicted by simple extrapolations. We also show that the solution to this problem involves SSA or Congress implementing in government two of the central projects of political science over the last quarter century: [1] promoting transparency in data and methods and [2] replacing with formal statistical models large numbers of qualitative decisions too complex for unaided humans to make optimally.

Automating Open Science for Big Data
Merce Crosas, James Honaker, Gary King, and Latanya Sweeney. 2015. “Automating Open Science for Big Data.” ANNALS of the American Academy of Political and Social Science, 1, 659: 260-273. Publisher's VersionAbstract

The vast majority of social science research presently uses small (MB or GB scale) data sets. These fixed-scale data sets are commonly downloaded to the researcher's computer where the analysis is performed locally, and are often shared and cited with well-established technologies, such as the Dataverse Project (see Dataverse.org), to support the published results.  The trend towards Big Data -- including large scale streaming data -- is starting to transform research and has the potential to impact policy-making and our understanding of the social, economic, and political problems that affect human societies.  However, this research poses new challenges in execution, accountability, preservation, reuse, and reproducibility. Downloading these data sets to a researcher’s computer is infeasible or not practical; hence, analyses take place in the cloud, require unusual expertise, and benefit from collaborative teamwork and novel tool development. The advantage of these data sets in how informative they are also means that they are much more likely to contain highly sensitive personally identifiable information. In this paper, we discuss solutions to these new challenges so that the social sciences can realize the potential of Big Data.

A Unified Approach to Measurement Error and Missing Data: Details and Extensions
Matthew Blackwell, James Honaker, and Gary King. 2015. “A Unified Approach to Measurement Error and Missing Data: Details and Extensions.” Sociological Methods and Research, 1-28. Publisher's VersionAbstract

We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model specifications and estimation procedures, and analyses to assess the approach’s robustness to correlated measurement errors and to errors in categorical variables. These results support using the technique to reduce bias and increase efficiency in a wide variety of empirical research.

A Theory of Statistical Inference for Matching Methods in Applied Causal Research
Stefano M. Iacus, Gary King, and Giuseppe Porro. 2015. “A Theory of Statistical Inference for Matching Methods in Applied Causal Research”.Abstract

To reduce model dependence and bias in causal inference, researchers usually use matching as a data preprocessing step, after which they apply whatever statistical model and uncertainty estimators they would have without matching. Unfortunately, this approach is appropriate in finite samples only under exact matching, which is usually infeasible, or approximate matching only under asymptotic theory if large enough sample sizes are available, but even then requires unfamiliar specialized point and variance estimators. Instead of attempting to change common practices, we show how those analyzing certain specific (but extremely common) types of data can instead appeal to a much easier version of existing theory. This alternative theory is substantively plausible, requires no asymptotic theory, and is simple to understand. Its core conceptualizes continuous variables as having natural breakpoints, which are common in applications (e.g., high school or college degrees in years of education, a governmental poverty level in income, or phase transitions in temperature). The theory allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments.

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It
Gary King and Margaret E Roberts. 2015. “How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It.” Political Analysis, 2, 23: 159–179. Publisher's VersionAbstract

"Robust standard errors" are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, with or without robust standard errors, will still bias estimators of all but a few quantities of interest. The resulting cavernous gap between theory and practice suggests that considerable gains in applied statistics may be possible. We seek to help researchers realize these gains via a more productive way to understand and use robust standard errors; a new general and easier-to-use "generalized information matrix test" statistic that can formally assess misspecification (based on differences between robust and classical variance estimates); and practical illustrations via simulations and real examples from published research. How robust standard errors are used needs to change, but instead of jettisoning this popular tool we show how to use it to provide effective clues about model misspecification, likely biases, and a guide to considerably more reliable, and defensible, inferences. Accompanying this article [soon!] is software that implements the methods we describe. 

Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster)
Gary King, Benjamin Schneer, and Ariel White. 2014. “Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster).” In Society for Political Methodology. Athens, GA, 24 July.Abstract

This is a poster presentation describing (1) the largest ever experimental study of media effects, with more than 50 cooperating traditional media sites, normally unavailable web site analytics, the text of hundreds of thousands of news articles, and tens of millions of social media posts, and (2) a design we used in preparation that attempts to anticipate experimental outcomes

You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster)
Justin Grimmer, Gary King, and Chiara Superti. 2014. “You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster).” In Society for Political Methodology. Athens, GA, 24 July.Abstract

This is a poster that describes our analysis of "partisan taunting," the explicit, public, and negative attacks on another political party or its members, usually using vitriolic and derogatory language. We first demonstrate that most projects that hand code text in the social sciences optimize with respect to the wrong criterion, resulting in large, unnecessary biases. We show how to fix this problem and then apply it to taunting. We find empirically that, unlike most claims in the press and the literature, taunting is not inexorably increasing; it appears instead to be a rational political strategy, most often used by those least likely to win by traditional means -- ideological extremists, out-party members when the president is unpopular, and minority party members. However, although taunting appears to be individually rational, it is collectively irrational: Constituents may resonate with one cutting taunt by their Senator, but they might not approve if he or she were devoting large amounts of time to this behavior rather than say trying to solve important national problems. We hope to partially rectify this situation by posting public rankings of Senatorial taunting behavior.

Reverse-engineering censorship in China: Randomized experimentation and participant observation
Gary King, Jennifer Pan, and Margaret E. Roberts. 2014. “Reverse-engineering censorship in China: Randomized experimentation and participant observation.” Science, 6199, 345: 1-10. Publisher's VersionAbstract

Existing research on the extensive Chinese censorship organization uses observational methods with well-known limitations. We conducted the first large-scale experimental study of censorship by creating accounts on numerous social media sites, randomly submitting different texts, and observing from a worldwide network of computers which texts were censored and which were not. We also supplemented interviews with confidential sources by creating our own social media site, contracting with Chinese firms to install the same censoring technologies as existing sites, and—with their software, documentation, and even customer support—reverse-engineering how it all works. Our results offer rigorous support for the recent hypothesis that criticisms of the state, its leaders, and their policies are published, whereas posts about real-world events with collective action potential are censored.

Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season
David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season”.Abstract
Last year was difficult for Google Flu Trends (GFT). In early 2013, Nature reported that GFT was estimating more than double the percentage of doctor visits for influenza like illness than the Centers for Disease Control and Prevention s (CDC) sentinel reports during the 2012 2013 flu season (1). Given that GFT was designed to forecast upcoming CDC reports, this was a problematic finding. In March 2014, our report in Science found that the overestimation problem in GFT was also present in the 2011 2012 flu season (2). The report also found strong evidence of autocorrelation and seasonality in the GFT errors, and presented evidence that the issues were likely, at least in part, due to modifications made by Google s search algorithm and the decision by GFT engineers not to use previous CDC reports or seasonality estimates in their models what the article labeled algorithm dynamics and big data hubris respectively. Moreover, the report and the supporting online materials detailed how difficult/impossible it is to replicate the GFT results, undermining independent efforts to explore the source of GFT errors and formulate improvements.
The Parable of Google Flu: Traps in Big Data Analysis
David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “The Parable of Google Flu: Traps in Big Data Analysis.” Science, 14 March, 343: 1203-1205.Abstract
Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data.

In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States ( 1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data ( 3, 4), what lessons can we draw from this error?

Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Ecological Inference: New Methodological Strategies
Gary King, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier
Gary King, Christopher Lucas, and Richard Nielsen. 2014. “MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier”.Abstract

MatchingFrontier is an easy-to-use R Package for making optimal causal inferences from observational data.  Despite their popularity, existing matching approaches leave researchers with two fundamental tensions. First, they are designed to maximize one metric (such as propensity score or Mahalanobis distance) but are judged against another for which they were not designed (such as L1 or differences in means). Second, they lack a principled solution to revealing the implicit bias-variance trade off: matching methods need to optimize with respect to both imbalance (between the treated and control groups) and the number of observations pruned, but existing approaches optimize with respect to only one; users then either ignore the other, or tweak it, usually suboptimally, by hand.

MatchingFrontier resolves both tensions by consolidating previous techniques into a single, optimal, and flexible approach. It calculates the matching solution with maximum balance for each possible sample size (N, N-1, N-2,...). It thus directly calculates the entire balance-sample size frontier, from which the user can easily choose one, several, or all subsamples from which to conduct their final analysis, given their own choice of imbalance metric and quantity of interest. MatchingFrontier solves the joint optimization problem in one run, automatically, without manual tweaking, and without iteration.  Although for each subset size k, there exist a huge (N choose k) number of unique subsets, MatchingFrontier includes specially designed fast algorithms that give the optimal answer, usually in a few minutes.  

MatchingFrontier implements the methods in this paper:  

King, Gary, Christopher Lucas, and Richard Nielsen. 2014. The Balance-Sample Size Frontier in Matching Methods for Causal Inference, copy at http://j.mp/1dRDMrE

See http://projects.iq.harvard.edu/frontier/

JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans
Andrew Gelman, Gary King, and Andrew Thomas. 2010. “JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans”. Publisher's VersionAbstract
A program for analyzing most any feature of district-level legislative elections data, including prediction, evaluating redistricting plans, estimating counterfactual hypotheses (such as what would happen if a term-limitation amendment were imposed). This implements statistical procedures described in a series of journal articles and has been used during redistricting in many states by judges, partisans, governments, private citizens, and many others. The earlier version was winner of the APSA Research Software Award.
AMELIA II: A Program for Missing Data
James Honaker, Gary King, and Matthew Blackwell. 2009. “AMELIA II: A Program for Missing Data”. Publisher's VersionAbstract
This program multiply imputes missing data in cross-sectional, time series, and time series cross-sectional data sets. It includes a Windows version (no knowledge of R required), and a version that works with R either from the command line or via a GUI.
YourCast
Frederico Girosi and Gary King. 2004. “YourCast”. Publisher's VersionAbstract
YourCast is (open source and free) software that makes forecasts by running sets of linear regressions together in a variety of sophisticated ways. YourCast avoids the bias that results when stacking datasets from separate cross-sections and assuming constant parameters, and the inefficiency that results from running independent regressions in each cross-section.
Michael Tomz, Jason Wittenberg, and Gary King. 2003. “CLARIFY: Software for Interpreting and Presenting Statistical Results.” Journal of Statistical Software 8.Abstract
This is a set of easy-to-use Stata macros that implement the techniques described in Gary King, Michael Tomz, and Jason Wittenberg's "Making the Most of Statistical Analyses: Improving Interpretation and Presentation". To install Clarify, type "net from http://gking.harvard.edu/clarify" at the Stata command line. The documentation [ HTML | PDF ] explains how to do this. We also provide a zip archive for users who want to install Clarify on a computer that is not connected to the internet. Winner of the Okidata Best Research Software Award. Also try -ssc install qsim- to install a wrapper, donated by Fred Wolfe, to automate Clarify's simulation of dummy variables.
Introduction to Perusall, at Webinar, Tuesday, April 5, 2016:

Perusall is a new collaborative e­book platform that keeps students on track before class. Perusall ensures students learn more, get instant answers to their questions, come to class prepared (with >90% having done the reading), and enjoy the experience. It enables instructors to teach more effectively, understand student misconceptions, structure class discussion, and save time. Perusall is free. For publishers and authors, it is the ultimate solution to IP piracy, resales, and sell-through.

Simplifying Matching Methods for Causal Inference, at University of Pennsylvania, APPC, Friday, April 1, 2016:

In this talk, Gary King introduces methods of matching for causal inference that are simpler, more powerful, and easier to understand than prior approaches. Software is available to implement everything discussed. Copies of some of his papers on the subject are available at his web site GaryKing.org.

Discovering and Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts, at University of Florida, Department of Political Science, Friday, March 18, 2016:

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals put forward by both political parties or anyone else.

Big Data is Not About the Data!, at University of Florida, Informatics Symposium, Thursday, March 17, 2016:

In this talk, Gary King explains that the spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often just makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical methods of extracting insights from the data.

Why Propensity Scores Should Not Be Used For Matching, at Yale University, MacMillan-CSAP Workshop on Quantitative Research Methods, Thursday, March 10, 2016:

This talk summarizes a paper -- Gary King and Richard Nielsen. 2016. “Why Propensity Scores Should Not Be Used for Matching” -- with this abstract:  Researchers use propensity score matching (PSM) as a data preprocessing step to selectively prune units prior to applying a model to estimate a causal effect.

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts, at Hellenic American Bankers Association, NYC, Thursday, January 28, 2016:

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals put forward by both political parties or anyone else.

Reverse-Engineering Censorship in China, at University of Essex, Regius Lecture, Tuesday, January 12, 2016:

Chinese government censorship of social media constitutes the largest selective suppression of human communication in recorded history. In three ways, we show, paradoxically, that this large system also leaves large footprints that reveal a great deal about itself and the intentions of the government. First is an observational study where we download all social media posts before the Chinese government can read and censor those they deem objectionable, and then detect from a network of computers all over the world which are censored.

Why Propensity Scores Should Not Be Used For Matching, at Bocconi University, Milan Italy, Thursday, December 3, 2015:

This talk summarizes a paper -- Gary King and Richard Nielsen. 2015. “Why Propensity Scores Should Not Be Used for Matching” -- with this abstract:  Researchers use propensity score matching (PSM) as a data preprocessing step to selectively prune units prior to applying a model to estimate a causal effect.

Why Propensity Scores Should Not Be Used For Matching, at Harvard University, Department of Statistics, Science Center 705, 9-11:30am, Wednesday, November 18, 2015:

This talk summarizes a paper -- Gary King and Richard Nielsen. 2015. “Why Propensity Scores Should Not Be Used for Matching” -- with this abstract:  Researchers use propensity score matching (PSM) as a data preprocessing step to selectively prune units prior to applying a model to estimate a causal effect.

Reverse-Engineering Censorship in China, at IARPA seminar on "Science, Intelligence, and Security," Virginia Tech Research Center, Monday, November 16, 2015:

Chinese government censorship of social media constitutes the largest selective suppression of human communication in recorded history. In three ways, we show, paradoxically, that this large system also leaves large footprints that reveal a great deal about itself and the intentions of the government. First is an observational study where we download all social media posts before the Chinese government can read and censor those they deem objectionable, and then detect from a network of computers all over the world which are censored.