Publications by Author: Federico Girosi

2008
Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

2007
Understanding the Lee-Carter Mortality Forecasting Method
Federico Girosi and Gary King. 2007. “Understanding the Lee-Carter Mortality Forecasting Method”.Abstract
We demonstrate here several previously unrecognized or insufficiently appreciated properties of the Lee-Carter mortality forecasting approach, the dominant method used in both the academic literature and practical applications. We show that this model is a special case of a considerably simpler, and less often biased, random walk with drift model, and prove that the age profile forecast from both approaches will always become less smooth and unrealistic after a point (when forecasting forward or backwards in time) and will eventually deviate from any given baseline. We use these and other properties we demonstrate to suggest when the model would be most applicable in practice.
Article