International Conflict

Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design
Despite widespread recognition that aggregated summary statistics on international conflict and cooperation miss most of the complex interactions among nations, the vast majority of scholars continue to employ annual, quarterly, or occasionally monthly observations. Daily events data, coded from some of the huge volume of news stories produced by journalists, have not been used much for the last two decades. We offer some reason to change this practice, which we feel should lead to considerably increased use of these data. We address advances in event categorization schemes and software programs that automatically produce data by "reading" news stories without human coders. We design a method that makes it feasible for the first time to evaluate these programs when they are applied in areas with the particular characteristics of international conflict and cooperation data, namely event categories with highly unequal prevalences, and where rare events (such as highly conflictual actions) are of special interest. We use this rare events design to evaluate one existing program, and find it to be as good as trained human coders, but obviously far less expensive to use. For large scale data collections, the program dominates human coding. Our new evaluative method should be of use in international relations, as well as more generally in the field of computational linguistics, for evaluating other automated information extraction tools. We believe that the data created by programs similar to the one we evaluated should see dramatically increased use in international relations research. To facilitate this process, we are releasing with this article data on 4.3 million international events, covering the entire world for the last decade.
Event Count Models for International Relations: Generalizations and Applications
Gary King. 1989. “Event Count Models for International Relations: Generalizations and Applications.” International Studies Quarterly, 33: 123–147. Abstract
International relations theorists tend to think in terms of continuous processes. Yet we observe only discrete events, such as wars or alliances, and summarize them in terms of the frequency of occurrence. As such, most empirical analyses in international relations are based on event count variables. Unfortunately, analysts have generally relied on statistical techniques that were designed for continuous data. This mismatch between theory and method has caused bias, inefficiency, and numerous inconsistencies in both theoretical arguments and empirical findings throughout the literature. This article develops a much more powerful approach to modeling and statistical analysis based explicity on estimating continuous processes from observed event counts. To demonstrate this class of models, I present several new statistical techniques developed for and applied to different areas of international relations. These include the influence of international alliances on the outbreak of war, the contagious process of multilateral economic sanctions, and reciprocity in superpower conflict. I also show how one can extract considerably more information from existing data and relate substantive theory to empirical analyses more explicitly with this approach.
Improving Quantitative Studies of International Conflict: A Conjecture
Nathaniel Beck, Gary King, and Langche Zeng. 2000. “Improving Quantitative Studies of International Conflict: A Conjecture.” American Political Science Review, 94: 21–36. Abstract
We address a well-known but infrequently discussed problem in the quantitative study of international conflict: Despite immense data collections, prestigious journals, and sophisticated analyses, empirical findings in the literature on international conflict are often unsatisfying. Many statistical results change from article to article and specification to specification. Accurate forecasts are nonexistant. In this article we offer a conjecture about one source of this problem: The causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but they are large, stable, and replicable wherever the ex ante probability of conflict is large. This simple idea has an unexpectedly rich array of observable implications, all consistent with the literature. We directly test our conjecture by formulating a statistical model that includes critical features. Our approach, a version of a "neural network" model, uncovers some interesting structural features of international conflict, and as one evaluative measure, forecasts substantially better than any previous effort. Moreover, this improvement comes at little cost, and it is easy to evaluate whether the model is a statistical improvement over the simpler models commonly used.
Proper Nouns and Methodological Propriety: Pooling Dyads in International Relations Data
Gary King. 2001. “Proper Nouns and Methodological Propriety: Pooling Dyads in International Relations Data.” International Organization, 55: 497–507. Abstract
The intellectual stakes at issue in this symposium are very high: Green, Kim, and Yoon (2000 and hereinafter GKY) apply their proposed methodological prescriptions and conclude that they key findings in the field is wrong and democracy "has no effect on militarized disputes." GKY are mainly interested in convincing scholars about their methodological points and see themselves as having no stake in the resulting substantive conclusions. However, their methodological points are also high stakes claims: if correct, the vast majority of statistical analyses of military conflict ever conducted would be invalidated. GKY say they "make no attempt to break new ground statistically," but, as we will see, this both understates their methodological contribution to the field and misses some unique features of their application and data in international relations. On the ltter, GKY’s critics are united: Oneal and Russett (2000) conclude that GKY’s method "produces distorted results," and show even in GKY’s framework how democracy’s effect can be reinstated. Beck and Katz (2000) are even more unambiguous: "GKY’s conclusion, in table 3, that variables such as democracy have no pacific impact, is simply nonsense...GKY’s (methodological) NEVER a good idea." My given task is to sort out and clarify these conflicting claims and counterclaims. The procedure I followed was to engage in extensive discussions with the participants that included joint reanalyses provoked by our discussions and passing computer program code (mostly with Monte Carlo simulations) back and forth to ensure we were all talking about the same methods and agreed with the factual results. I learned a great deal from this process and believe that the positions of the participants are now a lot closer than it may seem from their written statements. Indeed, I believe that all the participants now agree with what I have written here, even though they would each have different emphases (and although my believing there is agreement is not the same as there actually being agreement!).
Explaining Rare Events in International Relations
Gary King and Langche Zeng. 2001. “Explaining Rare Events in International Relations.” International Organization, 55: 693–715. Abstract
Some of the most important phenomena in international conflict are coded s "rare events data," binary dependent variables with dozens to thousands of times fewer events, such as wars, coups, etc., than "nonevents". Unfortunately, rare events data are difficult to explain and predict, a problem that seems to have at least two sources. First, and most importantly, the data collection strategies used in international conflict are grossly inefficient. The fear of collecting data with too few events has led to data collections with huge numbers of observations but relatively few, and poorly measured, explanatory variables. As it turns out, more efficient sampling designs exist for making valid inferences, such as sampling all available events (e.g., wars) and a tiny fraction of non-events (peace). This enables scholars to save as much as 99% of their (non-fixed) data collection costs, or to collect much more meaningful explanatory variables. Second, logistic regression, and other commonly used statistical procedures, can underestimate the probability of rare events. We introduce some corrections that outperform existing methods and change the estimates of absolute and relative risks by as much as some estimated effects reported in the literature. We also provide easy-to-use methods and software that link these two results, enabling both types of corrections to work simultaneously.
Rethinking Human Security
Gary King and Christopher J.L. Murray. 2002. “Rethinking Human Security.” Political Science Quarterly, 116: 585–610. Abstract

In the last two decades, the international community has begun to conclude that attempts to ensure the territorial security of nation-states through military power have failed to improve the human condition. Despite astronomical levels of military spending, deaths due to military conflict have not declined. Moreover, even when the borders of some states are secure from foreign threats, the people within those states do not necessarily have freedom from crime, enough food, proper health care, education, or political freedom. In response to these developments, the international community has gradually moved to combine economic development with military security and other basic human rights to form a new concept of "human security". Unfortunately, by common assent the concept lacks both a clear definition, consistent with the aims of the international community, and any agreed upon measure of it. In this paper, we propose a simple, rigorous, and measurable definition of human security: the expected number of years of future life spent outside the state of "generalized poverty". Generalized poverty occurs when an individual falls below the threshold in any key domain of human well-being. We consider improvements in data collection and methods of forecasting that are necessary to measure human security and then introduce an agenda for research and action to enhance human security that follows logically in the areas of risk assessment, prevention, protection, and compensation.

Armed Conflict as a Public Health Problem
Christopher JL Murray, Gary King, Alan D Lopez, Niels Tomijima, and Etienne Krug. 2002. “Armed Conflict as a Public Health Problem.” BMJ (British Medical Journal), 324: 346–349. Abstract
Armed conflict is a major cause of injury and death worldwide, but we need much better methods of quantification before we can accurately assess its effect. Armed conflict between warring states and groups within states have been major causes of ill health and mortality for most of human history. Conflict obviously causes deaths and injuries on the battlefield, but also health consequences from the displacement of populations, the breakdown of health and social services, and the heightened risk of disease transmission. Despite the size of the health consequences, military conflict has not received the same attention from public health research and policy as many other causes of illness and death. In contrast, political scientists have long studied the causes of war but have primarily been interested in the decision of elite groups to go to war, not in human death and misery. We review the limited knowledge on the health consequences of conflict, suggest ways to improve measurement, and discuss the potential for risk assessment and for preventing and ameliorating the consequences of conflict.
Improving Forecasts of State Failure
Gary King and Langche Zeng. 2001. “Improving Forecasts of State Failure.” World Politics, 53: 623–658. Abstract

We offer the first independent scholarly evaluation of the claims, forecasts, and causal inferences of the State Failure Task Force and their efforts to forecast when states will fail. State failure refers to the collapse of the authority of the central government to impose order, as in civil wars, revolutionary wars, genocides, politicides, and adverse or disruptive regime transitions. This task force, set up at the behest of Vice President Gore in 1994, has been led by a group of distinguished academics working as consultants to the U.S. Central Intelligence Agency. State Failure Task Force reports and publications have received attention in the media, in academia, and from public policy decision-makers. In this article, we identify several methodological errors in the task force work that cause their reported forecast probabilities of conflict to be too large, their causal inferences to be biased in unpredictable directions, and their claims of forecasting performance to be exaggerated. However, we also find that the task force has amassed the best and most carefully collected data on state failure in existence, and the required corrections which we provide, although very large in effect, are easy to implement. We also reanalyze their data with better statistical procedures and demonstrate how to improve forecasting performance to levels significantly greater than even corrected versions of their models. Although still a highly uncertain endeavor, we are as a consequence able to offer the first accurate forecasts of state failure, along with procedures and results that may be of practical use in informing foreign policy decision making. We also describe a number of strong empirical regularities that may help in ascertaining the causes of state failure.

Theory and Evidence in International Conflict: A Response to de Marchi, Gelpi, and Grynaviski
Nathaniel Beck, Gary King, and Langche Zeng. 2004. “Theory and Evidence in International Conflict: A Response to de Marchi, Gelpi, and Grynaviski,” 98: 379-389. Abstract
We thank Scott de Marchi, Christopher Gelpi, and Jeffrey Grynaviski (2003 and hereinafter dGG) for their careful attention to our work (Beck, King, and Zeng, 2000 and hereinafter BKZ) and for raising some important methodological issues that we agree deserve readers’ attention. We are pleased that dGG’s analyses are consistent with the theoretical conjecture about international conflict put forward in BKZ –- "The causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but they are large stable and replicable whenever the ex ante probability of conflict is large" (BKZ, p.21) –- and that dGG agree with our main methodological point that out-of-sample forecasting performance should always be one of the standards used to judge studies of international conflict, and indeed most other areas of political science. However, dGG frequently err when they draw methodological conclusions. Their central claim involves the superiority of logit over neural network models for international conflict data, as judged by forecasting performance and other properties such as ease of use and interpretation ("neural networks hold few unambiguous advantages... and carry significant costs" relative to logit and dGG, p.14). We show here that this claim, which would be regarded as stunning in any of the diverse fields in which both methods are more commonly used, is false. We also show that dGG’s methodological errors and the restrictive model they favor cause them to miss and mischaracterize crucial patterns in the causes of international conflict. We begin in the next section by summarizing the growing support for our conjecture about international conflict. The second section discusses the theoretical reasons why neural networks dominate logistic regression, correcting a number of methodological errors. The third section then demonstrates empirically, in the same data as used in BKZ and dGG, that neural networks substantially outperform dGG’s logit model. We show that neural networks improve on the forecasts from logit as much as logit improves on a model with no theoretical variables. We also show how dGG’s logit analysis assumed, rather than estimated, the answer to the central question about the literature’s most important finding, the effect of democracy on war. Since this and other substantive assumptions underlying their logit model are wrong, their substantive conclusion about the democratic peace is also wrong. The neural network models we used in BKZ not only avoid these difficulties, but they, or one of the other methods available that do not make highly restrictive assumptions about the exact functional form, are just what is called for to study the observable implications of our conjecture.
The Supreme Court During Crisis: How War Affects only Non-War Cases
Lee Epstein, Daniel E Ho, Gary King, and Jeffrey A Segal. 2005. “The Supreme Court During Crisis: How War Affects only Non-War Cases.” New York University Law Review, 80: 1–116. Abstract
Does the U.S. Supreme Court curtail rights and liberties when the nation’s security is under threat? In hundreds of articles and books, and with renewed fervor since September 11, 2001, members of the legal community have warred over this question. Yet, not a single large-scale, quantitative study exists on the subject. Using the best data available on the causes and outcomes of every civil rights and liberties case decided by the Supreme Court over the past six decades and employing methods chosen and tuned especially for this problem, our analyses demonstrate that when crises threaten the nation’s security, the justices are substantially more likely to curtail rights and liberties than when peace prevails. Yet paradoxically, and in contradiction to virtually every theory of crisis jurisprudence, war appears to affect only cases that are unrelated to the war. For these cases, the effect of war and other international crises is so substantial, persistent, and consistent that it may surprise even those commentators who long have argued that the Court rallies around the flag in times of crisis. On the other hand, we find no evidence that cases most directly related to the war are affected. We attempt to explain this seemingly paradoxical evidence with one unifying conjecture: Instead of balancing rights and security in high stakes cases directly related to the war, the Justices retreat to ensuring the institutional checks of the democratic branches. Since rights-oriented and process-oriented dimensions seem to operate in different domains and at different times, and often suggest different outcomes, the predictive factors that work for cases unrelated to the war fail for cases related to the war. If this conjecture is correct, federal judges should consider giving less weight to legal principles outside of wartime but established during wartime, and attorneys should see it as their responsibility to distinguish cases along these lines.
When Can History Be Our Guide? The Pitfalls of Counterfactual Inference
Gary King and Langche Zeng. 2007. “When Can History Be Our Guide? The Pitfalls of Counterfactual Inference.” International Studies Quarterly, 183-210. Abstract
Inferences about counterfactuals are essential for prediction, answering "what if" questions, and estimating causal effects. However, when the counterfactuals posed are too far from the data at hand, conclusions drawn from well-specified statistical analyses become based on speculation and convenient but indefensible model assumptions rather than empirical evidence. Unfortunately, standard statistical approaches assume the veracity of the model rather than revealing the degree of model-dependence, and so this problem can be hard to detect. We develop easy-to-apply methods to evaluate counterfactuals that do not require sensitivity testing over specified classes of models. If an analysis fails the tests we offer, then we know that substantive results are sensitive to at least some modeling choices that are not based on empirical evidence. We use these methods to evaluate the extensive scholarly literatures on the effects of changes in the degree of democracy in a country (on any dependent variable) and separate analyses of the effects of UN peacebuilding efforts. We find evidence that many scholars are inadvertently drawing conclusions based more on modeling hypotheses than on their data. For some research questions, history contains insufficient information to be our guide.