How to Measure Legislative District Compactness If You Only Know it When You See it

Aaron Kaufman, Gary King, Mayya Komisarchik

Institute for Quantitative Social Science
Harvard University

Society for Political Methodology, University of Wisconsin, 7/14/2017

1Paper available at j.mp/Compactness
Redistricting Defines Democracy — & Needs Fixing

Fundamental to Democracy

Control redistricting ⇝ Define basic units of representation

$100s of millions spent trying to influence the rules of the game

Litigation in almost every jurisdiction, every time

Blamed for: unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, ...
Fundamental to Democracy
Redistricting Defines Democracy — & Needs Fixing

Fundamental to Democracy

- Control redistricting \iff Define basic units of representation
Fundamental to Democracy

- Control redistricting \implies\ Define basic units of representation
- $100s$ of millions spent trying to influence the rules of the game
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
  - Control redistricting → Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
  - Control redistricting ⇔ Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- Blamed for:
Fundamental to Democracy

- Control redistricting \( \rightsquigarrow \) Define basic units of representation
- $100s$ of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time

Blamed for:

- unfair elections,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting $\implies$ Define basic units of representation
  - $\$100s$ of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting → Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting ≅ Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock, partisan bias,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting ⟷ Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness,
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
  - Control redistricting \(\iff\) Define basic units of representation
  - $100s$ of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- Blamed for:
  - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting \( \rightsquigarrow \) Define basic units of representation
  - $100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
  - Control redistricting $\leadsto$ Define basic units of representation
  - $100s$ of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- Blamed for:
  - unfair elections, excessive partisanship, policy gridlock, partisan bias,
    lack of electoral responsiveness, racial bias, . . .

- How to fix this?
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting \(\Rightarrow\) Define basic units of representation
  - $100s$ of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .

- **How to fix this?**
  - Constrain redistricters.
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
  - Control redistricting \( \rightsquigarrow \) Define basic units of representation
  - \$100s of millions spent trying to influence the rules of the game
  - Litigation in almost every jurisdiction, every time

- **Blamed for:**
  - unfair elections, excessive partisanship, policy gridlock, partisan bias,
    lack of electoral responsiveness, racial bias, . . .

- **How to fix this?**
  - Constrain redistricters.
  - E.g., Population equality, partisan fairness, racial fairness, respect for municipal boundaries . . . **compactness**
The Discipline & Redistricting

Political science contributions to the real world:

- Partisan fairness: Invented standard (partisan symmetry) & methods
- Racial fairness: Invented methods of ecological inference (for VRA)
- Forecasting elections in new districts, for all sides
- Public service: as consultants, expert witnesses, special masters
- Measurable impact: in numerous legal cases, state laws

Political science disconnect from the real world: Compactness

Researchers: Assumed so complicated, numerous measures needed

Law: Assumed so simple, no definition needed!

Illinois Constitution: "Legislative Districts shall be compact"

Washington: "Each district shall be as compact as possible"

Iowa: "avoid drawing districts that are oddly shaped"

Supreme Court: "One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—. . . to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"

Required in many other jurisdictions
The Discipline & Redistricting

- Political science contributions to the real world
The Discipline & Redistricting

- Political science contributions to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
The Discipline & Redistricting

- Political science **contributions** to the real world
  - **Partisan fairness:** Invented standard (partisan symmetry) & methods
  - **Racial fairness:** Invented methods of ecological inference (for VRA)
The Discipline & Redistricting

- Political science contributions to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
  - Racial fairness: Invented methods of ecological inference (for VRA)
  - Forecasting elections in new districts, for all sides

- Political science disconnect from the real world: Compactness
  - Researchers: Assumed so complicated, numerous measures needed
  - Law: Assumed so simple, no definition needed!

- Illinois Constitution: "Legislative Districts shall be compact"
- Washington: "Each district shall be as compact as possible"
- Iowa: "avoid drawing districts that are oddly shaped"
- Supreme Court: "One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—. . . to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"

- Required in many other jurisdictions
Political science contributions to the real world

- **Partisan fairness:** Invented standard (partisan symmetry) & methods
- **Racial fairness:** Invented methods of ecological inference (for VRA)
- **Forecasting elections** in new districts, for all sides
- **Public service:** as consultants, expert witnesses, special masters

**Illinois Constitution:**
"Legislative Districts shall be compact"

**Washington:**
"Each district shall be as compact as possible"

**Iowa:**
"avoid drawing districts that are oddly shaped"

**Supreme Court:**
"One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—. . . to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"

Required in many other jurisdictions
Political science contributions to the real world

- **Partisan fairness:** Invented standard (partisan symmetry) & methods
- **Racial fairness:** Invented methods of ecological inference (for VRA)
- **Forecasting elections** in new districts, for all sides
- **Public service:** as consultants, expert witnesses, special masters
- **Measurable impact:** in numerous legal cases, state laws
The Discipline & Redistricting

- Political science **contributions** to the real world
  - **Partisan fairness:** Invented standard (partisan symmetry) & methods
  - **Racial fairness:** Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service:** as consultants, expert witnesses, special masters
  - **Measurable impact:** in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
The Discipline & Redistricting

- Political science **contributions** to the real world
  - **Partisan fairness**: Invented standard (partisan symmetry) & methods
  - **Racial fairness**: Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service**: as consultants, expert witnesses, special masters
  - **Measurable impact**: in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
  - **Researchers**: Assumed so **complicated**, numerous measures needed
The Discipline & Redistricting

- Political science **contributions** to the real world
  - **Partisan fairness:** Invented standard (partisan symmetry) & methods
  - **Racial fairness:** Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service:** as consultants, expert witnesses, special masters
  - **Measurable impact:** in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
  - **Researchers:** Assumed so **complicated**, numerous measures needed
  - **Law:** Assumed so **simple**, no definition needed!
The Discipline & Redistricting

- Political science **contributions** to the real world
  - **Partisan fairness**: Invented standard (partisan symmetry) & methods
  - **Racial fairness**: Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service**: as consultants, expert witnesses, special masters
  - **Measurable impact**: in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
  - **Researchers**: Assumed so complicated, numerous measures needed
  - **Law**: Assumed so simple, no definition needed!
    - Illinois Constitution:
The Discipline & Redistricting

- Political science **contributions** to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
  - Racial fairness: Invented methods of ecological inference (for VRA)
  - Forecasting elections in new districts, for all sides
  - Public service: as consultants, expert witnesses, special masters
  - Measurable impact: in numerous legal cases, state laws

- Political science **disconnect** from the real world: Compactness
  - Researchers: Assumed so complicated, numerous measures needed
  - Law: Assumed so simple, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
The Discipline & Redistricting

- Political science contributions to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
  - Racial fairness: Invented methods of ecological inference (for VRA)
  - Forecasting elections in new districts, for all sides
  - Public service: as consultants, expert witnesses, special masters
  - Measurable impact: in numerous legal cases, state laws

- Political science disconnect from the real world: Compactness
  - Researchers: Assumed so complicated, numerous measures needed
  - Law: Assumed so simple, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington:
The Discipline & Redistricting

- **Political science contributions** to the real world
  - **Partisan fairness:** Invented standard (partisan symmetry) & methods
  - **Racial fairness:** Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service:** as consultants, expert witnesses, special masters
  - **Measurable impact:** in numerous legal cases, state laws

- **Political science disconnect** from the real world: **Compactness**
  - **Researchers:** Assumed so complicated, numerous measures needed
  - **Law:** Assumed so simple, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington: “Each district shall be as compact as possible”
The Discipline & Redistricting

- Political science contributions to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
  - Racial fairness: Invented methods of ecological inference (for VRA)
  - Forecasting elections in new districts, for all sides
  - Public service: as consultants, expert witnesses, special masters
  - Measurable impact: in numerous legal cases, state laws

- Political science disconnect from the real world: Compactness
  - Researchers: Assumed so complicated, numerous measures needed
  - Law: Assumed so simple, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington: “Each district shall be as compact as possible”
    - Iowa:
The Discipline & Redistricting

- Political science **contributions** to the real world
  - Partisan fairness: Invented standard (partisan symmetry) & methods
  - Racial fairness: Invented methods of ecological inference (for VRA)
  - Forecasting elections in new districts, for all sides
  - Public service: as consultants, expert witnesses, special masters
  - Measurable impact: in numerous legal cases, state laws

- Political science **disconnect** from the real world: Compactness
  - Researchers: Assumed so **complicated**, numerous measures needed
  - Law: Assumed so **simple**, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington: “Each district shall be as compact as possible”
    - Iowa: “avoid drawing districts that are oddly shaped”
Political science contributions to the real world

- Partisan fairness: Invented standard (partisan symmetry) & methods
- Racial fairness: Invented methods of ecological inference (for VRA)
- Forecasting elections in new districts, for all sides
- Public service: as consultants, expert witnesses, special masters
- Measurable impact: in numerous legal cases, state laws

Political science disconnect from the real world: Compactness

- Researchers: Assumed so complicated, numerous measures needed
- Law: Assumed so simple, no definition needed!
  - Illinois Constitution: “Legislative Districts shall be compact”
  - Washington: “Each district shall be as compact as possible”
  - Iowa: “avoid drawing districts that are oddly shaped”
  - Supreme Court:
The Discipline & Redistricting

- **Political science contributions to the real world**
  - **Partisan fairness:** Invented standard (partisan symmetry) & methods
  - **Racial fairness:** Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service:** as consultants, expert witnesses, special masters
  - **Measurable impact:** in numerous legal cases, state laws

- **Political science disconnect from the real world:** Compactness
  - **Researchers:** Assumed so complicated, numerous measures needed
  - **Law:** Assumed so simple, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington: “Each district shall be as compact as possible”
    - Iowa: “avoid drawing districts that are oddly shaped”
    - Supreme Court: “One need not use Justice Stewart’s classic definition of obscenity—‘I know it when I see it’—... to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation”
The Discipline & Redistricting

- **Political science contributions** to the real world
  - **Partisan fairness**: Invented standard (partisan symmetry) & methods
  - **Racial fairness**: Invented methods of ecological inference (for VRA)
  - **Forecasting elections** in new districts, for all sides
  - **Public service**: as consultants, expert witnesses, special masters
  - **Measurable impact**: in numerous legal cases, state laws

- **Political science disconnect** from the real world: **Compactness**
  - **Researchers**: Assumed so **complicated**, numerous measures needed
  - **Law**: Assumed so **simple**, no definition needed!
    - Illinois Constitution: “Legislative Districts shall be compact”
    - Washington: “Each district shall be as compact as possible”
    - Iowa: “avoid drawing districts that are oddly shaped”
    - Supreme Court: “One need not use Justice Stewart’s classic definition of obscenity—‘I know it when I see it’—... to recognize that **dramatically irregular shapes** may have sufficient probative force to call for an explanation”
    - Required in many other jurisdictions
Compactness According to the Law

The dimension is intuitive. How to estimate where a new district shape falls on this dimension? Only a consensus measure can constrain advocates.
Compactness According to the Law
A simple single compactness dimension that you know when you see
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact

The dimension is intuitive.

How to estimate where a new district shape falls on this dimension?

Only a consensus measure can constrain advocates.
Compactness According to the Law
A simple single compactness dimension that you know when you see
Compactness According to the Law

A simple single compactness dimension that you know when you see.
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact

How to estimate where a new district shape falls on this dimension?

Only a consensus measure can constrain advocates.
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

- More Compact
- Less Compact

- The dimension is intuitive
Compactness According to the Law

A simple single compactness dimension that you know when you see

The dimension is intuitive

How to estimate where a new district shape falls on this dimension?
Compactness According to the Law

A simple single compactness dimension that you know when you see

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
Compactness According to the Law

A simple single compactness dimension that you know when you see

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
- \( \leadsto \) Let’s start with existing measures by social scientists
Measure 1: Length/Width Ratio of Min Bounding Box
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones

\[
\text{In both districts: } \frac{X}{Y} \approx 1.30
\]

\[
\frac{5}{1}
\]
Measure 1: Length/Width Ratio of Min Bounding Box
Squarish districts more compact than long thin ones

In both districts: $X/Y \approx 1.30$
Measure 2: Reock, District / Bounding Circle Areas

\[
\frac{X}{Y + X} \approx 0.3761
\]
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact.
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact

In both cases, $\frac{X}{Y + X} \approx 0.37$
Measure 3: Boyce-Clark, Variation in Centroid Deviations

$\text{MAD}(r) / \bar{r} \approx 0.317/1$
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar.
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar.
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar

In both cases, $\text{MAD}(r)/\bar{r} \approx 0.31$
A Brief Interlude: Can you Name this Celebrity?
Human Perception: Not Rotationally Invariant

Existing measures of compactness:
- Nearly 100 proposed
- Almost all are rotationally invariant
- Blind to what humans perceive

Which is more compact?
- 9/1
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
  - Nearly 100 proposed
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
  - Nearly 100 proposed
  - Almost all are rotationally invariant
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
  - Nearly 100 proposed
  - Almost all are rotationally invariant
  - Blind to what humans perceive
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
  - Nearly 100 proposed
  - Almost all are rotationally invariant
  - Blind to what humans perceive

- Which is more compact?
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
  - Nearly 100 proposed
  - Almost all are rotationally invariant
  - Blind to what humans perceive

- Which is more compact?
New Measure: Y-Symmetry, area of symmetric reflection
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection
Symmetric figures (circles, squares) are more compact

In both cases, Overlap/Original Area \( \approx 0.34 \)
New Measure 2: Number of Visually Significant Corners

Both districts have 21 significant corners.
New Measure 2: Number of Visually Significant Corners
Computer vision algorithm identifies “objects” in photos
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

⇒ Fewer corners is more compact
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

⇝ Fewer corners is more compact
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

 Worse corners is more compact
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos
⇝ Fewer corners is more compact

Both districts have 21 significant corners
Which is more compact?

- Convex Hull
- Polsby-Popper
- Boyce-Clark

7 measures; 7 unique rankings

Unusual?

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%).

Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

Convex Hull

Reock

Polsby-Popper

Boyce-Clark

Length/Width

X-Axis Symmetry

Significant Corners

7 measures; 7 unique rankings

Unusual?

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%).

Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

Convex Hull

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%). Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Convex Hull</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length/Width</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%). Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
<th>X-Axis Symmetry</th>
<th>Significant Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rank</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rank</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rank</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rank</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rank</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

7 measures;
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- Unusual?
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- **Unusual?** From 18,215 Congressional and State Legislative Districts,
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- Unusual? From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%)
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
<th>X-Axis Symmetry</th>
<th>Significant Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- **Unusual?** From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%)
- Many more inconsistencies on individual districts
Spanning the Academic–Legal Divide

Recall the concept of compactness. Researchers: so complicated, numerous measures needed. Law: so simple, no definition needed. Our hypothesis: both are right. The theoretical concept: multidimensional. The legal concept: one dimensional. Which dimension? The one we know when we see. How do we know if we find it? Public officials and many other types of people: know it when they see it, see the same dimension. I.e., estimate the one dimension of legal interest; show it has: high intercoder (and intracoder) reliability, high predictive accuracy.
Spanning the Academic–Legal Divide

(Recall) The concept of compactness
(Recall) The concept of compactness

Researchers: So complicated, numerous measures needed
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
  - Researchers: So complicated, numerous measures needed
  - Law: So simple, no definition needed
(Recall) The concept of compactness

- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right
(Recall) The concept of compactness

- **Researchers:** So complicated, numerous measures needed
- **Law:** So simple, no definition needed

**Our Hypothesis:** both are right

- **The Theoretical Concept:** multidimensional
(Recall) The concept of compactness
- **Researchers**: So complicated, numerous measures needed
- **Law**: So simple, no definition needed

**Our Hypothesis**: both are right
- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
(Recall) The concept of compactness
- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right
- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
  - Researchers: So *complicated*, numerous measures needed
  - Law: So *simple*, no definition needed
- Our Hypothesis: both are right
  - The Theoretical Concept: multidimensional
  - The Legal Concept: one dimensional
  - Which dimension? The one we know when we see
- How do we know if we find it?
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
  - Researchers: So complicated, numerous measures needed
  - Law: So simple, no definition needed
- Our Hypothesis: both are right
  - The Theoretical Concept: multidimensional
  - The Legal Concept: one dimensional
  - Which dimension? The one we know when we see
- How do we know if we find it?
  - Public officials and many other types of people:
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
  - Researchers: So complicated, numerous measures needed
  - Law: So simple, no definition needed
- Our Hypothesis: both are right
  - The Theoretical Concept: multidimensional
  - The Legal Concept: one dimensional
  - Which dimension? The one we know when we see
- How do we know if we find it?
  - Public officials and many other types of people:
    - Know it when they see it,
(Recall) The concept of compactness
- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right
- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see

How do we know if we find it?
- Public officials and many other types of people:
  - Know it when they see it,
  - See the same dimension
Spanning the Academic–Legal Divide

(Recall) The concept of compactness
- **Researchers:** So complicated, numerous measures needed
- **Law:** So simple, no definition needed

**Our Hypothesis:** both are right
- **The Theoretical Concept:** multidimensional
- **The Legal Concept:** one dimensional
- **Which dimension?** The one we know when we see

**How do we know if we find it?**
- Public officials and many other types of people:
  - Know it when they see it,
  - See the same dimension
- I.e., estimate the one dimension of legal interest; show it has:
(Recall) The concept of compactness

- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right

- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see

How do we know if we find it?

- Public officials and many other types of people:
  - Know it when they see it,
  - See the same dimension
- I.e., estimate the one dimension of legal interest; show it has:
  - high intercoder (and intracoder) reliability
(Recall) The concept of compactness

- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right

- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see

How do we know if we find it?

- Public officials and many other types of people:
  - Know it when they see it,
  - See the same dimension

  I.e., estimate the one dimension of legal interest; show it has:
  - high intercoder (and intracoder) reliability
  - high predictive accuracy
How to rank districts on the same dimension?

Why Paired Comparisons is supposedly better; example with $n = 20$

Much easier: $(20^2) = 190$ pairs v $20! \approx 2$ quintillion ranks

Everyone does what they are good at:
- Respondents answer simple, concrete questions
- Researchers reconstruct the scale

Why Ranking is actually better (at least in our application)
- Humans use time-saving heuristics.

Would it take you 2 quintillion seconds to rank 20 districts?

190 paired comparisons is tedious and boring; Ranking is more intellectually engaging

Saves time:
- 1 task v 190 comparisons

Paired Comparisons can be answered on different dimensions
- Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Why Paired Comparisons is supposedly better; example with $n = 20$

Much easier: $\binom{20}{2} = 190$ pairs $\approx 2$ quintillion ranks

Everyone does what they are good at:

- Respondents answer simple, concrete questions
- Researchers reconstruct the scale

Why Ranking is actually better (at least in our application)

- Humans use time-saving heuristics.
- Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring;
- Ranking is more intellectually engaging

Saves time:

- 1 task v 190 comparisons

Paired Comparisons can be answered on different dimensions

Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Paired Comparison

Why Paired Comparisons is supposedly better; example with $n = 20$

Much easier:

$\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks

Everyone does what they are good at:

Respondents answer simple, concrete questions
Researchers reconstruct the scale

Why Ranking is actually better (at least in our application)

Humans use time-saving heuristics.

Would it take you 2 quintillion seconds to rank 20 districts?

190 paired comparisons is tedious and boring;
Ranking is more intellectually engaging

Saves time:

1 task v 190 comparisons

Paired Comparisons can be answered on different dimensions
Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Paired Comparison

Utterly fails on inter- and intra-coder reliability
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

---

Why Paired Comparisons is supposedly better; example with \( n = 20 \)

Much easier: \((20^2) = 190\) pairs v \(20! \approx 2\) quintillion ranks

Everyone does what they are good at:
- Respondents answer simple, concrete questions
- Researchers reconstruct the scale

Why Ranking is actually better (at least in our application)
- Humans use time-saving heuristics.
- Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
- Saves time: 1 task v 190 comparisons
- Paired Comparisons can be answered on different dimensions
- Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

We show: very high reliability
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better; example with $n = 20$

- Much easier: $(20^2) = 190$ pairs v $20! \approx 2$ quintillion ranks

- Everyone does what they are good at:
  - Respondents answer simple, concrete questions
  - Researchers reconstruct the scale

- Why Ranking is actually better (at least in our application)
  - Humans use time-saving heuristics.
  - Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging

- Saves time:
  - 1 task v 190 comparisons

- Paired Comparisons can be answered on different dimensions
- Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better; example with \( n = 20 \)
  - Much easier: \( \binom{20}{2} = 190 \) pairs v \( 20! \approx 2 \text{ quintillion} \) ranks
  - Everyone does what they are good at:
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

Humans use time-saving heuristics.
Would it take you 2 quintillion seconds to rank 20 districts?
190 paired comparisons is tedious and boring;
Ranking is more intellectually engaging
Saves time:
1 task v 190 comparisons
Paired Comparisons can be answered on different dimensions
Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- Why Ranking is actually better (at least in our application)
  - Humans use time-saving heuristics.
  - Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring;
  - Ranking is more intellectually engaging
  - Saves time: 1 task v 190 comparisons
  - Paired Comparisons can be answered on different dimensions
    - Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale
- Why Ranking is **actually** better (at least in our application)
  - Humans use time-saving heuristics.
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- Why Ranking is actually better (at least in our application)
  - Humans use time-saving heuristics.
    Would it take you 2 quintillion seconds to rank 20 districts?
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- **Why Paired Comparisons is supposedly better; example with** $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- **Why Ranking is actually better** (at least in our application)
  - Humans use time-saving heuristics.
    Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring;
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- **Why Paired Comparisons is supposedly better; example with** $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- **Why Ranking is actually better** (at least in our application)
  - Humans use time-saving heuristics.
    Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring;
    Ranking is more intellectually engaging
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better; example with $n = 20$
  - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- Why Ranking is **actually** better (at least in our application)
  - Humans use time-saving heuristics.
    Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring;
    Ranking is more intellectually engaging
  - Saves time: 1 task v 190 comparisons
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Why Paired Comparisons is supposedly better; example with \( n = 20 \)

- Much easier: \( \binom{20}{2} = 190 \text{ pairs} \) v \( 20! \approx 2 \text{ quintillion ranks} \)
- Everyone does what they are good at:
  - Respondents answer simple, concrete questions
  - Researchers reconstruct the scale

Why Ranking is actually better (at least in our application)

- Humans use time-saving heuristics.
  Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring;
  Ranking is more intellectually engaging
- Saves time: 1 task v 190 comparisons
- Paired Comparisons can be answered on different dimensions
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better; example with \( n = 20 \)
  - Much easier: \( \binom{20}{2} = 190 \) pairs v \( 20! \approx 2 \) quintillion ranks
  - Everyone does what they are good at:
    - Respondents answer simple, concrete questions
    - Researchers reconstruct the scale

- Why Ranking is **actually** better (at least in our application)
  - Humans use time-saving heuristics.
    Would it take you 2 quintillion seconds to rank 20 districts?
  - 190 paired comparisons is tedious and boring;
    Ranking is more intellectually engaging
  - Saves time: 1 task v 190 comparisons
  - Paired Comparisons can be answered on **different dimensions**
    Ranking: all evaluations on **one dimension** of user’s choice
Intercoder Reliability of Pairs
Intercoder Reliability of Pairs

Paired Comparisons: only slightly better than chance;
Intercoder Reliability of Pairs

Paired Comparisons: only slightly better than chance; Ranking: better
Intracoder Reliability of Pairs
Intracoder Reliability of Pairs

Paired Comparisons: better than chance;
Intracoder Reliability of Pairs

Paired Comparisons: better than chance; Ranking: much better
Intercoder Reliability on Ranks

\[ \rho = 0.77 \]
Intercoder Reliability on Ranks

\[ \rho = 0.77 \]

\[ \rho = 0.81 \]
Intercoder Reliability on Ranks

\[ \rho = 0.77 \]

\[ \rho = 0.70 \]

\[ \rho = 0.81 \]
Intercoder Reliability on Ranks

\[ \rho = 0.77 \]

\[ \rho = 0.70 \]

\[ \rho = 0.81 \]
Intracoder Reliability on Ranks
Intracoder Reliability on Ranks

\[ \rho = 0.90 \]

\[ \rho = 0.92 \]
Intracoder Reliability on Ranks

\[ T_2 vs. T_1 \]

- \( \rho = 0.90 \)
- \( \rho = 0.84 \)
- \( \rho = 0.92 \)
Intracoder Reliability on Ranks

\[ \rho = 0.90 \]

\[ \rho = 0.84 \]

\[ \rho = 0.92 \]
So we can measure it. Can we model it?
So we can measure it. Can we model it?

Goal: Compactness score = \( f(\text{shape}) \)
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data:** Outcome variable from human rankings
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data:** Outcome variable from human rankings
- **Covariates:** Features of district shape
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data:** Outcome variable from human rankings
- **Covariates. Features of district shape**
  - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
So we can measure it. Can we model it?

Goal: Compactness score = \( f(\text{shape}) \)

- **Training data:** Outcome variable from human rankings
- **Covariates. Features of district shape**
  - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark . . .
  - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance . . .
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data:** Outcome variable from human rankings
- **Covariates. Features of district shape**
  - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
  - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance...
  - **New:** X-axis symmetry, Y-axis symmetry, Significant Corners...
So we can measure it. Can we model it?

Goal: Compactness score $= f(\text{shape})$

- **Training data**: Outcome variable from human rankings
- **Covariates. Features of district shape**
  - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
  - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance...
  - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners...
- **Ensemble of predictive methods**: least squares, AdaBoosted decision trees, SVM, random forests...
Model Validation: 6-Fold Cross-validation
Model Validation: 6-Fold Cross-validation

Predict Test Set from 5 Training Sets
Model Validation: 6-Fold Cross-validation

Predict Test Set from 5 Training Sets

\[ \rho = 0.91 \]
Model Validation: 6-Fold Cross-validation
Predict Test Set from 5 Training Sets

ρ = 0.91
ρ = 0.93
ρ = 0.96
ρ = 0.94
ρ = 0.94
ρ = 0.92
Model Validation: Diverse Respondents
Model Validation: Diverse Respondents
Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting.
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents
Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting.
Model Validation: Diverse Respondents
Respondents ranging from ordinary citizens to those responsible for redistricting
Concluding Remarks

We address: Disconnect between political science & the real world

The Theoretical Concept: multidimensional and complex
The Legal Concept: one dimensional and simple

A proposed resolution: measure the one dimension everyone sees
Calculated solely from district geometry
Very high intercoder & intracoder reliability
Very high predictive validity
Diverse people see it the same way

⇝
Continue political science tradition of contributing to a fundamental part of representative democracy

Accompanying this paper:
Measures: for 18,215 Congressional & State Legislative districts
Software to calculate compactness from any district shape

Along the way:
New perspective on 150 year consensus of ranking v paired comparisons
New directions for two venerable literatures
Concluding Remarks

- **We address:** Disconnect between political science & the real world
Concluding Remarks

- We address: Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple

Along the way:
- New perspective on 150 year consensus of ranking v paired comparisons
- New directions for two venerable literatures

Accompanying this paper:
- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape
Concluding Remarks

- We address: Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- A proposed resolution: measure the one dimension everyone sees
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability

Accompanying this paper:

- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape

Along the way:

- New perspective on 150 year consensus of ranking v paired comparisons
- New directions for two venerable literatures
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity

Along the way:
- New perspective on 150 year consensus of ranking v paired comparisons
- New directions for two venerable literatures

Accompanying this paper:
- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  - → Continue political science tradition of contributing to a fundamental part of representative democracy
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  -Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**

- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape
- Along the way:
  - New perspective on >150 year consensus of ranking v paired comparisons
  - New directions for two venerable literatures

22/1
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  - Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**
  - Measures: for 18,215 Congressional & State Legislative districts
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  - ≻ Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**
  - Measures: for 18,215 Congressional & State Legislative districts
  - Software to calculate compactness from any district shape
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  - ✐️ Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**
  - Measures: for 18,215 Congressional & State Legislative districts
  - Software to calculate compactness from any district shape

- **Along the way:**
Concluding Remarks

- **We address:** Disconnect between political science & the real world
  - The Theoretical Concept: multidimensional and complex
  - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
  - Calculated solely from district geometry
  - Very high intercoder & intracoder reliability
  - Very high predictive validity
  - Diverse people see it the same way
  - Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**
  - Measures: for 18,215 Congressional & State Legislative districts
  - Software to calculate compactness from any district shape
- **Along the way:**
  - New perspective on > 150 year consensus of ranking v paired comparisons
We address: Disconnect between political science & the real world
- The Theoretical Concept: multidimensional and complex
- The Legal Concept: one dimensional and simple

A proposed resolution: measure the one dimension everyone sees
- Calculated solely from district geometry
- Very high intercoder & intracoder reliability
- Very high predictive validity
- Diverse people see it the same way
- ⇝ Continue political science tradition of contributing to a fundamental part of representative democracy

Accompanying this paper:
- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape

Along the way:
- New perspective on > 150 year consensus of ranking v paired comparisons
- New directions for two venerable literatures
For more information

AaronRKaufman.com

GaryKing.org

j.mp/MayyaKomisarchik