
AutoCast: Automated Bayesian Forecasting with

YourCast1

Jonathan Bischof2 Gary King3 Samir Soneji4

March 18, 2011

1Available from http://GKing.Harvard.Edu/autocast via a Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0, for academic use only.

2Department of Statistics, Harvard University.
3Albert J. Weatherhead III University Professor, Harvard University (Institute for Quan-

titative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA 02138;
http://GKing.Harvard.Edu, King@Harvard.edu, (617) 495-2027).

4Robert Wood Johnson Foundation Health & Society Scholar, University of Pennsylvania

CONTENTS 1

Contents

1 Introduction 2

2 Objective function measurement 3

3 User’s Guide 4

3.1 Installation . 4

3.2 Loading data . 4

3.3 Setting up a YourCast call . 5

3.4 Grid search . 6

3.5 Direct optimization . 10

3.6 Refinements . 10

4 Reference 11

4.1 autocast: Automated Bayesian Forecasting with YourCast 13

4.2 optim.autocast: Automated Bayesian Forecasting with YourCast Using Opti-
mization . 17

4.3 plot.autocast: Plot generation tool for AutoCast 21

4.4 run.opt: Generate forecasts using optimal sigma combinations 23

4.5 plot.diag: Plot objective function or component diagnostics 25

Abstract

AutoCast is a streamlined and user-friendly version of YourCast software which focuses
on generating forecasts for multiple cross-sections over time, limited to a single geographic
region. In the YourCast framework, individual hyperprior parameters are easy to interpret, but
applications often require the simultaneous use of multiple priors, such as for the smoothness
of forecasts across groups, time, and in trends across groups; in this situation, hyperprior
parameters can be difficult to interpret and set. AutoCast introduces a framework that
makes setting multiple priors easy. The general strategy is to fit an objective function based
on smoothness and fit to a subset of the data, and to use the results of that analysis to set the
prior for all (or the remaining) data.

1 INTRODUCTION 2

1 Introduction

“YourCast: Time Series Cross-Sectional Forecasting With Your Assumptions” (http://gking.
harvard.edu/yourcast) implements a comprehensive approach to forecasting developed for the
R Project for Statistical Computing. It can fit any member of a new class of Bayesian models
proposed in Girosi and King (2008), all with a single user interface. The idea of YourCast is
to fit a large set of linear regressions simultaneously with priors that tie them all together. An
example application is a set of relatively short annual mortality time series with covariates, for
each age group, sex, race, country, and cause of death. Estimating each regression separately
would be very noisy and yield poor forecasts. This new approach allows users to put informative
priors on the expected value of the outcome variable, about which users typically know a great
deal, rather than on the parameters (i.e., the coefficients), about which they know very little.
This approach greatly reduces the number of hyperprior parameters and enables researchers to
include different covariates in the regression from each of the cross-sections (such as including
tobbaco consumption as a predictor for adult mortality but not infant mortailty), but it still
enables one to smooth over age groups, time trends, time trends across age groups, countries,
time trends in neighboring countries, etc.

In this paper we introduce AutoCast, a streamlined version of the YourCast software
which makes it easy for users to fit all the special cases of these models that run within a single
geographic region (but still with many cross-sectional groups such as age by sex). The idea is
to estimate optimal values for the hyperprior parameters from a small subset of the data, using
prior information, fit, and easy methods of interacting with the data and results. With these
estimates, the user would then a much better sense of how to set the priors for the rest of the
data.

Consider the problem of forecasting all-cause mortality for multiple age groups of males in
the United States. Rather than producing a single forecast for all males or estimating separate
forecasts for each age group, YourCast incorporates one’s prior beliefs about how smoothly
mortality should change across age groups and time as well as the similarity of time trends
across age groups. For example, one may believe that 30 and 35 year olds should die at similar
rates, that the mortality rate for 30 year olds in 1980 should be similar to the rate in 1981, or
that if death rates for 30 year olds are falling then rates for 35 year olds likely fell as well. These
beliefs are formalized into three smoothness parameters—σa, σt, and σat—which if specified
individually would indicate the average distance between neighboring age groups, time periods,
or time trends respectively.

If each prior is used separately, its values are highly intuitive. For example, setting σa = 0.1
means that one believes that log mortality between neighboring age groups differs by about 0.1,
which is even easy to set based on many earlier data sets. However, if one attempts more than
one type of smoothing in a model, these parameters no longer have an intuitive interpretation.
Furthermore, it is difficult to anticipate how multiple smoothness priors will interact in posterior
inference—for instance, it may be that enforcing smooth time trends could be accomplished by
either setting σat close to zero or slightly relaxing σt. Importantly, the common trends achieved
in the latter are likely to be less linear. We offer a way around this difficulty.

Bayesian modeling such as this also presents a bias-variance trade-off which in this case is
represented by smoothness vs in sample fit. We do not want noisy data to make our forecasts
choppy across neighboring age groups or time periods, but we also do not want to force them
to follow smooth trends to the point where we are ignoring systematic patterns in the data.

http://gking.harvard.edu/yourcast
http://gking.harvard.edu/yourcast

2 OBJECTIVE FUNCTION MEASUREMENT 3

AutoCast allows analysts to disentangle the interactions between different smoothness
parameters and how each combination affects prediction error. We accomplish this through
cross-validation, where we omit a block of observations at the end of the observation period
and then produce a forecast for those omitted years as well as our original years of interest
using a set of candidate smoothing priors—σ∗

a, σ∗
t , and σ∗

at. For each set of candidates, we
score the resulting forecasts based on how much they lack smoothness in their time and age
profiles, similarity in time trends, and ability to predict outcomes in the omitted years. These
four measures are then combined into a weighted average of undesireables, with the weights
chosen by the user to reflect his or her relative tolerance for each. The problem of finding an
“optimal” forecast can now be formalized as finding the prior parameters that minimize this
objective function.

This approach allows users to directly observe relevant trade-offs when calibrating their
smoothness parameters by changing the weights. For example, a forecast which minimizes an
objective function with most weight on prediction error will probably fit the data well but not
be very smooth. An analyst particularly dissatisfied with wildly divergent time trends can
then begin shifting weight away from prediction error and toward time trend smoothness to see
how much prediction error he or she would have to gain to get satisfactory trending behavior.
These trade-offs can then be analyzed for all four of the optimality conditions, allowing one to
carefully calibrate the choice of smoothness parameters for application in the current of similar
forecasting exercises. For example, if one wanted to predict mortality for males in the 50 US
states, one could calibrate the prior parameters using a handful of representative states and
then use those priors for each state in the country.

2 Objective function measurement

In this section we briefly discuss how the four components of the objective function—prediction
error, smoothness of time profiles, smoothness of age profiles, and deviance in time trends—are
measured. For all diagnostics any missing observations are removed from the calculation. The
four components are:

� Prediction error is measured as sum of the root mean square error of the out-of-sample
forecasts for all of the omitted years in all groups.

� Age smoothness is measured as the arc lengths of age profiles from the validation period
once the mean age profile from the validation period is removed. Arc length will be
shortest when these demeaned profiles are flat—i.e., the same as the mean or differing by
a constant. In contrast, profiles which change constantly with respect to the mean will be
receive high scores.

� Time smoothness is measured as the arc length of each time profile’s deviation from its
own trend line. Here we allow the user to choose the degree of the polynomial to which
the time profiles are smoothed. For example, if a first degree polynomial is chosen, linear
time profiles will have the lowest score; zero degree polynomials will give the lowest score
to the flattest time profiles.

� Trend deviations are measured by removing the constant from all the time profiles (so
that each has mean zero) and measuring the arc length of their deviations from the mean

3 USER’S GUIDE 4

time profile. The result is very similar to our measure of age profile smoothness: the
profiles scored lowest will follow or be parallel to the mean time profile.

Using the shorthands RSS, Age AL, Time AL, and Trend dev, respectively, for these compo-
nents, we express the objective function as:

f(RSS, Age AL, Time AL, Trend dev) = w1

√
RSS+w2(Age AL)+w3(Time AL)+w4(Trend dev)

where ~w is chosen by the user subject to
∑4

i=1 wi = 1. Since all four diagnostics take values
in [0,∞), they are not possible to normalize. An important consequence is that the absolute
values of the weights have no intuitive interpretation; only comparisons of different weighting
schemes with the same data are meaningful. In fact, in particularly noisy data values of RSS
will be high relative to other diagnostics and can thus be ignored.

In our experience, the objective function surface tends to be multimodal but locally well
behaved. We thus use a grid search to narrow down the search. We recommend that users start
with a coarse grid search and then use the minimum from that as the starting point for a more
direct optimization method such as BFGS. AutoCast provides tools to visualize and optimize
the user’s objective function, as documented in the next section.

3 User’s Guide

3.1 Installation

From the R command line, type

> install.packages("AutoCast", repos="http://gking.harvard.edu") .

3.2 Loading data

AutoCast uses much of the basic architecture of YourCast, including how data is formatted.
For YourCast to make forecasts for multiple cross sections, a separate array with a response
and covariates is needed for each cross section. With the case of US males, we require a data
array for each age group with mortality rates for some observation period and covariates with
observations in both the observation period and adjacent forecast period. While the observation
and forecast periods must be identical for each age group (allowing for missing data), one of
the main advantages of YourCast is that each age group may have different covariates (see
Girosi and King (2008))

These arrays, along with other identifying information, must be concatenated into a single
list object we call a dataobj. The yourprep function in the YourCast package can assist users
to load data from multiple formats, lag covariates as needed, and concatenate this information
into an R object yourcast can read. For detailed instructions, please see the YourCast manual
and the online help pages for yourprep and yourcast.

3 USER’S GUIDE 5

3.3 Setting up a YourCast call

In order to illustrate how functions in AutoCast are used, we will focus on the specific problem
of forecasting breast cancer mortality in Belgium. We observe mortality rates from 1950-2000
and would like to forecast future mortality from 2001 to 2030. To inform our predictions, we
include five covariates: human capital (hc), GDP (gdp), tobacco use (tobacco3), obesity rates
(fat), and a time trend (time). While our ultimate goal is to find optimal smoothing priors
to get a reasonable forecast, it is often helpful to first look at the least squares fit, one of the
models that can be run in yourcast. Besides a formula object and the dataobj described in
the previous section, the only other argument required to yourcast is a vector with the start
and end dates our observation and forecast periods, called sample.frame.

We then make our call to yourcast to get an output object:

ff <- log(brst3/popu3) ~ log(hc) + log(gdp) + log(tobacco3) + log(fat)+ time
out.ols <- yourcast(formula=ff,

model="ols"
dataobj=dataobj.belgium,
sample.frame=c(1950,2000,2001,2030))

We now have an output object called out.ols. We can easily visualize our forecasts with a
simple call to plot:

plot(out.ols,print="pdf",file="belgium_ols.pdf")

where extra options have been specified to save a PDF file in the working directory. We have
reproduced this plot in Figure 1. Here we can see a significant increase in the variance of
mortality across age groups in the forecast period, and well as unlikely intersections in the age
profiles; e.g., 50 year olds eventually dying at lower rates than 40 year olds. Therefore the
introduction of informative smoothing priors with the Bayesian models seem promising.

The "map" model in yourcast yourcast that allows us to introduce smoothing priors, with
each type of smoothing a separate argument to the function: σa is Ha.sigma, σt is Ht.sigma,
and σat is Hat.sigma. Thus if we wanted fairly strong smoothing we could run the model:

out.map <- yourcast(formula=ff,
sample.frame=c(1950,2000,2001,2030),
dataobj=dataobj.belgium,
model="map",
Ha.sigma=0.1,Ht.sigma=0.1,Hat.sigma=0.1)

plot(out.map)

The results look promising, but how can we see different possibilities that emphasize greater
fit to the data or more similar time trends? By forming an objective function using AutoCast
we will be able to find optimal forecasts given our personal preferences for different optimality
criteria.

3 USER’S GUIDE 6

Figure 1: Least squares forecast for breast cancer mortality in Belgium (no smoothing)

1960 1980 2000 2020

−
16

−
14

−
12

−
10

−
8

−
6

−
4

Belgium

Time

D
at

a
an

d
F

or
ec

as
ts

25

30

35

45

50
40

55 7065

60
75

80

30 40 50 60 70 80
−

16
−

14
−

12
−

10
−

8
−

6
−

4

Belgium

Age

F
or

ec
as

ts

●●●1954 2030

3.4 Grid search

Once we decide on a set of weights for our objective function, AutoCast offers two optimization
methods: a grid search function called autocast and a general purpose optimization function
called optim.autocast that can call optim or rgenoud. In practice, these two methods are best
used in conjunction, building up a picture of the objective function surface with autocast and
then using the minimum from the grid search as a starting point for one of the optimization
algorithms implemented in optim.autocast. Since the objective function surface is almost
never unimodal, a thorough grid search is critical.

We start with the grid search function autocast. We first need decide at which points
in the space of positive real numbers R3

+ we want to evaluate the function. The arguments
H*.sigma.range sets the range for each parameter and the arguments N.* set the number of
points to test in that range. By default, these points are evenly spaced out on the log scale to
increase the number of lower values tested—changing σa from 0.1 to 0.01 has much more impact
than a change from 10 to 9.9. We then set the desired weights with the weights argument,
which will be a length-four vector of positive numbers that will be normalized by the function
if they do not sum to one already.

Since autocast works through cross-validation, we also have to decide which block of ob-
servations to omit and try to predict with our model. The argument length.block specifies
the number of years in the validation block; then we then only need to specify the last year
in the block. By default, end.block is set to "last", the last observed year, since in practice
omitting a block of observations at the end is the only meaningful proxy for an actual forecast.

It is helpful to use the runs.save argument, which stores the output from the computa-
tionally intensive part of the grid search so that changes to the weights can be made with little

3 USER’S GUIDE 7

additional computation. Finally, we also pass on the basic arguments to yourcast:

out.auto <- autocast(# Set up sigma grid
Ha.sigma.range=c(0.01,10),
Hat.sigma.range=c(0.01,10),
Ht.sigma.range=c(0.01,10),

How many points to test in each range?
N.Ha=15,
N.Ht=15,
N.Hat=15,

Weights
weights=c(0.5,0.25,0.25,0),

Length and positions of blocks
length.block=7,
end.block="last",

runs.save="belgium-runs.RData",

yourcast() call
formula=ff,
dataobj=dataobj.belgium,
model="map",
sample.frame=c(1950,2000,2001,2030))

We then see the number of runs and a notification each time one completes:

[1] "Starting 3375 yourcast() runs"
[1] "Done with run 1"
[1] "Done with run 2"
[1] "Done with run 3"
[1] "Done with run 4"
...
[1] "Done with run 3375"

Increasing the total number of points to evaluate is always better, but at the obvious cost
of computational intensity. Usually a 10 × 10 × 10 grid is sufficient, but here we move to a
15 × 15 × 15 grid since the objective function surface is poorly behaved for many choices of
weights in this example.

Once the grid search is complete, we can visualize the objective function surface for our
choice of weights using the plot command:

plot(out.auto,print="pdf",filename="belgium_objplot.pdf")

The resulting plot is presented in Figure 2. Here we can see that the surface of the function is
not particularly well behaved. Since the parameters are constrained to the positive octant, we

3 USER’S GUIDE 8

Figure 2: Plot of objective function for breast cancer case with weights = (0.5, 0.25, 0.25, 0)

Total Validation Objective Function
 Fixed: Hat.sigma=0.01

2
4

6
8

10

2

4

6

8

100.92

0.93

0.94

0.95

0.96

0.97

Ha.sigma

Ht.sigma

Obj Fun

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Total Validation Objective Function
 Fixed: Ht.sigma=0.518

2
4

6
8

10

2

4

6

8

101.0

1.1

1.2

1.3

1.4

Ha.sigma

Hat.sigma

Obj Fun

0.9

1.0

1.1

1.2

1.3

1.4

Total Validation Objective Function
 Fixed: Ha.sigma=0.518

2
4

6
8

10

2

4

6

8

10
1.0

1.2

1.4

1.6

Ht.sigma

Hat.sigma

Obj Fun

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Total Validation Objective Function

2
4

6
8

10

2

4

6

8

102

4

6

8

10

Ht.sigma

Hat.sigma

Ha.sigma

0.9103 2.8253●●

3 USER’S GUIDE 9

Figure 3: Optimal forecast with weights = (50, 25, 25, 00)

1960 1980 2000 2020

−
12

−
10

−
8

−
6

Best: Ha=0.52, Ht=0.62, Hat=0, Belgium

Time

D
at

a
an

d
F

or
ec

as
ts

25

30

35

40

45

50
55 60
65

70
75

80

30 40 50 60 70 80
−

11
−

10
−

9
−

8
−

7
−

6

Best: Ha=0.52, Ht=0.62, Hat=0, Belgium

Age

F
or

ec
as

ts

●●●1954 2030

often find the optimum lodged in the corner. Plots of the objective function are also helpful to
tease out relationships between the smoothing parameters; for example, in this plot apparently
σa has little impact given that σat = 0.05. plot.autocast can generate plots for the individual
components of the objective function by changing the family argument from its default.

Finally, we can easily plot the forecast generated by the grid search minimum with the
run.opt function:

run.opt(out.auto)

The resulting forecast can be found in Figure 3. The user can always override any of the
“optimum” parameters with the H*.set argument to run.opt.

Users can get information about the basic information about any autocast output object
with the summary command:

> summary(out.auto)
Observed period: 1950-2000
Forecast period: 2001-2030

Validation blocks:
year.1 year.2 year.3 year.4 year.5 year.6 year.7

run.1 1994 1995 1996 1997 1998 1999 2000

Weights:
RSS Age AL Time AL Trend Dev

3 USER’S GUIDE 10

0.50 0.25 0.25 0.00

Grid search range:
Ha.sigma: 0.01 - 10
Ht.sigma: 0.01 - 10
Hat.sigma: 0.01 - 10

Optimal sigma combination:
Ha.sigma Ht.sigma Hat.sigma

0.518 0.518 0.010

Similar output is generated when summary is used on a optim.autocast output object.

3.5 Direct optimization

AutoCast includes the function optim.autocast, which can directly optimize the objective
function by making calls to optim or rgenoud. The arguments to optim.autocast are almost
identical to autocast except that the user must specify the type of optimization to employ
rather than the grid points.

However, direct optimization rarely works without a good starting point provided by a grid
search. AutoCast makes it very easy to pass the result of a grid search on to an optimizer
with the call:

out.opt <- optim.autocast(out.auto)

Here optim.autocast will automatically transfer all relevant information about the yourcast
model from the autocast output object. Optimization will be started at the optimum point
identified in the grid search with default method BFGS from optim. Since the parameter space
is constrained, the function by default reparameterizes the search into log space, although these
and several other options can be tweaked by the user.

Once optimization is complete, the resulting forecast can be plotted with run.opt:

run.opt(out.opt,print="pdf",filename="belgium_forecast_50-25-25-00.pdf")

3.6 Refinements

Once an initial grid search is completed, AutoCast allows users to experiment with different
objective function weights with minimal additional computation. One can test a different set
of weights with another call to autocast specifying only the .RData object where the runs are
stored and the new weights. For example, a user interested in forecasts with linear time profiles
could try

out.auto20.00.80.00 <- autocast(runs.load="belgium-runs.RData",
weights=c(0.20,0,0.8,0))

run.opt(out.auto20.00.80.00)

4 REFERENCE 11

which will launch a plot with the new forecast in less than a minute. A user can then add more
emphasis on smooth time trends or prediction error with the calls

out.auto20.00.40.40 <- autocast(runs.load="belgium-runs.RData",
weights=c(0.20,0,0.4,0.4))

run.opt(out.auto20.00.40.40)

out.auto70.20.10.00 <- autocast(runs.load="belgium-runs.RData",
weights=c(0.70,0.2,0.1,0))

run.opt(out.auto70.20.10.00)

If desired, each autocast output can also be further refined by optim.autocast before being
sent to run.opt.

The plots discussed in this section are displayed in Figure 4.

4 Reference

The following pages list the main functions in AutoCast with detailed reference information.
These can also be loaded from R with the standard help command, such as help(autocast).

4 REFERENCE 12

Figure 4: Optimal forecasts with weights (20,00,80,00), (20,00,40,40), and (70,20,10,00)

1960 1980 2000 2020

−
12

−
10

−
8

−
6

Best: Ha=291.72, Ht=0, Hat=65.97, Belgium

Time

D
at

a
an

d
F

or
ec

as
ts

25

30

35

40

45

50

55
6065 7075

80

30 40 50 60 70 80
−

11
−

10
−

9
−

8
−

7
−

6

Best: Ha=291.72, Ht=0, Hat=65.97, Belgium

Age

F
or

ec
as

ts

●●●1954 2030

1960 1980 2000 2020

−
12

−
10

−
8

−
6

Best: Ha=0.5, Ht=0, Hat=0, Belgium

Time

D
at

a
an

d
F

or
ec

as
ts

25

30

35

40

45
50

55 60
65

70
75

80

30 40 50 60 70 80

−
11

−
10

−
9

−
8

−
7

−
6

Best: Ha=0.5, Ht=0, Hat=0, Belgium

Age

F
or

ec
as

ts

●●●1954 2030

1960 1980 2000 2020

−
12

−
10

−
8

−
6

Best: Ha=0.19, Ht=20.04, Hat=0.27, Belgium

Time

D
at

a
an

d
F

or
ec

as
ts

25

30

35

40

45

50

55
60

65
70

75

80

30 40 50 60 70 80

−
12

−
10

−
8

−
6

Best: Ha=0.19, Ht=20.04, Hat=0.27, Belgium

Age

F
or

ec
as

ts

●●●1954 2030

4 REFERENCE 13

4.1 autocast: Automated Bayesian Forecasting with YourCast

Description

Generate Yourcasts under range of prior specifications and scores predictions according user
preferences.

Usage

autocast(
Pararmeter space to search for priors
Ha.sigma.range=c(0.01,20),
Ha.list=NULL,
Ht.sigma.range=c(0.01,20),
Ht.list=NULL,
Hat.sigma.range=NA,
Hat.list=NULL,
N.Ha=5, N.Ht=5,N.Hat=5,
logscale=FALSE,

Weights for objective function
weights=c(0.5,0.25,0.25,0),
time.degree=1,

Set up blocks
length.block=5,
end.block="last",

Store validation data for future use?
(changing weights)
runs.save=NULL,
Use stored data from previous run?
runs.load=NULL,

Verbose sapply() loop?
print.runs=TRUE,

Use condor to process runs?
condor=FALSE,
condor.dir=getwd(),
condor.fld=NULL,
condor.comp=NULL,

Inputs to yourcast()
See help(yourcast) for details
...)

4 REFERENCE 14

Arguments

Ha.sigma.range

Two element vector of non-negative numbers. Range of Ha.sigma values
to search over. If do not want to use age smoothing, set as NA and leave
Ha.list as NULL.

Ha.list Vector. If changed from NULL, a vector of additional values of Ha.sigma
to include in the grid search.

Ht.sigma.range

Two element vector of non-negative numbers. Range of Ht.sigma values
to search over. If do not want to use time smoothing, set as NA and leave
Ht.list as NULL.

Ht.list Vector. If changed from NULL, a vector of additional values of Ht.sigma
to include in the grid search.

Hat.sigma.range

Two element vector of non-negative numbers. Range of Hat.sigma values
to search over. If do not want to use trend smoothing, set as NA and leave
Hat.list as NULL.

Hat.list Vector. If changed from NULL, a vector of additional values of Hat.sigma
to include in the grid search.

N.Ha Scalar. Number of values to test (evenly spaced out) along Ha.sigma.range.
Set to NA if do not want to use this parameter.

N.Ht Scalar. Number of values to test (evenly spaced out) along Ht.sigma.range.
Set to NA if do not want to use this parameter.

N.Hat Scalar. Number of values to test (evenly spaced out) along Hat.sigma.range.
Set to NA if do not want to use this parameter.

logscale Logical. Should sigma values be even spaced on a log scale and then
exponentiated? If FALSE, sigma values will be equally spaced out on
normal scale.

weights Vector of length four. Provides weights for the four components of the
objective function. See ‘Details’.

time.degree Non-negative integer. Specifies the degree of the baseline polynomial to
which time profiles are smoothed. For example, if time.degree=1, then
the forecasts closest to a straight line be scored highest. If time.degree=0,
then forecasts closest to a flat line will be scored highest.

length.block Numeric. How many years should be omitted at a time in validation
blocks?

end.block Vector. Specifies years in which validation blocks should end. Length of
vector determines how many vaidation exercises done. Alternatively, if
set to "last", will choose the last possible block in the observed data
period only.

runs.save String. If changed from NULL, specifies a file name in the form of *.RData
in which the raw output from validation exercises will be stored. Sav-
ing this information allows users to evaluate the objective function using
different weights without having to recompute forecasts with yourcast
function.

4 REFERENCE 15

runs.load String. If changed from NULL, specifies a file name in the form of *.RData
from which previous runs of yourcast (based on a specific model, dataset
and grid of points to evaluate) will be loaded. If provided, all other
arguments except weights will be ignored.

print.runs Logical. If TRUE, will print notification each time run of yourcast com-
pleted.

condor Logical. Use the Condor batch processing software for parallel processing
of yourcast runs on the RCE servers. Note: this is only available to
members of Harvard’s IQSS working on the RCE servers.

condor.dir String. Directory in which to write condor files. Generated folder will be
deleted before function exits.

condor.fld String. A name for the folder in which condor output is stored in the
condor.dir. If left as NULL, folder will be given a random name starting
with tmp_ and will be deleted after the runs are completed and loaded
in R. NOTE: This will not delete the condor.dir, but a folder created
within it.

condor.comp If changed from NULL, specifies a folder in the condor.dir in which already
completed runs of condor are stored. All other arguments supplied in
the first run of autocast must again be supplied, but the function will
skip sending the jobs to condor and instead load them from the specified
folder as if they had just been completed. NOTE: All other condor-related
arguments will be ignored when this is changed from NULL since condor is
never called. NOTE: This feature exists mainly for debugging purposes
and will not be useful to most users.

... Arguments to be passed to yourcast. See help(yourcast) for more
details. *Not clear what prior arguments might also be set by user apart
from ones here.*

Details

Function to evaluate predictions using yourcast under a range of prior specifications. Given
the different values (specified by the user) of the three sigma priors to test, the function
will perform a validation exercise for yourcast using the blocks of time periods specified
by the user.

This validation blocks are specified by indicating the year each block should end (end.block)
and the number of years in each block (length.block). The number of years in end.block
will determine the number of validation periods. Alternatively, if end.block is set to
"last", the function will choose the last possible block in the observed data period only.

For each block to be omitted, autocast generates a yourcast input object with those years
marked as NA and generates a prediction for that block of responses under each of the prior
combinations.

The total number of runs of yourcast is the product of the non-NA N.* arguments and
the number of blocks to be omitted. autocast processes the yourcast runs locally, or, if
condor=TRUE, parallel on the RCE servers with the Condor batch processing software.

After predictions for the validation blocks under each sigma combination are generated,
autocast calculates values of RSS, age profile arc length, time profile arc length, and time

4 REFERENCE 16

trend deviation for each. These diagnostics are then used as inputs into a univariate objec-
tive function that employs weights specified by the user to evaluate each set of forecasts.

Given a length-four vector of weights, the function is

f(RSS, age AL, time AL, trend dev) = weights[1]*sqrt(RSS) + weights[2]*age AL + weights[3]*time
AL + weights[4]*trend dev

The optimal combination of prior values will minimize this function over the specified
validation periods.

Value

list A list object of class ‘autocast’ with the following components:

par.opt A vector of the optimal value for each sigma parameter as indi-
cated by the objective function.

sigma A matrix of all combinations of sigma parameters compared in
validation exercise.

rss.valid A matrix that lists the RSS value estimated for each combi-
nation of sigma parameters in the sigma matrix. Results are broken
down by validation period.

arc.age.valid A matrix that lists the age profile arc length value esti-
mated for each combination of sigma parameters in the sigma matrix.
Results are broken down by validation period.

arc.time.valid A matrix that lists the time profile arc length value esti-
mated for each combination of sigma parameters in the sigma matrix.

trend.dev.valid A matrix that lists the trend deviation arc length value
estimated for each combination of sigma parameters in the sigma
matrix.

diag.valid A matrix that lists all diagnostic values estimated for each
combination of sigma parameters in the sigma matrix, including the
objective function using the specified weights. Results are summed
over all specified validation periods.

aux.auto A list of information about the run of autocast used by other
functions in the AutoCast library.

Author(s)

Jon Bischof <jbischof@fas.harvard.edu>

References

http://gking.harvard.edu/yourcast

See Also

yourcast, plot.autocast, optim.autocast

http://gking.harvard.edu/yourcast

4 REFERENCE 17

4.2 optim.autocast: Automated Bayesian Forecasting with YourCast
Using Optimization

Description

Finds sigma parameters that produce optimal forecast using optimization algorithms

Usage

optim.autocast(# autocast output object?
auto.out=NULL,

Starting values for optim
Vector order is c(Ha,Ht,Hat)
Set any dimension to 'NA' if don't want
to use
par=ifelse(rep(is.null(auto.out),3),

c(1,1,1),auto.out$par.opt),

Constrained or unconstrained optimization?
reparam=TRUE,

Arguments for optim
method="BFGS",
args.optim=list(),

Use rgenoud?
rgenoud=FALSE,
upper.bound=100,
args.rgenoud=list(),

Weights for objective function
weights=c(0.5,0.25,0.25,0),
time.degree=1,

Set up blocks
length.block=5,
end.block="last",

Inputs to yourcast()
See help(yourcast) for details
...)

Arguments

auto.out A object of class ‘autocast’. If changed from NULL, will take informa-
tion from previous run of autocast to continue optimization where that

4 REFERENCE 18

function left off. Specifically, the function will use the optimal sigma
combination identified for the par argument and recover all arguments
pertaining to the weights, blocks, and yourcast input from the output
object. However, a different starting point can be specified if the par
argument is changed from its default. All arguments after args.rgenoud
will be ignored.

par Vector of length three. Provides starting values for the optimization algo-
rithm. The entries in the vector coorespond to Ha.sigma, Ht.sigma, and
Hat.sigma, respectively.

reparam Logical. Since objective function lives in positive quadrant/octant, should
parameters be transformed to log-space to allow unconstrained optimiza-
tion? If FALSE, only "L-BFGS-B" method will be allowed for optim. For
both optim and rgenoud lower boundries close to zero will be enforced;
the upper boundary for rgenoud can be set with the upper.bound argu-
ment.

args.optim List. If rgenoud=FALSE, a list of arguments (must be labeled) to be passed
to optim. For example, if wanted to turn off verbose option, could add
control=list(trace=0).

rgenoud Logical. Should rgenoud be used instead of optim for the optimization?

upper.bound Numeric. If rgenoud=TRUE and reparam=FALSE, specifies an upper bound
for parameters. If reparam=FALSE, the lower bound is set close to zero.
Whether or not reparam=TRUE, the user can set his or her own bounds
for rgenoud by adding the Domains argument to args.rgenoud.

weights Vector of length four. Provides weights for the four components of the
objective function. See ‘Details’.

time.degree Non-negative integer. Specifies the degree of the baseline polynomial to
which time profiles are smoothed. For example, if time.degree=1, then
the forecasts closest to a straight line be scored highest. If time.degree=0,
then forecasts closest to a flat line will be scored highest.

length.block Numeric. How many years should be omitted at a time in the validation
block?

end.block Numeric. Specifies year in which validation block should end. Alterna-
tively, if set to "last", will choose the last possible block in the observed
data period. Unlike autocast, in this function only one validation block
can be used at a time.

... Arguments to be passed to yourcast.

Details

Function to find the optimal sigma parameters for yourcast forecasts using an optimization
algorithm. Starting from values for the sigma parameters specified in par, optim.autocast
will call either optim or rgenoud to search over the parameter space for the point that
performs best in a validation exercise.

optim.autocast only allows a single validation period to be used at a time. This period
is specified by indicating in which year the block should end (end.block) and the number

4 REFERENCE 19

of years in the block (length.block). Alternatively, if end.block is set to "last", the
function will choose the last possible block in the observed data period.

To set up the validation, optim.autocast generates a yourcast input object with a block
of validation years specified by the user marked as NA and then for each set of parameter
values guessed by the optimization routine generates a forecast for that block of responses.

The quality of the forecast is quantified by an objective function which considers four
diagnostics: the sum of squares of the prediction error for the block (RSS), the arc length
of the age profile for that block (age AL), the arc length of the time profile for that block
(time AL), and the deviations from the mean time trend (trend dev). Thus the ideal forecast
will produce the most linear trends possible while minimizing prediction error.

Given a length-four vector of weights specified in the weights argument, the objective
function is

f(RSS, age AL, time AL) = weights[1]*sqrt(RSS) + weights[2]*age AL + weights[3]*time
AL + weights[4]*trend dev

The optimal combination of sigma parameters will minimize this function for the validation
period.

Since the parameter space is restricted to positive values for Ha.sigma, Ht.sigma, and
Hat.sigma, it is necessary to use constrained optimization (on [0,Inf]) or reparameterize
to log-space (so that the algorithm guesses of log(*.sigma) cannot be negative when trans-
formed back to the original space). By default, optim.autocast uses reparameterization
since unconstrained optimization is more straightforward.

In practice, the objective function is rarely unimodal. Thus most optimization algorithms
will fail to find the global minima if started in the wrong place. We recommend that users
first perform a grid search with autocast and then start optim.autocast at the best guess
found by the grid search. If users adopt this strategy, they can pass their autocast output
object to optim.autocast with the auto.out argument. Then only arguments pertaining
to the optimization will need to be considered; arguments pertaining to weights, validation
blocks, and yourcast inputs will be recovered from the output object.

Value

list A list object of class ‘optim.autocast’ with the following components:

par.opt A vector of the optimal value for each sigma parameter as indi-
cated by the objective function.

aux.robust A list of information about the run of optim.autocast used
by other functions in the AutoCast library.

Author(s)

Jon Bischof <jbischof@fas.harvard.edu>

References

http://gking.harvard.edu/yourcast

http://gking.harvard.edu/yourcast

4 REFERENCE 20

See Also

yourcast,autocast,run.opt

4 REFERENCE 21

4.3 plot.autocast: Plot generation tool for AutoCast

Usage

plot.autocast(x,nparam=2,
screen1=list(z =-30,x=-60),
screen2=list(z =-30,x=-60),
screen3=list(z =-30,x=-60),
screen4=list(z =-30,x=-60),
print="device",
filename="diagplots.pdf",...)

Arguments

x ‘autocast’ output object or equivalent

nparam Integer. Number of parameters to be varied at a time in the diagnostic
plots. If nparam=1, two dimensional plots using plot will be used; if
nparam=2, three dimensional plots using wireframe will be used.

screen1 List. List with three elements ‘x’, ‘y’, and ‘z’ that rotate the viewing
angle for three dimensional plots (passed to wireframe). Optimal viewing
angles can often by found by increasing the ‘z’ element by 90 or 180
degrees. This argument pertains to the first plot (top left) only.

screen2 List. Same as screen1, but applies to the second plot (top right) only.

screen3 List. Same as screen1, but applies to the third plot (bottom left) only.

screen4 List. Same as screen1, but applies to the fourth plot (bottom right) only.

print String. Specifies whether graphical output should be displayed on a device
window ("device") or saved directly to a ’.pdf’ file ("pdf").

filename String. If "pdf"=TRUE, the filename of the ‘.pdf’ to be created.

... Additional arugments to be passed to plotting method. If one parameter
allowed to vary will be plot; if two parameters allowed to vary will be
wireframe.

Details

Uses the output of autocast to produce plots of the objective function and its component
diagnostics. Since the function is four-dimensional if no sigma parameters are set to NA, only
a subset of the parameters can be allowed to vary in each plot. Therefore if all parameters
were varied in the grid search from autocast, the function will produce three plots on the
same device showing different conditional responses.

Parameters not allowed to vary will be held at their optimum value as identified by the grid
search in autocast. Users who want more flexibility in creating diagnostic plots should call
the plot.diag function directly; this function is intended to give users a quick summary of
the autocast output.

The function by default plots the value of the objective function against the sigma pa-
rameters. However, by adding the family argument to plot.diag in the function call,

4 REFERENCE 22

users can also see graphs of its three components specified by strings "rss", "arc.age", or
"age.time".

If nparam=1, the three plots will each show the conditional relationship of the diagnostic and
one sigma parameter at a time, with the other parameters held constant at their optimum.
If nparam=2, the three plots will vary two of the parameters at a time with the third held
constant at its optimum. A fourth plot with the all three parameters varied at once will
also be displayed.

The three dimensional plots produced when nparam=2 are sometimes not shown at an ideal
viewing angle. For that reason users are provided with three screen* arguments to rotate
each of the plots.

With the exception of the screen* argument, arguments passed to plot.diag will be
applied to all the plots produced by this function.

Value

Device windows with requested plots or ‘.pdf’ files saved in the working directory.

Author(s)

Jon Bischof <jbischof@fas.harvard.edu>

References

http://gking.harvard.edu/yourcast

See Also

autocast, plot.diag

http://gking.harvard.edu/yourcast

4 REFERENCE 23

4.4 run.opt: Generate forecasts using optimal sigma combinations

Description

Uses output from autocast or optim.autocast function to call yourcast using the identified
optimal sigma combination and other arguments sent to yourcast in original call to autocast
or optim.autocast. Will produce a plot of the forecasts if requested using plot.yourcast.

Usage

run.opt(x,quant="best",plot=TRUE,
Ha.set=NULL,Ht.set=NULL,Hat.set=NULL,
create.main=TRUE,...)

Arguments

x ‘autocast’ or ‘optim.autocast’ output object or equivalent

quant Numeric. If using ‘autocast’ output object, specifies the sigma combina-
tion to be plotted by its quantile of the objective function among those
tested. For example, if quant=0.5, the function will use the median sigma
combination considered. If left as "best", will use combination with low-
est objective function value. If using ‘optim.autocast’ output object, will
be fixed to "best".

plot Logical. Should yourcast output object be plotted?

Ha.set Numeric. If changed from NULL, specifies an alternate value of Ha.sigma
to be used in yourcast() run.

Ht.set Numeric. If changed from NULL, specifies an alternate value of Ht.sigma
to be used in yourcast() run.

Hat.set Numeric. If changed from NULL, specifies an alternate value of Hat.sigma
to be used in yourcast() run.

create.main Logical. If plot=TRUE, should a title for the plots be created that lists
the sigma combination used and its quantile (or ‘Best’) of the objective
function?

... Additional arugments to be passed to plot.yourcast(). Commonly used
arguments are print and filename.

Details

Extracts the optimal sigma combination from a autocast or optim.autocast output ob-
ject and then generates predictions with those sigma values by calling yourcast. Other
arguments to yourcast, including the original data, are also extracted from the output
object.

If plot=TRUE, the function will also produce a plot of the resulting forecasts by sending the
yourcast output object to plot.yourcast.

4 REFERENCE 24

Value

yourcast object called with same arguments supplied to autocast or optim.autocast and
most desireable sigma combination identified by the respective function. If plot=TRUE will
also create a plot of the forecast using plot.yourcast printed to the device window or to a
‘.pdf’ file. If create.main=TRUE, the function will create an informative main title for the
plots the lists the optimal sigma combination used.

Author(s)

Jon Bischof <jbischof@fas.harvard.edu>

References

http://gking.harvard.edu/yourcast

See Also

autocast, optim.autocast, plot.yourcast

http://gking.harvard.edu/yourcast

4 REFERENCE 25

4.5 plot.diag: Plot objective function or component diagnostics

Description

Uses output from autocast function to plot the surface of the objective function or its
component diagnostics over different combinations of the three sigma parameters.

Usage

plot.diag(x,fix.param=list("vary","vary","opt"),
family="obj.fun",
lattice.plot="wireframe",
screen=list(z=-30,x=-60),
print="device",
filename="objplot.pdf",
args.par=list(),
args.print.trellis=list(),...)

Arguments

x ‘autocast’ output object or equivalent

fix.param List. A list of length three that specifies which of the sigma parameters
will be varied and how the others will be fixed. The three elements of the
list coorespond to Ha.sigma, Ht.sigma, and Hat.sigma, respectively. List
elements may take value "vary" if the parameter is to be varied, "opt"
if the parameter is to be held fixed at is optimum value (as evaluated
by the objective function), or an arbitrary numeric value at which that
parameter is to be fixed. If the element is a numeric value, the function
will look for the closest value at which the objective function was evaluated
to hold the parameter constant. Naturally, at least one parameter must
be varied. If any of the parameters was left as NA in the grid search, the
function will automatically hold it fixed at NA regardless of the value of
its corresponding list element.

family String. Indicates the surface to be plotted. The default, "obj.fun",
indicates the objective function, and its four components are specified by
strings "rss", "arc.age", "arc.time", or "trend.deviate".

lattice.plot String. Type of plot in lattice package to be used. The default is
wireframe, but levelplot, cloud, and contourplot will also work.
Note: this only applies when exactly two of the parameters are not fixed.

screen List. List with three elements ‘x’, ‘y’, and ‘z’ that rotate the viewing
angle for three dimensional plots (passed to wireframe). Optimal viewing
angles can often by found by increasing the ‘z’ element by 90 or 180
degrees.

print String. Specifies whether graphical output should be displayed on a device
window ("device") or saved directly to a ‘.pdf’ file ("pdf").

filename If print="pdf", specifies the filename of the ‘.pdf’ created.

4 REFERENCE 26

args.par List. If only one variable is allowed to vary (so that plot is the plotting
method), a list of arguments (must be labeled) to be passed to par such
as col="blue", cex=0.8, etc.

args.print.trellis

List. If two variables allowed to vary (so that wireframe is the plot-
ting method), a list of arguments (must be labeled) to be passed to
print.trellis function used to print wireframe plot to the device. Used
by plot.autocast to print multiple plots to the same device.

... Additional arugments to be passed to plotting method. If one parameter
allowed to vary will be plot; if two parameters allowed to vary will be
wireframe.

Details

Function plots the surface of the objective function or any of its three component diagnostics
using the grid search output from autocast. The fix.param argument specifies which of
the three smoothing parameters should be allowed to vary and which should be fixed at
a specific value (either the optimum or one chosen by the user). If the user requests that
one parameter be varied, the function makes a call to the plot function; if two varied, it
makes a call to the function specified in lattice.plot; if three are varied, it makes a call
to cloud.

plot.diag calls several functions in order to create a plot. To ensure maximum flexibility,
the user can pass additional arguments to these functions through use of the ... argument
(for the plotting method) or with the ‘args’ lists. While plot.diag changes some of the
defaults of these functions, the user can override these changes by specifying a value for
that argument. For example, if the user fails to supply an argument to main, the function
will create an informative title for the plot. If a value for main is supplied, that value will
be used.

Value

None. Prints a plot either to the device window or to a ‘.pdf’ file.

Author(s)

Jon Bischof <jbischof@fas.harvard.edu>

References

http://gking.harvard.edu/yourcast

See Also

autocast

http://gking.harvard.edu/yourcast

REFERENCES 27

References

Girosi, Federico and Gary King. 2008. Demographic Forecasting. Princeton: Princeton Univer-
sity Press.
URL: http://gking.harvard.edu/files/abs/smooth-abs.shtml

	Introduction
	Objective function measurement
	User's Guide
	Installation
	Loading data
	Setting up a YourCast call
	Grid search
	Direct optimization
	Refinements

	Reference
	autocast: Automated Bayesian Forecasting with YourCast
	optim.autocast: Automated Bayesian Forecasting with YourCast Using Optimization
	plot.autocast: Plot generation tool for AutoCast
	run.opt: Generate forecasts using optimal sigma combinations
	plot.diag: Plot objective function or component diagnostics

