Appendixes
Appendix A

Notation

A.1 Principles

Variables and Parameters We use Greek symbols for unknown quantities, such as regression coefficients (β), expected values (μ), disturbances (ϵ), and variances (σ^2), and Roman symbols for observed quantities, such as y and m for the dependent variable, while the symbols X and Z refer to covariates.

Parameters that are unknown, but are treated as known rather than estimated, appear in the following font: abcdef. Examples of these user-chosen parameters include the number of derivatives in a smoothing prior (n) and some hyperprior parameters (e.g., f, g).

Indices The indices $i, j = 1, \ldots, N$ refer to generic cross sections. When the cross sections are countries, they may be labeled by the index $c = 1, \ldots, C$; when they are age groups, or specific ages, they may be labeled by the index $a = 1, \ldots, A$. Each cross section also varies over time, which is indexed as $t = 1, \ldots, T$. Cross-sectional time-series variables have the cross-sectional index (or indices) first and the time index last. For example, m_{it} denotes the value of the variable m in cross section i at time t, and similarly m_{cat} is the value of the variable m in country c and age group a at time t.

Cross section i contains k_i covariates. Therefore Z_{it} is a $k_i \times 1$ vector of covariates and β_i is a $k_i \times 1$ vector of coefficients. Every vector or matrix with one or more dimensions equal to k_i, such as Z_{it} or β_i, will be in bold.

Dropping one index from a quantity with one or more indices implies taking the union over the dropped indices, possibly arranging the result in vector form. For example, if m_{it} is the observed value of the dependent variable in cross section i at time t, then m_t is an $N \times 1$ column vector whose j-th element is m_{jt}. We refer to the vector m_t as the cross-sectional profile at time t. If the cross sections i are age groups, we call the vector m_i the age profile at time t. Applying the same in reverse, we denote by m_i the $T \times 1$ column vector of the time series corresponding to cross section i. Iterating this rule results in denoting by m the totality of elements m_{it}, and by β the totality of vectors β_i. Similarly, Z_i denotes the standard $T \times k_i$ data matrix for cross section i, with rows equal to the vector Z_{it}.

If X is a vector, then $\text{diag}(X)$ is the diagonal matrix with X on its diagonal. If W is a matrix, then $\text{diag}(W)$ is the column vector whose elements are the diagonal elements of W.

Sums We use the following shorthand for summation whenever it does not create confusion:

$$\sum_{t} \equiv \sum_{t=1}^{T}, \quad \sum_{i} \equiv \sum_{i=1}^{N}, \quad \sum_{c} \equiv \sum_{c=1}^{C}, \quad \sum_{a} \equiv \sum_{a=1}^{A}.$$

We also define the “summer” vector $\mathbf{1} \equiv (1, 1, \ldots, 1)$ so that for matrix X, $X\mathbf{1}$ denotes the row sums.
APPENDIX A

Norms For a matrix \mathbf{x}, we define the weighted Euclidean (or Mahalanobis) norm as $\|\mathbf{x}\|_\Phi^2 \equiv \mathbf{x}^T \Phi \mathbf{x}$, with the standard Euclidean norm as a special case, so that $\|\mathbf{x}\|_I = \|\mathbf{x}\|$, with I as the identity matrix.

Functions We denote probability densities by capitalized symbols in calligraphic font. For example, the normal density with mean μ and standard deviation σ is $\mathcal{N}(\mu, \sigma^2)$. We denote generic probability densities by \mathcal{P}, and for ease of notation we distinguish one density from another only by their arguments. Therefore, for example, instead of writing $\mathcal{P}(\mathbf{x})$ and $\mathcal{P}(\mathbf{z})$, we simply write $\mathcal{P}(\mathbf{x})$ and $\mathcal{P}(\mathbf{z})$.

Sets Sets such as the real line \mathbb{R} and its subsets ($S \subset \mathbb{R}$) or the natural numbers \mathbb{N} and the integers \mathbb{Z} are denoted with these capital blackboard fonts. We denote the null space of a matrix, operator, or functional as \mathcal{N}.

A.2 Glossary

a index for age groups
A number of age groups
b_{it} an exogenous weight for an observation at time t in cross section i
$\boldsymbol{\beta}_i$ vector of regression coefficients for cross section i
$\boldsymbol{\beta}_{WLS}^i \equiv (\mathbf{X}'_i \mathbf{X}_i)^{-1} \mathbf{X}'_i \mathbf{y}_i$ the vector of weighted least-squares estimates
c index for country
C number of countries
d_{it} the number of deaths in cross-sectional unit i occurring during time period t
δ_{ij} Kronecker’s delta function, equal to 1 if $i = j$ and 0 otherwise
$\mathbb{E}[\cdot]$ the expected value operator
ϵ an error term
$F(\mu)$ summary measures
η an error term
i index for a generic cross section (with examples being a for age, or c for country)
I the identity matrix (generic)
$I_d, I_{d\times d}$ the $d \times d$ identity matrix
j index for a generic cross section
k_i the number of covariates in cross section i, and the dimension of all corresponding boldface quantities, such as $\boldsymbol{\beta}_i$ and \mathbf{Z}_{it}
L generic diagonal matrix
λ mean of a Poisson event count (section 3.1.1)
$\ln(\cdot)$ the natural logarithm
M_{it} mortality rate for cross-sectional unit i at time t: $M_{it} \equiv d_{it} / p_{it}$
m_{it} a generic symbol for the observed value of the dependent variable in cross section i at time t. When referring to an application, we use $m_{it} = \ln(M_{it})$, the natural log of the mortality rate.
m_{it} mean log-mortality age profile, averaging over time, $\overline{m}_a = \frac{\sum_{t=1}^T m_{at}}{T}$
Appendixa.tex

NOTATION

\tilde{m} matrix of mean-centered logged mortality rates, with elements
$\tilde{m}_{at} \equiv m_{at} - \bar{1}_T \sum_t m_{at}$

μ_{it} expected value of the dependent variable in cross section i at time t

N number of cross-sectional units

\mathbb{N} the set of natural numbers

n generic order of the derivative of the smoothness functional

\mathbb{R} the null space of an operator or a functional

\mathbb{R}_\perp the orthogonal complement of the null space \mathbb{R}

v an error term

$O_{q \times d}$ a $q \times d$ matrix of zeros

p_{it} population (number of people) in cross-sectional unit i at the start of time period t

\mathcal{P} probability densities. The same \mathcal{P} may refer to two different densities, with the meaning clarified from their arguments.

Q generic correlation matrix of the data

\mathbb{R} the set of real numbers

s_{ij} the weight describing how similar cross-sectional unit i is to cross-sectional unit j. This “similarity measure” s_{ij} is large when the two units are similar, except that, for convenience but without loss of generality, we set $s_{ii} = 0$.

$s_i^+ \equiv \sum_j s_{ij}$ If s_{ij} is zero or one for all i and j, s_i^+ is known as the degree of i and is interpreted as the number of i’s neighbors (or the number of edges connected to vertex i).

Σ an unknown covariance matrix

t a generic time period (usually a year)

T total number of time periods (length of time series, when they all have the same length)

T_i number of observations for cross section i (if $T_i = T_j$, $\forall i, j = 1, \ldots, N$ then we set $T_i = T$)

θ drift parameter in the Lee-Carter model. We reuse this symbol for the smoothing parameter in our approach.

U_{it} a missingness indicator equal to 0 if the dependent variable is missing in cross section i at time t, and 1 if observed

V generic orthogonal matrix

$V[\cdot]$ the variance

W a symmetric matrix constructed from the similarity matrix s. See appendix B.2.6 (page 237).

$X_{it} \equiv U_{it} \sqrt{b_{it}} Z_{at}$ the explanatory variable vector (X_{it}) weighted by the exogenous weights b_{it}, when observed ($U_{it} = 1$) and 0 when missing

ξ an error term

x_{\circ} the projection of the vector x on some subspace

x_{\perp} the projection of the vector x on the orthogonal complement of some subspace
APPENDIX A

\[y_{it} \equiv U_{it} \sqrt{P_{it}} m_{it} \]

log-mortality rate \((m_{it})\) weighted by population \((p_{it})\), when observed \((U_{it} = 1)\) and 0 when missing

\(Z_{it}\)
a \(k_i\)-dimensional vector of covariates, for cross-sectional unit \(i\) at time \(t\). The vector of covariates usually includes the constant.

\(Z_i\)
the \(k_i \times T_j\) data matrix for cross section \(i\), whose rows are given by the vectors \(Z_{it}\)

\(Z\)
the set of integers