Journal Article

The Balance-Sample Size Frontier in Matching Methods for Causal Inference
Gary King, Christopher Lucas, and Richard Nielsen. 2017. “The Balance-Sample Size Frontier in Matching Methods for Causal Inference.” American Journal of Political Science, 61, 2, Pp. 473-489.Abstract

We propose a simplified approach to matching for causal inference that simultaneously optimizes balance (similarity between the treated and control groups) and matched sample size. Existing approaches either fix the matched sample size and maximize balance or fix balance and maximize sample size, leaving analysts to settle for suboptimal solutions or attempt manual optimization by iteratively tweaking their matching method and rechecking balance. To jointly maximize balance and sample size, we introduce the matching frontier, the set of matching solutions with maximum possible balance for each sample size. Rather than iterating, researchers can choose matching solutions from the frontier for analysis in one step. We derive fast algorithms that calculate the matching frontier for several commonly used balance metrics. We demonstrate with analyses of the effect of sex on judging and job training programs that show how the methods we introduce can extract new knowledge from existing data sets.

Easy to use, open source, software is available here to implement all methods in the paper.

Comment on 'Estimating the Reproducibility of Psychological Science'
Daniel Gilbert, Gary King, Stephen Pettigrew, and Timothy Wilson. 2016. “Comment on 'Estimating the Reproducibility of Psychological Science'.” Science, 351, 6277, Pp. 1037a-1038a. Publisher's VersionAbstract

recent article by the Open Science Collaboration (a group of 270 coauthors) gained considerable academic and public attention due to its sensational conclusion that the replicability of psychological science is surprisingly low. Science magazine lauded this article as one of the top 10 scientific breakthroughs of the year across all fields of science, reports of which appeared on the front pages of newspapers worldwide. We show that OSC's article contains three major statistical errors and, when corrected, provides no evidence of a replication crisis. Indeed, the evidence is consistent with the opposite conclusion -- that the reproducibility of psychological science is quite high and, in fact, statistically indistinguishable from 100%. (Of course, that doesn't mean that the replicability is 100%, only that the evidence is insufficient to reliably estimate replicability.) The moral of the story is that meta-science must follow the rules of science.

Replication data is available in this dataverse archive. See also the full web site for this article and related materials, and one of the news articles written about it.

Effectiveness of the WHO Safe Childbirth Checklist Program in Reducing Severe Maternal, Fetal, and Newborn Harm: Study Protocol for a Matched-Pair, Cluster Randomized Controlled Trial in Uttar Pradesh, India
Katherine Semrau, Lisa R. Hirschhorn, Bhala Kodkany, Jonathan Spector, Danielle E. Tuller, Gary King, Stuart Lisptiz, Narender Sharma, Vinay P. Singh, Bharath Kumar, Neelam Dhingra-Kumar, Rebecca Firestone, Vishwajeet Kumar, and Atul Gawande. 2016. “Effectiveness of the WHO Safe Childbirth Checklist Program in Reducing Severe Maternal, Fetal, and Newborn Harm: Study Protocol for a Matched-Pair, Cluster Randomized Controlled Trial in Uttar Pradesh, India.” Trials, 576, 17, Pp. 1-10. Publisher's VersionAbstract

Background: Effective, scalable strategies to improve maternal, fetal, and newborn health and reduce preventable morbidity and mortality are urgently needed in low- and middle-income countries. Building on the successes of previous checklist-based programs, the World Health Organization (WHO) and partners led the development of the Safe Childbirth Checklist (SCC), a 28-item list of evidence-based practices linked with improved maternal and newborn outcomes. Pilot-testing of the Checklist in Southern India demonstrated dramatic improvements in adherence by health workers to essential childbirth-related practices (EBPs). The BetterBirth Trial seeks to measure the effectiveness of SCC impact on EBPs, deaths, and complications at a larger scale.

Methods: This matched-pair, cluster-randomized controlled, adaptive trial will be conducted in 120 facilities across 24 districts in Uttar Pradesh, India. Study sites, identified according to predefined eligibility criteria, were matched by measured covariates before randomization. The intervention, the SCC embedded in a quality improvement program, consists of leadership engagement, a 2-day educational launch of the SCC, and support through placement of a trained peer “coach” to provide supportive supervision and real-time data feedback over an 8-month period with decreasing intensity. A facility-based childbirth quality coordinator is trained and supported to drive sustained behavior change after the BetterBirth team leaves the facility. Study participants are birth attendants and women and their newborns who present to the study facilities for childbirth at 60 intervention and 60 control sites. The primary outcome is a composite measure including maternal death, maternal severe morbidity, stillbirth, and newborn death, occurring within 7 days after birth. The sample size (n = 171,964) was calculated to detect a 15% reduction in the primary outcome. Adherence by health workers to EBPs will be measured in a subset of births (n = 6000). The trial will be conducted in close collaboration with key partners including the Governments of India and Uttar Pradesh, the World Health Organization, an expert Scientific Advisory Committee, an experienced local implementing organization (Population Services International, PSI), and frontline facility leaders and workers

Discussion: If effective, the WHO Safe Childbirth Checklist program could be a powerful health facilitystrengthening intervention to improve quality of care and reduce preventable harm to women and newborns, with millions of potential beneficiaries.

Trial registration: BetterBirth Study Protocol dated: 13 February 2014; ClinicalTrials.gov: NCT02148952; Universal Trial Number: U1111-1131-5647. 

Scoring Social Security Proposals: Response from Kashin, King, and Soneji
Konstantin Kashin, Gary King, and Samir Soneji. 2016. “Scoring Social Security Proposals: Response from Kashin, King, and Soneji.” Journal of Economic Perspectives, 30, 2, Pp. 245-248. Publisher's VersionAbstract

This is a response to Peter Diamond's comment on a two paragraph passage in our article, Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 2, 29: 239-258. 

Automating Open Science for Big Data
Merce Crosas, Gary King, James Honaker, and Latanya Sweeney. 2015. “Automating Open Science for Big Data.” ANNALS of the American Academy of Political and Social Science, 659, 1, Pp. 260-273. Publisher's VersionAbstract

The vast majority of social science research presently uses small (MB or GB scale) data sets. These fixed-scale data sets are commonly downloaded to the researcher's computer where the analysis is performed locally, and are often shared and cited with well-established technologies, such as the Dataverse Project (see Dataverse.org), to support the published results.  The trend towards Big Data -- including large scale streaming data -- is starting to transform research and has the potential to impact policy-making and our understanding of the social, economic, and political problems that affect human societies.  However, this research poses new challenges in execution, accountability, preservation, reuse, and reproducibility. Downloading these data sets to a researcher’s computer is infeasible or not practical; hence, analyses take place in the cloud, require unusual expertise, and benefit from collaborative teamwork and novel tool development. The advantage of these data sets in how informative they are also means that they are much more likely to contain highly sensitive personally identifiable information. In this paper, we discuss solutions to these new challenges so that the social sciences can realize the potential of Big Data.

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Political Analysis, 23, 3, Pp. 336-362. Publisher's VersionAbstract

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, other government programs, industry decision making, and the evidence base of many scholarly articles. Because SSA makes public little replication information and uses qualitative and antiquated statistical forecasting methods, fully independent alternative forecasts (and the ability to score policy proposals to change the system) are nonexistent. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else --- until a companion paper to this one (King, Kashin, and Soneji, 2015a). We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors are all in the same potentially dangerous direction, making the Social Security Trust Funds look healthier than they actually are. We extend and then attempt to explain these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security, SSA's actuaries hunkered down trying hard to insulate their forecasts from strong political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led the actuaries to miss important changes in the input data. Retirees began living longer lives and drawing benefits longer than predicted by simple extrapolations. We also show that the solution to this problem involves SSA or Congress implementing in government two of the central projects of political science over the last quarter century: [1] promoting transparency in data and methods and [2] replacing with formal statistical models large numbers of qualitative decisions too complex for unaided humans to make optimally.

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It
Gary King and Margaret E. Roberts. 2015. “How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It.” Political Analysis, 23, 2, Pp. 159–179. Publisher's VersionAbstract

"Robust standard errors" are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, with or without robust standard errors, will still bias estimators of all but a few quantities of interest. The resulting cavernous gap between theory and practice suggests that considerable gains in applied statistics may be possible. We seek to help researchers realize these gains via a more productive way to understand and use robust standard errors; a new general and easier-to-use "generalized information matrix test" statistic that can formally assess misspecification (based on differences between robust and classical variance estimates); and practical illustrations via simulations and real examples from published research. How robust standard errors are used needs to change, but instead of jettisoning this popular tool we show how to use it to provide effective clues about model misspecification, likely biases, and a guide to considerably more reliable, and defensible, inferences. Accompanying this article is open source software that implements the methods we describe. 

Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 29, 2, Pp. 239-258. Publisher's VersionAbstract

The financial stability of four of the five largest U.S. federal entitlement programs, strategic decision making in several industries, and many academic publications all depend on the accuracy of demographic and financial forecasts made by the Social Security Administration (SSA). Although the SSA has performed these forecasts since 1942, no systematic and comprehensive evaluation of their accuracy has ever been published by SSA or anyone else. The absence of a systematic evaluation of forecasts is a concern because the SSA relies on informal procedures that are potentially subject to inadvertent biases and does not share with the public, the scientific community, or other parts of SSA sufficient data or information necessary to replicate or improve its forecasts. These issues result in SSA holding a monopoly position in policy debates as the sole supplier of fully independent forecasts and evaluations of proposals to change Social Security. To assist with the forecasting evaluation problem, we collect all SSA forecasts for years that have passed and discover error patterns that could have been---and could now be---used to improve future forecasts. Specifically, we find that after 2000, SSA forecasting errors grew considerably larger and most of these errors made the Social Security Trust Funds look more financially secure than they actually were. In addition, SSA's reported uncertainty intervals are overconfident and increasingly so after 2000. We discuss the implications of these systematic forecasting biases for public policy.

Aristides A. N. Patrinos, Hannah Bayer, Paul W. Glimcher, Steven Koonin, Miyoung Chun, and Gary King. 3/19/2015. “Urban observatories: City data can inform decision theory.” Nature, 519, Pp. 291. Publisher's VersionAbstract

Data are being collected on human behaviour in cities such as London, New York, Singapore and Shanghai, with a view to meeting city dwellers' needs more effectively. Incorporating decision-making theory into analyses of the data from these 'urban observatories' would yield further valuable information.

Restructuring the Social Sciences: Reflections from Harvard's Institute for Quantitative Social Science
Gary King. 2014. “Restructuring the Social Sciences: Reflections from Harvard's Institute for Quantitative Social Science.” PS: Political Science and Politics, 47, 1, Pp. 165-172. Cambridge University Press versionAbstract

The social sciences are undergoing a dramatic transformation from studying problems to solving them; from making do with a small number of sparse data sets to analyzing increasing quantities of diverse, highly informative data; from isolated scholars toiling away on their own to larger scale, collaborative, interdisciplinary, lab-style research teams; and from a purely academic pursuit to having a major impact on the world. To facilitate these important developments, universities, funding agencies, and governments need to shore up and adapt the infrastructure that supports social science research. We discuss some of these developments here, as well as a new type of organization we created at Harvard to help encourage them -- the Institute for Quantitative Social Science.  An increasing number of universities are beginning efforts to respond with similar institutions. This paper provides some suggestions for how individual universities might respond and how we might work together to advance social science more generally.