Writings

2010
A Method of Automated Nonparametric Content Analysis for Social Science
Daniel Hopkins and Gary King. 2010. “A Method of Automated Nonparametric Content Analysis for Social Science.” American Journal of Political Science, 1, 54: 229–247. Abstract

The increasing availability of digitized text presents enormous opportunities for social scientists. Yet hand coding many blogs, speeches, government records, newspapers, or other sources of unstructured text is infeasible. Although computer scientists have methods for automated content analysis, most are optimized to classify individual documents, whereas social scientists instead want generalizations about the population of documents, such as the proportion in a given category. Unfortunately, even a method with a high percent of individual documents correctly classified can be hugely biased when estimating category proportions. By directly optimizing for this social science goal, we develop a method that gives approximately unbiased estimates of category proportions even when the optimal classifier performs poorly. We illustrate with diverse data sets, including the daily expressed opinions of thousands of people about the U.S. presidency. We also make available software that implements our methods and large corpora of text for further analysis.

This article led to the formation of Crimson Hexagon

Article
ReadMe: Software for Automated Content Analysis
Gary King, Matthew Knowles, and Steven Melendez. 2010. “ReadMe: Software for Automated Content Analysis”. Publisher's Version Abstract
This program will read and analyze a large set of text documents and report on the proportion of documents in each of a set of given categories.
What to do About Missing Values in Time Series Cross-Section Data
James Honaker and Gary King. 2010. “What to do About Missing Values in Time Series Cross-Section Data.” American Journal of Political Science, 3, 54: 561-581. Publisher's Version Abstract

Applications of modern methods for analyzing data with missing values, based primarily on multiple imputation, have in the last half-decade become common in American politics and political behavior. Scholars in these fields have thus increasingly avoided the biases and inefficiencies caused by ad hoc methods like listwise deletion and best guess imputation. However, researchers in much of comparative politics and international relations, and others with similar data, have been unable to do the same because the best available imputation methods work poorly with the time-series cross-section data structures common in these fields. We attempt to rectify this situation. First, we build a multiple imputation model that allows smooth time trends, shifts across cross-sectional units, and correlations over time and space, resulting in far more accurate imputations. Second, we build nonignorable missingness models by enabling analysts to incorporate knowledge from area studies experts via priors on individual missing cell values, rather than on difficult-to-interpret model parameters. Third, since these tasks could not be accomplished within existing imputation algorithms, in that they cannot handle as many variables as needed even in the simpler cross-sectional data for which they were designed, we also develop a new algorithm that substantially expands the range of computationally feasible data types and sizes for which multiple imputation can be used. These developments also made it possible to implement the methods introduced here in freely available open source software that is considerably more reliable than existing strategies.

Article
2009
AMELIA II: A Program for Missing Data
James Honaker, Gary King, and Matthew Blackwell. 2009. “AMELIA II: A Program for Missing Data”. Publisher's Version Abstract
This program multiply imputes missing data in cross-sectional, time series, and time series cross-sectional data sets. It includes a Windows version (no knowledge of R required), and a version that works with R either from the command line or via a GUI.
CEM: Coarsened Exact Matching in Stata
Matthew Blackwell, Stefano Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Coarsened Exact Matching in Stata.” The Stata Journal, 9: 524–546. Abstract
In this article, we introduce a Stata implementation of coarsened exact matching, a new method for improving the estimation of causal effects by reducing imbalance in covariates between treated and control groups. Coarsened exact matching is faster, is easier to use and understand, requires fewer assumptions, is more easily automated, and possesses more attractive statistical properties for many applications than do existing matching methods. In coarsened exact matching, users temporarily coarsen their data, exact match on these coarsened data, and then run their analysis on the uncoarsened, matched data. Coarsened exact matching bounds the degree of model dependence and causal effect estimation error by ex ante user choice, is monotonic imbalance bounding (so that reducing the maximum imbalance on one variable has no effect on others), does not require a separate procedure to restrict data to common support, meets the congruence principle, is approximately invariant to measurement error, balances all nonlinearities and interactions in sample (i.e., not merely in expectation), and works with multiply imputed datasets. Other matching methods inherit many of the coarsened exact matching method’s properties when applied to further match data preprocessed by coarsened exact matching. The cem command implements the coarsened exact matching algorithm in Stata.
Article
CEM: Coarsened Exact Matching Software
Stefano Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Coarsened Exact Matching Software”. Publisher's Version
CEM: Software for Coarsened Exact Matching
Stefano M Iacus, Gary King, and Giuseppe Porro. 2009. “CEM: Software for Coarsened Exact Matching.” Journal of Statistical Software, 30. Publisher's Version Abstract

This program is designed to improve causal inference via a method of matching that is widely applicable in observational data and easy to understand and use (if you understand how to draw a histogram, you will understand this method). The program implements the coarsened exact matching (CEM) algorithm, described below. CEM may be used alone or in combination with any existing matching method. This algorithm, and its statistical properties, are described in Iacus, King, and Porro (2008).

Article
The Changing Evidence Base of Social Science Research
Gary King. 2009. “The Changing Evidence Base of Social Science Research.” In The Future of Political Science: 100 Perspectives, edited by Gary King, Kay Schlozman, and Norman Nie. New York: Routledge Press. Abstract

This (two-page) article argues that the evidence base of political science and the related social sciences are beginning an underappreciated but historic change.

Chapter PDF
Computational Social Science
David Lazer, Alex Pentland, Lada Adamic, Sinan Aral, Albert-Laszlo Barabasi, Devon Brewer, Nicholas Christakis, Noshir Contractor, James Fowler, Myron Gutmann, Tony Jebara, Gary King, Michael Macy, Deb Roy, and Marshall Van Alstyne. 2009. “Computational Social Science.” Science, 323: 721-723. Abstract

A field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individual and group behaviors.

Article
Gary King and Langche Zeng. 2009. “Empirical versus Theoretical Claims about Extreme Counterfactuals: A Response.” Political Analysis, 17: 107-112. Abstract

In response to the data-based measures of model dependence proposed in King and Zeng (2006), Sambanis and Michaelides (2008) propose alternative measures that rely upon assumptions untestable in observational data. If these assumptions are correct, then their measures are appropriate and ours, based solely on the empirical data, may be too conservative. If instead and as is usually the case, the researcher is not certain of the precise functional form of the data generating process, the distribution from which the data are drawn, and the applicability of these modeling assumptions to new counterfactuals, then the data-based measures proposed in King and Zeng (2006) are much preferred. After all, the point of model dependence checks is to verify empirically, rather than to stipulate by assumption, the effects of modeling assumptions on counterfactual inferences.

The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation
A basic feature of many field experiments is that investigators are only able to randomize clusters of individuals–-such as households, communities, firms, medical practices, schools, or classrooms–-even when the individual is the unit of interest. To recoup the resulting efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, many other studies avoid pairing, in part because of claims in the literature, echoed by clinical trials standards organizations, that this matched-pair, cluster-randomization design has serious problems. We argue that all such claims are unfounded. We also prove that the estimator recommended for this design in the literature is unbiased only in situations when matching is unnecessary and and its standard error is also invalid. To overcome this problem without modeling assumptions, we develop a simple design-based estimator with much improved statistical properties. We also propose a model-based approach that includes some of the benefits of our design-based estimator as well as the estimator in the literature. Our methods also address individual-level noncompliance, which is common in applications but not allowed for in most existing methods. We show that from the perspective of bias, efficiency, power, robustness, or research costs, and in large or small samples, pairing should be used in cluster-randomized experiments whenever feasible and failing to do so is equivalent to discarding a considerable fraction of one’s data. We develop these techniques in the context of a randomized evaluation we are conducting of the Mexican Universal Health Insurance Program.
Article
The Future of Political Science: 100 Perspectives
Gary King, Kay Schlozman, and Norman Nie. 2009. The Future of Political Science: 100 Perspectives. New York: Routledge Press.
Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder
Kosuke Imai, Gary King, and Clayton Nall. 2009. “Matched Pairs and the Future of Cluster-Randomized Experiments: A Rejoinder.” Statistical Science, 24: 64–72. Abstract

A basic feature of many field experiments is that investigators are only able to randomize clusters of individuals–-such as households, communities, firms, medical practices, schools, or classrooms–-even when the individual is the unit of interest. To recoup the resulting efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, many other studies avoid pairing, in part because of claims in the literature, echoed by clinical trials standards organizations, that this matched-pair, cluster-randomization design has serious problems. We argue that all such claims are unfounded. We also prove that the estimator recommended for this design in the literature is unbiased only in situations when matching is unnecessary and and its standard error is also invalid. To overcome this problem without modeling assumptions, we develop a simple design-based estimator with much improved statistical properties. We also propose a model-based approach that includes some of the benefits of our design-based estimator as well as the estimator in the literature. Our methods also address individual-level noncompliance, which is common in applications but not allowed for in most existing methods. We show that from the perspective of bias, efficiency, power, robustness, or research costs, and in large or small samples, pairing should be used in cluster-randomized experiments whenever feasible and failing to do so is equivalent to discarding a considerable fraction of one’s data. We develop these techniques in the context of a randomized evaluation we are conducting of the Mexican Universal Health Insurance Program.

Article
From Preserving the Past to Preserving the Future: The Data-PASS Project and the Challenges of Preserving Digital Social Science Data
Myron P Gutmann, Mark Abrahamson, Margaret O Adams, Micah Altman, Caroline Arms, Kenneth Bollen, Michael Carlson, Jonathan Crabtree, Darrell Donakowski, Gary King, Jaret Lyle, Marc Maynard, Amy Pienta, Richard Rockwell, Lois Rocms-Ferrara, and Copeland H Young. 2009. “From Preserving the Past to Preserving the Future: The Data-PASS Project and the Challenges of Preserving Digital Social Science Data.” Library Trends, 57: 315–337. Abstract

Social science data are an unusual part of the past, present, and future of digital preservation. They are both an unqualified success, due to long-lived and sustainable archival organizations, and in need of further development because not all digital content is being preserved. This article is about the Data Preservation Alliance for Social Sciences (Data-PASS), a project supported by the National Digital Information Infrastructure and Preservation Program (NDIIPP), which is a partnership of five major U.S. social science data archives. Broadly speaking, Data-PASS has the goal of ensuring that at-risk social science data are identified, acquired, and preserved, and that we have a future-oriented organization that could collaborate on those preservation tasks for the future. Throughout the life of the Data-PASS project we have worked to identify digital materials that have never been systematically archived, and to appraise and acquire them. As the project has progressed, however, it has increasingly turned its attention from identifying and acquiring legacy and at-risk social science data to identifying on going and future research projects that will produce data. This article is about the project's history, with an emphasis on the issues that underlay the transition from looking backward to looking forward.

Article
Preserving Quantitative Research-Elicited Data for Longitudinal Analysis.  New Developments in Archiving Survey Data in the U.S.
Mark Abrahamson, Kenneth A Bollen, Myron P Gutmann, Gary King, and Amy Pienta. 2009. “Preserving Quantitative Research-Elicited Data for Longitudinal Analysis. New Developments in Archiving Survey Data in the U.S..” Historical Social Research, 3, 34: 51-59. Abstract

Social science data collected in the United States, both historically and at present, have often not been placed in any public archive -- even when the data collection was supported by government grants. The availability of the data for future use is, therefore, in jeopardy. Enforcing archiving norms may be the only way to increase data preservation and availability in the future.

Article
Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme
Gary King, Emmanuela Gakidou, Kosuke Imai, Jason Lakin, Ryan T Moore, Clayton Nall, Nirmala Ravishankar, Manett Vargas, Martha María Téllez-Rojo, Juan Eugenio Hernández Ávila, Mauricio Hernández Ávila, and Héctor Hernández Llamas. 2009. “Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme.” The Lancet, 373: 1447-1454. Abstract

Background: We assessed aspects of Seguro Popular, a programme aimed to deliver health insurance, regular and preventive medical care, medicines, and health facilities to 50 million uninsured Mexicans. Methods: We randomly assigned treatment within 74 matched pairs of health clusters–-i.e., health facility catchment areas–-representing 118,569 households in seven Mexican states, and measured outcomes in a 2005 baseline survey (August 2005, to September 2005) and follow-up survey 10 months later (July 2006, to August 2006) in 50 pairs (n=32 515). The treatment consisted of encouragement to enrol in a health-insurance programme and upgraded medical facilities. Participant states also received funds to improve health facilities and to provide medications for services in treated clusters. We estimated intention to treat and complier average causal effects non-parametrically. Findings: Intention-to-treat estimates indicated a 23% reduction from baseline in catastrophic expenditures (1·9% points and 95% CI 0·14-3·66). The effect in poor households was 3·0% points (0·46-5·54) and in experimental compliers was 6·5% points (1·65-11·28), 30% and 59% reductions, respectively. The intention-to-treat effect on health spending in poor households was 426 pesos (39-812), and the complier average causal effect was 915 pesos (147-1684). Contrary to expectations and previous observational research, we found no effects on medication spending, health outcomes, or utilisation. Interpretation: Programme resources reached the poor. However, the programme did not show some other effects, possibly due to the short duration of treatment (10 months). Although Seguro Popular seems to be successful at this early stage, further experiments and follow-up studies, with longer assessment periods, are needed to ascertain the long-term effects of the programme.

Article
Replication Data for: Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme
Gary King, Emmanuela Gakidou, Kosuke Imai, Jason Lakin, Ryan T Moore, Clayton Nall, Nirmala Ravishankar, Manett Vargas, Martha María Téllez-Rojo, Juan Eugenio Hernández Ávila, Mauricio Hernández Ávila, and Héctor Hernández Llamas. 2009. “Replication Data for: Public Policy for the Poor? A Randomised Assessment of the Mexican Universal Health Insurance Programme”. Publisher's Version
2008
Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press. Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

The Effects of International Monetary Fund Loans on Health Outcomes
Megan Murray and Gary King. 2008. “The Effects of International Monetary Fund Loans on Health Outcomes.” PLoS Medicine, 5. Abstract
A "Perspective" article that discusses an article by David Stuckler and colleagues showing that, in Eastern European and former Soviet countries, participation in International Monetary Fund economic programs have been associated with higher mortality rates from tuberculosis.
Article
The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry
Bernard Grofman and Gary King. 2008. “The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry.” Election Law Journal, 1, 6: 2-35. Abstract

While the Supreme Court in Bandemer v. Davis found partisan gerrymandering to be justiciable, no challenged redistricting plan in the subsequent 20 years has been held unconstitutional on partisan grounds. Then, in Vieth v. Jubilerer, five justices concluded that some standard might be adopted in a future case, if a manageable rule could be found. When gerrymandering next came before the Court, in LULAC v. Perry, we along with our colleagues filed an Amicus Brief (King et al., 2005), proposing the test be based in part on the partisan symmetry standard. Although the issue was not resolved, our proposal was discussed and positively evaluated in three of the opinions, including the plurality judgment, and for the first time for any proposal the Court gave a clear indication that a future legal test for partisan gerrymandering will likely include partisan symmetry. A majority of Justices now appear to endorse the view that the measurement of partisan symmetry may be used in partisan gerrymandering claims as “a helpful (though certainly not talismanic) tool” (Justice Stevens, joined by Justice Breyer), provided one recognizes that “asymmetry alone is not a reliable measure of unconstitutional partisanship” and possibly that the standard would be applied only after at least one election has been held under the redistricting plan at issue (Justice Kennedy, joined by Justices Souter and Ginsburg). We use this essay to respond to the request of Justices Souter and Ginsburg that “further attention … be devoted to the administrability of such a criterion at all levels of redistricting and its review.” Building on our previous scholarly work, our Amicus Brief, the observations of these five Justices, and a supporting consensus in the academic literature, we offer here a social science perspective on the conceptualization and measurement of partisan gerrymandering and the development of relevant legal rules based on what is effectively the Supreme Court’s open invitation to lower courts to revisit these issues in the light of LULAC v. Perry.

Brief PDF Article

Pages