Journal Article

Restructuring the Social Sciences: Reflections from Harvard’s Institute for Quantitative Social Science
King, Gary. 2014. Restructuring the Social Sciences: Reflections from Harvard’s Institute for Quantitative Social Science. PS: Political Science and Politics 47, no. 1: 165-172. Cambridge University Press versionAbstract
The social sciences are undergoing a dramatic transformation from studying problems to solving them; from making do with a small number of sparse data sets to analyzing increasing quantities of diverse, highly informative data; from isolated scholars toiling away on their own to larger scale, collaborative, interdisciplinary, lab-style research teams; and from a purely academic pursuit to having a major impact on the world. To facilitate these important developments, universities, funding agencies, and governments need to shore up and adapt the infrastructure that supports social science research. We discuss some of these developments here, as well as a new type of organization we created at Harvard to help encourage them -- the Institute for Quantitative Social Science.  An increasing number of universities are beginning efforts to respond with similar institutions. This paper provides some suggestions for how individual universities might respond and how we might work together to advance social science more generally.
<p>The Parable of Google Flu: Traps in Big Data Analysis</p>
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.

The Parable of Google Flu: Traps in Big Data Analysis

. Science 343, no. 14 March: 1203-1205.Abstract
Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data. In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States ( 1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data ( 3, 4), what lessons can we draw from this error?
The Troubled Future of Colleges and Universities (with comments from five scholar-administrators)
King, Gary, and Maya Sen. 2013. The Troubled Future of Colleges and Universities (with comments from five scholar-administrators). PS: Political Science and Politics 46, no. 1: 81--113.Abstract
The American system of higher education is under attack by political, economic, and educational forces that threaten to undermine its business model, governmental support, and operating mission. The potential changes are considerably more dramatic and disruptive than what we've already experienced. Traditional colleges and universities urgently need a coherent, thought-out response. Their central role in ensuring the creation, preservation, and distribution of knowledge may be at risk and, as a consequence, so too may be the spectacular progress across fields we have come to expect as a result. Symposium contributors include Henry E. Brady, John Mark Hansen, Gary King, Nannerl O. Keohane, Michael Laver, Virginia Sapiro, and Maya Sen.
How Social Science Research Can Improve Teaching
King, Gary, and Maya Sen. 2013. How Social Science Research Can Improve Teaching. PS: Political Science and Politics 46, no. 3: 621-629.Abstract
We marshal discoveries about human behavior and learning from social science research and show how they can be used to improve teaching and learning. The discoveries are easily stated as three social science generalizations: (1) social connections motivate, (2) teaching teaches the teacher, and (3) instant feedback improves learning. We show how to apply these generalizations via innovations in modern information technology inside, outside, and across university classrooms. We also give concrete examples of these ideas from innovations we have experimented with in our own teaching. See also a video presentation of this talk before the Harvard Board of Overseers
How Censorship in China Allows Government Criticism but Silences Collective Expression
King, Gary, Jennifer Pan, and Margaret E Roberts. 2013. How Censorship in China Allows Government Criticism but Silences Collective Expression. American Political Science Review 107, no. 2 (May): 1-18.Abstract
We offer the first large scale, multiple source analysis of the outcome of what may be the most extensive effort to selectively censor human expression ever implemented. To do this, we have devised a system to locate, download, and analyze the content of millions of social media posts originating from nearly 1,400 different social media services all over China before the Chinese government is able to find, evaluate, and censor (i.e., remove from the Internet) the large subset they deem objectionable. Using modern computer-assisted text analytic methods that we adapt to and validate in the Chinese language, we compare the substantive content of posts censored to those not censored over time in each of 85 topic areas. Contrary to previous understandings, posts with negative, even vitriolic, criticism of the state, its leaders, and its policies are not more likely to be censored. Instead, we show that the censorship program is aimed at curtailing collective action by silencing comments that represent, reinforce, or spur social mobilization, regardless of content. Censorship is oriented toward attempting to forestall collective activities that are occurring now or may occur in the future --- and, as such, seem to clearly expose government intent.
Estimating Partisan Bias of the Electoral College Under Proposed Changes in Elector Apportionment
Thomas, AC, Andrew Gelman, Gary King, and Jonathan N Katz. 2012. Estimating Partisan Bias of the Electoral College Under Proposed Changes in Elector Apportionment. Statistics, Politics, and Policy: 1-13. Statistics, Politics and Policy (publisher version)Abstract
In the election for President of the United States, the Electoral College is the body whose members vote to elect the President directly. Each state sends a number of delegates equal to its total number of representatives and senators in Congress; all but two states (Nebraska and Maine) assign electors pledged to the candidate that wins the state's plurality vote. We investigate the effect on presidential elections if states were to assign their electoral votes according to results in each congressional district,and conclude that the direct popular vote and the current electoral college are both substantially fairer compared to those alternatives where states would have divided their electoral votes by congressional district.
Statistical Security for Social Security
Soneji, Samir, and Gary King. 2012. Statistical Security for Social Security. Demography 49, no. 3: 1037-1060 . Publisher's versionAbstract
The financial viability of Social Security, the single largest U.S. Government program, depends on accurate forecasts of the solvency of its intergenerational trust fund. We begin by detailing information necessary for replicating the Social Security Administration’s (SSA’s) forecasting procedures, which until now has been unavailable in the public domain. We then offer a way to improve the quality of these procedures due to age-and sex-specific mortality forecasts. The most recent SSA mortality forecasts were based on the best available technology at the time, which was a combination of linear extrapolation and qualitative judgments. Unfortunately, linear extrapolation excludes known risk factors and is inconsistent with long-standing demographic patterns such as the smoothness of age profiles. Modern statistical methods typically outperform even the best qualitative judgments in these contexts. We show how to use such methods here, enabling researchers to forecast using far more information, such as the known risk factors of smoking and obesity and known demographic patterns. Including this extra information makes a sub¬stantial difference: For example, by only improving mortality forecasting methods, we predict three fewer years of net surplus, $730 billion less in Social Security trust funds, and program costs that are 0.66% greater of projected taxable payroll compared to SSA projections by 2031. More important than specific numerical estimates are the advantages of transparency, replicability, reduction of uncertainty, and what may be the resulting lower vulnerability to the politicization of program forecasts. In addition, by offering with this paper software and detailed replication information, we hope to marshal the efforts of the research community to include ever more informative inputs and to continue to reduce the uncertainties in Social Security forecasts. This work builds on our article that provides forecasts of US Mortality rates (see King and Soneji, The Future of Death in America), a book developing improved methods for forecasting mortality (Girosi and King, Demographic Forecasting), all data we used (King and Soneji, replication data sets), and open source software that implements the methods (Girosi and King, YourCast).  Also available is a New York Times Op-Ed based on this work (King and Soneji, Social Security: It’s Worse Than You Think), and a replication data set for the Op-Ed (King and Soneji, replication data set).
Amelia II: A Program for Missing Data
Honaker, James, Gary King, and Matthew Blackwell. 2011. Amelia II: A Program for Missing Data. Journal of Statistical Software 45, no. 7: 1-47.Abstract
Amelia II is a complete R package for multiple imputation of missing data. The package implements a new expectation-maximization with bootstrapping algorithm that works faster, with larger numbers of variables, and is far easier to use, than various Markov chain Monte Carlo approaches, but gives essentially the same answers. The program also improves imputation models by allowing researchers to put Bayesian priors on individual cell values, thereby including a great deal of potentially valuable and extensive information. It also includes features to accurately impute cross-sectional datasets, individual time series, or sets of time series for different cross-sections. A full set of graphical diagnostics are also available. The program is easy to use, and the simplicity of the algorithm makes it far more robust; both a simple command line and extensive graphical user interface are included. Amelia II software web site
MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
Ho, Daniel E, Kosuke Imai, Gary King, and Elizabeth A Stuart. 2011. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. Journal of Statistical Software 42, no. 8. WebsiteAbstract
MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily ts into existing research practices since, after preprocessing data with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig.