Publications by Author: Kosuke Imai

2020
Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Experiments
Kosuke Imai, Gary King, and Carlos Velasco Rivera. 1/31/2020. “Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Experiments.” Journal of Politics, 81, 2, Pp. 714-730. Publisher's VersionAbstract

A vast literature demonstrates that voters around the world who benefit from their governments' discretionary spending cast more ballots for the incumbent party than those who do not benefit. But contrary to most theories of political accountability, some suggest that voters also reward incumbent parties for implementing "programmatic" spending legislation, over which incumbents have no discretion, and even when passed with support from all major parties. Why voters would attribute responsibility when none exists is unclear, as is why minority party legislators would approve of legislation that would cost them votes. We study the electoral effects of two large prominent programmatic policies that fit the ideal type especially well, with unusually large scale experiments that bring more evidence to bear on this question than has previously been possible. For the first policy, we design and implement ourselves one of the largest randomized social experiments ever. For the second policy, we reanalyze studies that used a large scale randomized experiment and a natural experiment to study the same question but came to opposite conclusions. Using corrected data and improved statistical methods, we show that the evidence from all analyses of both policies is consistent: programmatic policies have no effect on voter support for incumbents. We conclude by discussing how the many other studies in the literature may be interpreted in light of our results.

Article Supplementary Appendix
2011
MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
Daniel E. Ho, Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2011. “MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.” Journal of Statistical Software, 42, 8, Pp. 1--28. Publisher's VersionAbstract
MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing data with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig.
Article
2009
The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation
Kosuke Imai, Gary King, and Clayton Nall. 2009. “The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation.” Statistical Science, 24, Pp. 29–53.Abstract
A basic feature of many field experiments is that investigators are only able to randomize clusters of individuals–-such as households, communities, firms, medical practices, schools, or classrooms–-even when the individual is the unit of interest. To recoup the resulting efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, many other studies avoid pairing, in part because of claims in the literature, echoed by clinical trials standards organizations, that this matched-pair, cluster-randomization design has serious problems. We argue that all such claims are unfounded. We also prove that the estimator recommended for this design in the literature is unbiased only in situations when matching is unnecessary and and its standard error is also invalid. To overcome this problem without modeling assumptions, we develop a simple design-based estimator with much improved statistical properties. We also propose a model-based approach that includes some of the benefits of our design-based estimator as well as the estimator in the literature. Our methods also address individual-level noncompliance, which is common in applications but not allowed for in most existing methods. We show that from the perspective of bias, efficiency, power, robustness, or research costs, and in large or small samples, pairing should be used in cluster-randomized experiments whenever feasible and failing to do so is equivalent to discarding a considerable fraction of one’s data. We develop these techniques in the context of a randomized evaluation we are conducting of the Mexican Universal Health Insurance Program.
Article
Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder
Kosuke Imai, Gary King, and Clayton Nall. 2009. “Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder.” Statistical Science, 24, Pp. 64–72.Abstract

A basic feature of many field experiments is that investigators are only able to randomize clusters of individuals–-such as households, communities, firms, medical practices, schools, or classrooms–-even when the individual is the unit of interest. To recoup the resulting efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, many other studies avoid pairing, in part because of claims in the literature, echoed by clinical trials standards organizations, that this matched-pair, cluster-randomization design has serious problems. We argue that all such claims are unfounded. We also prove that the estimator recommended for this design in the literature is unbiased only in situations when matching is unnecessary and and its standard error is also invalid. To overcome this problem without modeling assumptions, we develop a simple design-based estimator with much improved statistical properties. We also propose a model-based approach that includes some of the benefits of our design-based estimator as well as the estimator in the literature. Our methods also address individual-level noncompliance, which is common in applications but not allowed for in most existing methods. We show that from the perspective of bias, efficiency, power, robustness, or research costs, and in large or small samples, pairing should be used in cluster-randomized experiments whenever feasible and failing to do so is equivalent to discarding a considerable fraction of one’s data. We develop these techniques in the context of a randomized evaluation we are conducting of the Mexican Universal Health Insurance Program.

Article
Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme
Gary King, Emmanuela Gakidou, Kosuke Imai, Jason Lakin, Ryan T Moore, Clayton Nall, Nirmala Ravishankar, Manett Vargas, Martha María Téllez-Rojo, Juan Eugenio Hernández Ávila, Mauricio Hernández Ávila, and Héctor Hernández Llamas. 2009. “Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme.” The Lancet, 373, Pp. 1447-1454.Abstract

Background: We assessed aspects of Seguro Popular, a programme aimed to deliver health insurance, regular and preventive medical care, medicines, and health facilities to 50 million uninsured Mexicans. Methods: We randomly assigned treatment within 74 matched pairs of health clusters–-i.e., health facility catchment areas–-representing 118,569 households in seven Mexican states, and measured outcomes in a 2005 baseline survey (August 2005, to September 2005) and follow-up survey 10 months later (July 2006, to August 2006) in 50 pairs (n=32 515). The treatment consisted of encouragement to enrol in a health-insurance programme and upgraded medical facilities. Participant states also received funds to improve health facilities and to provide medications for services in treated clusters. We estimated intention to treat and complier average causal effects non-parametrically. Findings: Intention-to-treat estimates indicated a 23% reduction from baseline in catastrophic expenditures (1·9% points and 95% CI 0·14-3·66). The effect in poor households was 3·0% points (0·46-5·54) and in experimental compliers was 6·5% points (1·65-11·28), 30% and 59% reductions, respectively. The intention-to-treat effect on health spending in poor households was 426 pesos (39-812), and the complier average causal effect was 915 pesos (147-1684). Contrary to expectations and previous observational research, we found no effects on medication spending, health outcomes, or utilisation. Interpretation: Programme resources reached the poor. However, the programme did not show some other effects, possibly due to the short duration of treatment (10 months). Although Seguro Popular seems to be successful at this early stage, further experiments and follow-up studies, with longer assessment periods, are needed to ascertain the long-term effects of the programme.

Article
Replication Data for: Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme
Gary King, Emmanuela Gakidou, Kosuke Imai, Jason Lakin, Ryan T Moore, Clayton Nall, Nirmala Ravishankar, Manett Vargas, Martha María Téllez-Rojo, Juan Eugenio Hernández Ávila, Mauricio Hernández Ávila, and Héctor Hernández Llamas. 2009. “Replication Data for: Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme”. Publisher's Version
2008
Misunderstandings Among Experimentalists and Observationalists about Causal Inference
Kosuke Imai, Gary King, and Elizabeth Stuart. 2008. “Misunderstandings Among Experimentalists and Observationalists about Causal Inference.” Journal of the Royal Statistical Society, Series A, 171, part 2, Pp. 481–502.Abstract

We attempt to clarify, and suggest how to avoid, several serious misunderstandings about and fallacies of causal inference in experimental and observational research. These issues concern some of the most basic advantages and disadvantages of each basic research design. Problems include improper use of hypothesis tests for covariate balance between the treated and control groups, and the consequences of using randomization, blocking before randomization, and matching after treatment assignment to achieve covariate balance. Applied researchers in a wide range of scientific disciplines seem to fall prey to one or more of these fallacies, and as a result make suboptimal design or analysis choices. To clarify these points, we derive a new four-part decomposition of the key estimation errors in making causal inferences. We then show how this decomposition can help scholars from different experimental and observational research traditions better understand each other’s inferential problems and attempted solutions.

Article
Toward A Common Framework for Statistical Analysis and Development
Kosuke Imai, Gary King, and Olivia Lau. 2008. “Toward A Common Framework for Statistical Analysis and Development.” Journal of Computational Graphics and Statistics, 17, Pp. 1–22.Abstract
We describe some progress toward a common framework for statistical analysis and software development built on and within the R language, including R’s numerous existing packages. The framework we have developed offers a simple unified structure and syntax that can encompass a large fraction of statistical procedures already implemented in R, without requiring any changes in existing approaches. We conjecture that it can be used to encompass and present simply a vast majority of existing statistical methods, regardless of the theory of inference on which they are based, notation with which they were developed, and programming syntax with which they have been implemented. This development enabled us, and should enable others, to design statistical software with a single, simple, and unified user interface that helps overcome the conflicting notation, syntax, jargon, and statistical methods existing across the methods subfields of numerous academic disciplines. The approach also enables one to build a graphical user interface that automatically includes any method encompassed within the framework. We hope that the result of this line of research will greatly reduce the time from the creation of a new statistical innovation to its widespread use by applied researchers whether or not they use or program in R.
Article
2007
Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference
Daniel Ho, Kosuke Imai, Gary King, and Elizabeth Stuart. 2007. “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference.” Political Analysis, 15, Pp. 199–236.Abstract

Although published works rarely include causal estimates from more than a few model specifications, authors usually choose the presented estimates from numerous trial runs readers never see. Given the often large variation in estimates across choices of control variables, functional forms, and other modeling assumptions, how can researchers ensure that the few estimates presented are accurate or representative? How do readers know that publications are not merely demonstrations that it is possible to find a specification that fits the author’s favorite hypothesis? And how do we evaluate or even define statistical properties like unbiasedness or mean squared error when no unique model or estimator even exists? Matching methods, which offer the promise of causal inference with fewer assumptions, constitute one possible way forward, but crucial results in this fast-growing methodological literature are often grossly misinterpreted. We explain how to avoid these misinterpretations and propose a unified approach that makes it possible for researchers to preprocess data with matching (such as with the easy-to-use software we offer) and then to apply the best parametric techniques they would have used anyway. This procedure makes parametric models produce more accurate and considerably less model-dependent causal inferences.

Article
MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
Gary King, Kosuke Imai, Daniel Ho, and Elizabeth A. Stuart. 2007. “MatchIt: Nonparametric Preprocessing for Parametric Causal Inference”.
2006
Zelig: Everyone's Statistical Software
Kosuke Imai, Gary King, and Olivia Lau. 2006. “Zelig: Everyone's Statistical Software”.
2004
Did Illegal Overseas Absentee Ballots Decide the 2000 U.S. Presidential Election?
Kosuke Imai and Gary King. 2004. “Did Illegal Overseas Absentee Ballots Decide the 2000 U.S. Presidential Election?” Perspectives on Politics, 2, Pp. 537–549.Abstract

Although not widely known until much later, Al Gore received 202 more votes than George W. Bush on election day in Florida. George W. Bush is president because he overcame his election day deficit with overseas absentee ballots that arrived and were counted after election day. In the final official tally, Bush received 537 more votes than Gore. These numbers are taken from the official results released by the Florida Secretary of State's office and so do not reflect overvotes, undervotes, unsuccessful litigation, butterfly ballot problems, recounts that might have been allowed but were not, or any other hypothetical divergence between voter preferences and counted votes. After the election, the New York Times conducted a six month long investigation and found that 680 of the overseas absentee ballots were illegally counted, and no partisan, pundit, or academic has publicly disagreed with their assessment. In this paper, we describe the statistical procedures we developed and implemented for the Times to ascertain whether disqualifying these 680 ballots would have changed the outcome of the election. The methods involve adding formal Bayesian model averaging procedures to King's (1997) ecological inference model. Formal Bayesian model averaging has not been used in political science but is especially useful when substantive conclusions depend heavily on apparently minor but indefensible model choices, when model generalization is not feasible, and when potential critics are more partisan than academic. We show how we derived the results for the Times so that other scholars can use these methods to make ecological inferences for other purposes. We also present a variety of new empirical results that delineate the precise conditions under which Al Gore would have been elected president, and offer new evidence of the striking effectiveness of the Republican effort to convince local election officials to count invalid ballots in Bush counties and not count them in Gore counties.

Article