Publications by Year: Working Paper

Working Paper
Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Randomized Experiments

A vast literature demonstrates that voters around the world who benefit from their governments' discretionary spending cast ballots for the incumbent party in larger proportions than those not receiving funds. But contrary to most theories of political accountability, the evidence seems to indicate that voters also reward incumbent parties for implementing ``programmatic'' spending legislation, over which incumbents have no discretion, and even when passed with support from all major parties. Why voters would attribute responsibility when none exists is unclear, as is why minority party legislators would approve of legislation that will cost them votes. We address this puzzle with one of the largest randomized social experiments ever, resulting in clear rejection of the claim, at least in this context, that programmatic policies greatly increase voter support for incumbents. We also reanalyze the study cited as claiming the strongest support for the electoral effects of programmatic policies, which is also a very large scale randomized experiment. We show that its key results vanish after correcting either a simple coding error affecting only two observations or highly unconventional data analysis procedures (or both). We discuss how these consistent empirical results from the only two probative experiments on this question may be reconciled with several observational and theoretical studies touching on similar questions in other contexts. 

Paper Supplementary Appendix
How Human Subjects Research Rules Mislead You and Your University, and What to Do About it

Universities require faculty and students planning research involving human subjects to pass formal certification tests and then submit research plans for prior approval. Those who diligently take the tests may better understand certain important legal requirements but, at the same time, are often misled into thinking they can apply these rules to their own work which, in fact, they are not permitted to do. They will also be missing many other legal requirements not mentioned in their training but which govern their behaviors. Finally, the training leaves them likely to completely misunderstand the essentially political situation they find themselves in. The resulting risks to their universities, collaborators, and careers may be catastrophic, in addition to contributing to the more common ordinary frustrations of researchers with the system. To avoid these problems, faculty and students conducting research about and for the public need to understand that they are public figures, to whom different rules apply, ones that political scientists have long studied. University administrators (and faculty in their part-time roles as administrators) need to reorient their perspectives as well. University research compliance bureaucracies have grown, in well-meaning but sometimes unproductive ways that are not required by federal laws or guidelines. We offer advice to faculty and students for how to deal with the system as it exists now, and suggestions for changes in university research compliance bureaucracies, that should benefit faculty, students, staff, university budgets, and our research subjects.

PSI (Ψ): a Private data Sharing Interface
Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman, and Salil Vadhan. Working Paper. “PSI (Ψ): a Private data Sharing Interface”. Publisher's Version Abstract

We provide an overview of PSI ("a Private data Sharing Interface"), a system we are developing to enable researchers in the social sciences and other fields to share and explore privacy-sensitive datasets with the strong privacy protections of differential privacy.

Why Propensity Scores Should Not Be Used for Matching
Gary King and Richard Nielsen. Working Paper. “Why Propensity Scores Should Not Be Used for Matching”. Abstract

We show that propensity score matching (PSM), an enormously popular method of preprocessing data for causal inference, often accomplishes the opposite of its intended goal -- increasing imbalance, inefficiency, model dependence, and bias. PSM supposedly makes it easier to find matches by projecting a large number of covariates to a scalar propensity score and applying a single model to produce an unbiased estimate. However, in observational analysis the data generation process is rarely known and so users typically try many models before choosing one to present. The weakness of PSM comes from its attempts to approximate a completely randomized experiment, rather than, as with other matching methods, a more efficient fully blocked randomized experiment. PSM is thus uniquely blind to the often large portion of imbalance that can be eliminated by approximating full blocking with other matching methods. Moreover, in data balanced enough to approximate complete randomization, either to begin with or after pruning some observations, PSM approximates random matching which, we show, increases imbalance even relative to the original data. Although these results suggest that researchers replace PSM with one of the other available methods when performing matching, propensity scores have many other productive uses.

Paper Supplementary Appendix