Publications by Author: Giuseppe Porro

2019
A Theory of Statistical Inference for Matching Methods in Causal Research
Stefano M. Iacus, Gary King, and Giuseppe Porro. 2019. “A Theory of Statistical Inference for Matching Methods in Causal Research.” Political Analysis, 27, 1, Pp. 46-68.Abstract

Researchers who generate data often optimize efficiency and robustness by choosing stratified over simple random sampling designs. Yet, all theories of inference proposed to justify matching methods are based on simple random sampling. This is all the more troubling because, although these theories require exact matching, most matching applications resort to some form of ex post stratification (on a propensity score, distance metric, or the covariates) to find approximate matches, thus nullifying the statistical properties these theories are designed to ensure. Fortunately, the type of sampling used in a theory of inference is an axiom, rather than an assumption vulnerable to being proven wrong, and so we can replace simple with stratified sampling, so long as we can show, as we do here, that the implications of the theory are coherent and remain true. Properties of estimators based on this theory are much easier to understand and can be satisfied without the unattractive properties of existing theories, such as assumptions hidden in data analyses rather than stated up front, asymptotics, unfamiliar estimators, and complex variance calculations. Our theory of inference makes it possible for researchers to treat matching as a simple form of preprocessing to reduce model dependence, after which all the familiar inferential techniques and uncertainty calculations can be applied. This theory also allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments.

Paper
2012
Causal Inference Without Balance Checking: Coarsened Exact Matching
Stefano M. Iacus, Gary King, and Giuseppe Porro. 2012. “Causal Inference Without Balance Checking: Coarsened Exact Matching.” Political Analysis, 20, 1, Pp. 1--24. WebsiteAbstract

We discuss a method for improving causal inferences called "Coarsened Exact Matching'' (CEM), and the new "Monotonic Imbalance Bounding'' (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of desirable statistical properties not available in most other matching methods, but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R and Stata which implement all our suggestions.

See also:  An Explanation of CEM Weights

Article
2011
Multivariate Matching Methods That are Monotonic Imbalance Bounding
Stefano M Iacus, Gary King, and Giuseppe Porro. 2011. “Multivariate Matching Methods That are Monotonic Imbalance Bounding.” Journal of the American Statistical Association, 106, 493, Pp. 345-361.Abstract

We introduce a new "Monotonic Imbalance Bounding" (MIB) class of matching methods for causal inference with a surprisingly large number of attractive statistical properties. MIB generalizes and extends in several new directions the only existing class, "Equal Percent Bias Reducing" (EPBR), which is designed to satisfy weaker properties and only in expectation. We also offer strategies to obtain specific members of the MIB class, and analyze in more detail a member of this class, called Coarsened Exact Matching, whose properties we analyze from this new perspective. We offer a variety of analytical results and numerical simulations that demonstrate how members of the MIB class can dramatically improve inferences relative to EPBR-based matching methods.

Article
2009
CEM: Coarsened Exact Matching in Stata
Matthew Blackwell, Stefano Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Coarsened Exact Matching in Stata.” The Stata Journal, 9, Pp. 524–546.Abstract
In this article, we introduce a Stata implementation of coarsened exact matching, a new method for improving the estimation of causal effects by reducing imbalance in covariates between treated and control groups. Coarsened exact matching is faster, is easier to use and understand, requires fewer assumptions, is more easily automated, and possesses more attractive statistical properties for many applications than do existing matching methods. In coarsened exact matching, users temporarily coarsen their data, exact match on these coarsened data, and then run their analysis on the uncoarsened, matched data. Coarsened exact matching bounds the degree of model dependence and causal effect estimation error by ex ante user choice, is monotonic imbalance bounding (so that reducing the maximum imbalance on one variable has no effect on others), does not require a separate procedure to restrict data to common support, meets the congruence principle, is approximately invariant to measurement error, balances all nonlinearities and interactions in sample (i.e., not merely in expectation), and works with multiply imputed datasets. Other matching methods inherit many of the coarsened exact matching method’s properties when applied to further match data preprocessed by coarsened exact matching. The cem command implements the coarsened exact matching algorithm in Stata.
Article
CEM: Coarsened Exact Matching Software
Stefano Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Coarsened Exact Matching Software”.
CEM: Software for Coarsened Exact Matching
Stefano M Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Software for Coarsened Exact Matching.” Journal of Statistical Software, 30. Publisher's VersionAbstract

This program is designed to improve causal inference via a method of matching that is widely applicable in observational data and easy to understand and use (if you understand how to draw a histogram, you will understand this method). The program implements the coarsened exact matching (CEM) algorithm, described below. CEM may be used alone or in combination with any existing matching method. This algorithm, and its statistical properties, are described in Iacus, King, and Porro (2008).

Article