Working Paper

Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season
David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season”.Abstract
Last year was difficult for Google Flu Trends (GFT). In early 2013, Nature reported that GFT was estimating more than double the percentage of doctor visits for influenza like illness than the Centers for Disease Control and Prevention s (CDC) sentinel reports during the 2012 2013 flu season (1). Given that GFT was designed to forecast upcoming CDC reports, this was a problematic finding. In March 2014, our report in Science found that the overestimation problem in GFT was also present in the 2011 2012 flu season (2). The report also found strong evidence of autocorrelation and seasonality in the GFT errors, and presented evidence that the issues were likely, at least in part, due to modifications made by Google s search algorithm and the decision by GFT engineers not to use previous CDC reports or seasonality estimates in their models what the article labeled algorithm dynamics and big data hubris respectively. Moreover, the report and the supporting online materials detailed how difficult/impossible it is to replicate the GFT results, undermining independent efforts to explore the source of GFT errors and formulate improvements.

See our original paper, "The Parable of Google Flu: Traps in Big Data Analysis"
Comparative Effectiveness of Matching Methods for Causal Inference
Gary King, Richard Nielsen, Carter Coberley, James E. Pope, and Aaron Wells. 2011. “Comparative Effectiveness of Matching Methods for Causal Inference”.Abstract

Matching is an increasingly popular method of causal inference in observational data, but following methodological best practices has proven difficult for applied researchers. We address this problem by providing a simple graphical approach for choosing among the numerous possible matching solutions generated by three methods: the venerable ``Mahalanobis Distance Matching'' (MDM), the commonly used ``Propensity Score Matching'' (PSM), and a newer approach called ``Coarsened Exact Matching'' (CEM). In the process of using our approach, we also discover that PSM often approximates random matching, both in many real applications and in data simulated by the processes that fit PSM theory. Moreover, contrary to conventional wisdom, random matching is not benign: it (and thus PSM) can often degrade inferences relative to not matching at all. We find that MDM and CEM do not have this problem, and in practice CEM usually outperforms the other two approaches. However, with our comparative graphical approach and easy-to-follow procedures, focus can be on choosing a matching solution for a particular application, which is what may improve inferences, rather than the particular method used to generate it.

Please see our follow up paper on this topic: Why Propensity Scores Should Not Be Used for Matching.

How Not to Lie Without Statistics
Gary King and Eleanor Neff Powell. 2008. “How Not to Lie Without Statistics”.Abstract
We highlight, and suggest ways to avoid, a large number of common misunderstandings in the literature about best practices in qualitative research. We discuss these issues in four areas: theory and data, qualitative and quantitative strategies, causation and explanation, and selection bias. Some of the misunderstandings involve incendiary debates within our discipline that are readily resolved either directly or with results known in research areas that happen to be unknown to political scientists. Many of these misunderstandings can also be found in quantitative research, often with different names, and some of which can be fixed with reference to ideas better understood in the qualitative methods literature. Our goal is to improve the ability of quantitatively and qualitatively oriented scholars to enjoy the advantages of insights from both areas. Thus, throughout, we attempt to construct specific practical guidelines that can be used to improve actual qualitative research designs, not only the qualitative methods literatures that talk about them.
  • «
  • 2 of 2
  •