How to Measure Legislative District Compactness
If You Only Know it When You See it1

Gary King2

Institute for Quantitative Social Science
Harvard University

University of Minnesota, 9/12/2019

1Based on joint work with Aaron Kaufman and Mayya Komisarchik
2GaryKing.org
Redistricting Defines Democracy — & Needs Fixing

Control redistricting

Fundamental to Democracy

Define basic units of representation

$100s of millions spent trying to influence the rules of the game

Litigation in almost every jurisdiction, every time

⇝

Get the ball, move the goalposts

Blamed for:
- unfair elections,
- excessive partisanship,
- policy gridlock,
- partisan bias,
- lack of electoral responsiveness,
- racial bias,

How to fix this?

Constrain redistricters via:
- Population equality,
- partisan fairness,
- racial fairness,
- respect for municipal boundaries,
- compactness
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
 - Control redistricting \iff\ Define basic units of representation
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
 - Control redistricting \(\rightsquigarrow\) Define basic units of representation
 - $100s$ of millions spent trying to influence the rules of the game
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
 - Control redistricting \implies\ Define basic units of representation
 - $100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
Fundamental to Democracy

- Control redistricting \(\rightsquigarrow\) Define basic units of representation
- 100s of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- \(\rightsquigarrow\) Get the ball, move the goalposts
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \mapsto Define basic units of representation
 - $\text{100s of millions spent trying to influence the rules of the game}$
 - Litigation in almost every jurisdiction, every time
 - \mapsto Get the ball, move the goalposts

- **Blamed for:**

- unfair elections,
- excessive partisanship,
- policy gridlock,
- partisan bias,
- lack of electoral responsiveness,
- racial bias,
- ...
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting → Define basic units of representation
 - $100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - ~ Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections,
Redistricting Defines Democracy — & Needs Fixing

Fundamental to Democracy
- Control redistricting ⇔ Define basic units of representation
- $100s of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- ⇔ Get the ball, move the goalposts

Blamed for:
- unfair elections, excessive partisanship,
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
 - Control redistricting \Rightarrow Define basic units of representation
 - $\$100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \Rightarrow Get the ball, move the goalposts

- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \leadsto Define basic units of representation
 - $\$100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \leadsto Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias,
Fundamental to Democracy
- Control redistricting \(\implies \) Define basic units of representation
- \$100s of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- \(\implies \) Get the ball, move the goalposts

Blamed for:
- unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting ⇻ Define basic units of representation
 - $100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - ⇻ Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias,
 - lack of electoral responsiveness, racial bias,
Redistricting Defines Democracy — & Needs Fixing

Fundamental to Democracy

- Control redistricting \(\rightsquigarrow\) Define basic units of representation
- $100s$ of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- \(\rightsquigarrow\) Get the ball, move the goalposts

Blamed for:

- unfair elections, excessive partisanship, policy gridlock, partisan bias,
 lack of electoral responsiveness, racial bias, …
Redistricting Defines Democracy — & Needs Fixing

- Fundamental to Democracy
 - Control redistricting ⇾ Define basic units of representation
 - $100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - ⇾ Get the ball, move the goalposts

- Blamed for:
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .

- How to fix this?
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \(\rightsquigarrow\) Define basic units of representation
 - $100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \(\rightsquigarrow\) Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, . . .

- **How to fix this?**
 - Constrain redistricters via:
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \(\implies\) Define basic units of representation
 - $100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \(\implies\) Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, ...

- **How to fix this?**
 - Constrain redistricters via: Population equality,
Fundamental to Democracy

- Control redistricting ⇨ Define basic units of representation
- $100s$ of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- ⇨ Get the ball, move the goalposts

Blamed for:

- unfair elections, excessive partisanship, policy gridlock, partisan bias, lack of electoral responsiveness, racial bias, ...

How to fix this?

- Constrain redistricters via: Population equality, partisan fairness,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \(\rightarrow\) Define basic units of representation
 - $100s$ of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \(\rightarrow\) Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias,
 - lack of electoral responsiveness, racial bias, …

- **How to fix this?**
 - Constrain redistricters via: Population equality, partisan fairness, racial fairness,
Redistricting Defines Democracy — & Needs Fixing

- **Fundamental to Democracy**
 - Control redistricting \(\Rightarrow\) Define basic units of representation
 - \$100s of millions spent trying to influence the rules of the game
 - Litigation in almost every jurisdiction, every time
 - \(\Rightarrow\) Get the ball, move the goalposts

- **Blamed for:**
 - unfair elections, excessive partisanship, policy gridlock, partisan bias,
 lack of electoral responsiveness, racial bias, ...

- **How to fix this?**
 - Constrain redistricters via: Population equality, partisan fairness, racial
 fairness, respect for municipal boundaries ...
Fundamental to Democracy

- Control redistricting \(\leadsto\) Define basic units of representation
- $100s$ of millions spent trying to influence the rules of the game
- Litigation in almost every jurisdiction, every time
- \(\leadsto\) Get the ball, move the goalposts

Blamed for:

- unfair elections, excessive partisanship, policy gridlock, partisan bias,
 lack of electoral responsiveness, racial bias, . . .

How to fix this?

- Constrain redistricters via: Population equality, partisan fairness, racial fairness, respect for municipal boundaries . . . compactness
The Political Science Discipline & Redistricting

Political science contributions to the real world

- Partisan fairness: Invented standard (partisan symmetry) & methods
- Racial fairness: Invented methods of ecological inference (for VRA)
- Forecasting elections in new districts, for all sides
- Public service: as consultants, expert witnesses, special masters
- Measurable impact: in numerous legal cases, state laws

Political science disconnect from the real world: Compactness

Researchers: Assumed so complicated, numerous measures needed
Law: Assumed so simple, no definition needed!

Illinois Constitution: "Legislative Districts shall be compact"
Washington: "Each district shall be as compact as possible"
Iowa: "avoid drawing districts that are oddly shaped"
Supreme Court: "One need not use Justice Stewart's classic definition of obscenity—'I know it when I see it'—. . . to recognize that dramatically irregular shapes may have sufficient probative force to call for an explanation"

Required in many other jurisdictions
Political science contributions to the real world
The Political Science Discipline & Redistricting

- Political science contributions to the real world

- Political science disconnect from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods

- Political science disconnect from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)

- Political science disconnect from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science **contributions** to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides

- Political science **disconnect** from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters

- Political science disconnect from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science contributions to the real world
 - Partisan fairness: Invented standard (partisan symmetry) & methods
 - Racial fairness: Invented methods of ecological inference (for VRA)
 - Forecasting elections in new districts, for all sides
 - Public service: as consultants, expert witnesses, special masters
 - Measurable impact: in numerous legal cases, state laws

- Political science disconnect from the real world: Compactness
The Political Science Discipline & Redistricting

- Political science **contributions** to the real world
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
 - **Researchers:** Assumed so **complicated**, numerous measures needed
Political science contributions to the real world

- **Partisan fairness**: Invented standard (partisan symmetry) & methods
- **Racial fairness**: Invented methods of ecological inference (for VRA)
- **Forecasting elections**: in new districts, for all sides
- **Public service**: as consultants, expert witnesses, special masters
- **Measurable impact**: in numerous legal cases, state laws

Political science disconnect from the real world: Compactness

- **Researchers**: Assumed so complicated, numerous measures needed
- **Law**: Assumed so simple, no definition needed!
The Political Science Discipline & Redistricting

- **Political science contributions to the real world**
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- **Political science disconnect from the real world:** **Compactness**
 - **Researchers:** Assumed so **complicated**, numerous measures needed
 - **Law:** Assumed so **simple**, no definition needed!
 - Illinois Constitution:
The Political Science Discipline & Redistricting

- **Political science contributions to the real world**
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- **Political science disconnect from the real world: Compactness**
 - **Researchers:** Assumed so complicated, numerous measures needed
 - **Law:** Assumed so simple, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
The Political Science Discipline & Redistricting

- **Political science contributions** to the real world
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- **Political science disconnect** from the real world: **Compactness**
 - **Researchers:** Assumed so **complicated**, numerous measures needed
 - **Law:** Assumed so **simple**, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington:
Political science contributions to the real world

- **Partisan fairness**: Invented standard (partisan symmetry) & methods
- **Racial fairness**: Invented methods of ecological inference (for VRA)
- **Forecasting elections**: in new districts, for all sides
- **Public service**: as consultants, expert witnesses, special masters
- **Measurable impact**: in numerous legal cases, state laws

Political science disconnect from the real world: **Compactness**

- **Researchers**: Assumed so complicated, numerous measures needed
- **Law**: Assumed so simple, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
Political science contributions to the real world

- **Partisan fairness**: Invented standard (partisan symmetry) & methods
- **Racial fairness**: Invented methods of ecological inference (for VRA)
- **Forecasting elections** in new districts, for all sides
- **Public service**: as consultants, expert witnesses, special masters
- **Measurable impact**: in numerous legal cases, state laws

Political science disconnect from the real world: Compactness

- **Researchers**: Assumed so complicated, numerous measures needed
- **Law**: Assumed so simple, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
 - Iowa:
The Political Science Discipline & Redistricting

- Political science **contributions** to the real world
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
 - **Researchers:** Assumed so **complicated**, numerous measures needed
 - **Law:** Assumed so **simple**, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
 - Iowa: “avoid drawing districts that are oddly shaped”
The Political Science Discipline & Redistricting

- **Political science contributions** to the real world
 - **Partisan fairness**: Invented standard (partisan symmetry) & methods
 - **Racial fairness**: Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service**: as consultants, expert witnesses, special masters
 - **Measurable impact**: in numerous legal cases, state laws

- **Political science disconnect** from the real world: **Compactness**
 - **Researchers**: Assumed so complicated, numerous measures needed
 - **Law**: Assumed so simple, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
 - Iowa: “avoid drawing districts that are oddly shaped”
 - Supreme Court:
The Political Science Discipline & Redistricting

- Political science **contributions** to the real world
 - **Partisan fairness**: Invented standard (partisan symmetry) & methods
 - **Racial fairness**: Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service**: as consultants, expert witnesses, special masters
 - **Measurable impact**: in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
 - **Researchers**: Assumed so **complicated**, numerous measures needed
 - **Law**: Assumed so **simple**, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
 - Iowa: “avoid drawing districts that are oddly shaped”
 - Supreme Court: “One need not use Justice Stewart’s classic definition of obscenity—’I know it when I see it’—… to recognize that **dramatically irregular shapes** may have sufficient probative force to call for an explanation”
The Political Science Discipline & Redistricting

- Political science **contributions** to the real world
 - **Partisan fairness:** Invented standard (partisan symmetry) & methods
 - **Racial fairness:** Invented methods of ecological inference (for VRA)
 - **Forecasting elections** in new districts, for all sides
 - **Public service:** as consultants, expert witnesses, special masters
 - **Measurable impact:** in numerous legal cases, state laws

- Political science **disconnect** from the real world: **Compactness**
 - **Researchers:** Assumed so **complicated**, numerous measures needed
 - **Law:** Assumed so **simple**, no definition needed!
 - Illinois Constitution: “Legislative Districts shall be compact”
 - Washington: “Each district shall be as compact as possible”
 - Iowa: “avoid drawing districts that are oddly shaped”
 - Supreme Court: “One need not use Justice Stewart’s classic definition of obscenity—‘I know it when I see it’—...to recognize that **dramatically irregular shapes** may have sufficient probative force to call for an explanation”
 - Required in many other jurisdictions
Compactness According to the Law

More Compact

Less Compact

The dimension is intuitive

How to estimate where a new district shape falls on this dimension?

Only a consensus measure can constrain advocates

Dimension relative to geography; could generalize (e.g., population)

Let's start with existing measures by social scientists
Compactness According to the Law
A simple single compactness dimension that you know when you see
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

Less Compact

The dimension is intuitive
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

The dimension is intuitive

Less Compact

How to estimate where a new district shape falls on this dimension?
Compactness According to the Law

A simple single compactness dimension that you know when you see

More

Compact

Less

The dimension is intuitive

How to estimate where a new district shape falls on this dimension?

Only a consensus measure can constrain advocates
Compactness According to the Law

A simple single compactness dimension that you know when you see

More Compact

The dimension is intuitive
How to estimate where a new district shape falls on this dimension?
Only a consensus measure can constrain advocates
Dimension relative to geography;
Compactness According to the Law
A simple single compactness dimension that you know when you see

More
Compact

Less
Compact

- The dimension is intuitive
- How to estimate where a new district shape falls on this dimension?
- Only a consensus measure can constrain advocates
- Dimension relative to geography; could generalize (e.g., population)
Compactness According to the Law
A simple single compactness dimension that you know when you see

The dimension is intuitive
How to estimate where a new district shape falls on this dimension?
Only a consensus measure can constrain advocates
Dimension relative to geography; could generalize (e.g., population)

∽ Let’s start with existing measures by social scientists
Measure 1: Length/Width Ratio of Min Bounding Box

\[\frac{X}{Y} \approx 1.30 \]
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones
Measure 1: Length/Width Ratio of Min Bounding Box
Squarish districts more compact than long thin ones

\[\frac{X}{Y} \approx 1.30 \]

\[\frac{5}{27} \]
Measure 1: Length/Width Ratio of Min Bounding Box

Squarish districts more compact than long thin ones

In both districts: $\frac{X}{Y} \approx 1.30$
Measure 2: Reock, District / Bounding Circle Areas

In both cases, \(\frac{X}{Y + X} \approx 0.37 \).
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact

\[\frac{X}{Y + X} \approx 0.376 \]
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact
Measure 2: Reock, District / Bounding Circle Areas

Circular districts are most compact

\[
\frac{X}{Y + X} \approx 0.376/27
\]
Measure 2: Reock, District / Bounding Circle Areas
Circular districts are most compact

In both cases, $\frac{X}{Y + X} \approx 0.37$
Measure 3: Boyce-Clark, Variation in Centroid Deviations

\[\text{MAD}(r) / \bar{r} \approx 0.31 \]
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar

In both cases, $\text{MAD}(r)/\bar{r} \approx 0.31$.

7/27
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar.

\[
\text{MAD}(r) / \bar{r} \approx 0.31
\]
Measure 3: Boyce-Clark, Variation in Centroid Deviations

All travel distances from center should be similar

\[\text{In both cases, } \frac{\text{MAD}(r)}{\overline{r}} \approx 0.31 \]
A Brief Rotational Invariance Interlude:
A Brief Rotational Invariance Interlude:
Can you Name this Celebrity?
A Brief Rotational Invariance Interlude: Can you Name this Celebrity?
A Brief Rotational Invariance Interlude: Can you Name this Celebrity?
A Brief Interlude on Perception: See the Rabbit?
A Brief Interlude on Perception: See the Rabbit Duck?
A Brief Interlude on Perception: See the Frog?
A Brief Interlude on Perception: See the Frog Horse?
Human Perception: Not Rotationally Invariant

Existing measures of compactness:

- Nearly 100 proposed
- Almost all are rotationally invariant
- Blind to what humans perceive

Measuring "you know it when you see it": No rotational invariance
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive

- Which is more compact?
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive

- Which is more compact?
Human Perception: Not Rotationally Invariant

- Existing measures of compactness:
 - Nearly 100 proposed
 - Almost all are rotationally invariant
 - Blind to what humans perceive

- Which is more compact?

 ➡️ Measuring “you know it when you see it”: No rotational invariance
New Measure: Y-Symmetry, area of symmetric reflection
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact
New Measure: Y-Symmetry, area of symmetric reflection

Symmetric figures (circles, squares) are more compact

In both cases, Overlap/Original Area ≈ 0.34
New Measure 2: Number of Visually Significant Corners

Both districts have 21 significant corners.
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

⇒ Fewer corners is more compact
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

\[\rightsquigarrow \text{Fewer corners is more compact} \]
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos

→ Fewer corners is more compact
New Measure 2: Number of Visually Significant Corners

Computer vision algorithm identifies “objects” in photos
⇝ Fewer corners is more compact

Both districts have **21 significant corners**
Which is more compact?

- Convex Hull
- Polsby-Popper
- Boyce-Clark
- Length/Width
- X-Axis Symmetry

7 measures; 7 unique rankings

Unusual?

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%).

Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Convex Hull</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%). Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length/Width</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%). Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

7 measures; 7 unique rankings

From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%). Many more inconsistencies on individual districts.
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Method</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
<th>X-Axis Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant Corners: 4

14/27
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

7 measures;
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Metric</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- Unusual?
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- **Unusual?** From 18,215 Congressional and State Legislative Districts,
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convex Hull</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Reock</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Polsby-Popper</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Length/Width</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>X-Axis Symmetry</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Significant Corners</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- **Unusual?** From 18,215 Congressional and State Legislative Districts, we found **162 trillion** others (about 0.15%)
Which is more compact? Depends on the standard!

<table>
<thead>
<tr>
<th>Measure</th>
<th>Convex Hull</th>
<th>Reock</th>
<th>Polsby-Popper</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
<th>X-Axis Symmetry</th>
<th>Significant Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

- 7 measures; 7 unique rankings
- **Unusual?** From 18,215 Congressional and State Legislative Districts, we found 162 trillion others (about 0.15%)
- Many more inconsistencies on individual districts
Spanning the Academic–Legal Divide

Recall the concept of compactness.

Researchers: So complicated, numerous measures needed.

Law: So simple, no definition needed.

Our Hypothesis: both are right.

The Theoretical Concept: multidimensional.

The Legal Concept: one dimensional.

Which dimension? The one we know when we see it.

How do we know if we find it? Public officials and many other types of people: Know it when they see it, see the same dimension. I.e., estimate the one dimension of legal interest; show it has:

- high intercoder (and intracoder) reliability
- high predictive accuracy
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
(Recall) The concept of compactness
- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right
- The Theoretical Concept: multidimensional
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
Spanning the Academic–Legal Divide

(Recall) The concept of compactness
- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right
- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see

How do we know if we find it?
(Recall) The concept of compactness

- Researchers: So complicated, numerous measures needed
- Law: So simple, no definition needed

Our Hypothesis: both are right

- The Theoretical Concept: multidimensional
- The Legal Concept: one dimensional
- Which dimension? The one we know when we see

How do we know if we find it?

- Public officials and many other types of people:
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed

- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see

- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed
- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see
- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:
Spanning the Academic–Legal Divide

- **(Recall) The concept of compactness**
 - **Researchers:** So complicated, numerous measures needed
 - **Law:** So simple, no definition needed

- **Our Hypothesis:** both are right
 - **The Theoretical Concept:** multidimensional
 - **The Legal Concept:** one dimensional
 - **Which dimension?** The one we know when we see

- **How do we know if we find it?**
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:
 - high intercoder (and intracoder) reliability
Spanning the Academic–Legal Divide

- (Recall) The concept of compactness
 - Researchers: So complicated, numerous measures needed
 - Law: So simple, no definition needed

- Our Hypothesis: both are right
 - The Theoretical Concept: multidimensional
 - The Legal Concept: one dimensional
 - Which dimension? The one we know when we see

- How do we know if we find it?
 - Public officials and many other types of people:
 - Know it when they see it,
 - See the same dimension
 - I.e., estimate the one dimension of legal interest; show it has:
 - high intercoder (and intracoder) reliability
 - high predictive accuracy
How to rank districts on the same dimension?

Why Paired Comparisons is supposedly better:

Everyone does what they are good at:

- Respondents answer simple, concrete questions
- Researchers reconstruct the scale

Much easier:

\(\binom{20}{2} = 190 \) pairs \(\approx 2 \) quintillion ranks

Why Ranking is actually better (at least in our application):

- Humans use time-saving heuristics.
- Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring;
- Ranking is more intellectually engaging
- Saves time:
 - 1 task vs 190 comparisons
- Paired Comparisons can be answered on different dimensions
- Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Why Paired Comparisons is supposedly better:
- Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale

Why Ranking is actually better (at least in our application):
- Humans use time-saving heuristics.
 - Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
 - Saves time:
 - 1 task v 190 comparisons
- Paired Comparisons can be answered on different dimensions
 - Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Paired Comparison
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Paired Comparison

Utterly fails on inter- and intra-coder reliability
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

Why Paired Comparisons is supposedly better:
- Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale

Why Ranking is actually better (at least in our application):
- Humans use time-saving heuristics.
 - Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
- Paired Comparisons can be answered on different dimensions
 - Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Full Ranking — on line

We show: very high reliability
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better
 - Everyone does what they are good at:
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions

Why Ranking is actually better (at least in our application)

- Humans use time-saving heuristics.
- Would it take you 2 quintillion seconds to rank 20 districts?
- 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
- Saves time:
 - 1 task v 190 comparisons
- Paired Comparisons can be answered on different dimensions
 - Ranking: all evaluations on one dimension of user's choice
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale

- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 - Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 - Ranking is more intellectually engaging
 - Saves time:
 - 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions
 - Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \) pairs v 20! \(\approx 2 \) quintillion ranks

- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 - Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions
 - Ranking: all evaluations on one dimension of user’s choice
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \text{ pairs} \) v \(20! \approx 2 \text{ quintillion ranks} \)

- Why Ranking is actually better (at least in our application)

Would it take you 2 quintillion seconds to rank 20 districts? 190 paired comparisons is tedious and boring; Ranking is more intellectually engaging. Saves time: 1 task v 190 comparisons. Paired Comparisons can be answered on different dimensions. Ranking: all evaluations on one dimension of user’s choice.
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- **Why Paired Comparisons is *supposedly* better**
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks

- **Why Ranking is actually better** (at least in our application)
 - Humans use time-saving heuristics.
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

Why Paired Comparisons is supposedly better

- Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
- Much easier: \(\binom{20}{2} = 190 \) pairs v 20! \(\approx 2 \) quintillion ranks

Why Ranking is actually better (at least in our application)

- Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \) pairs v 20! \(\approx 2 \) quintillion ranks

- Why Ranking is **actually** better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: $\binom{20}{2} = 190$ pairs v $20! \approx 2$ quintillion ranks

- Why Ranking is **actually** better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
How to rank districts on the same dimension?
Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is supposedly better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \text{ pairs} \) v \(20! \approx 2 \text{ quintillion ranks} \)

- Why Ranking is actually better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- **Why Paired Comparisons is supposedly better**
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \) pairs v 20! \(\approx 2 \) quintillion ranks

- **Why Ranking is actually better** (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions
How to rank districts on the same dimension?

Paired Comparisons (Fechner 1860; Thurstone 1912) v Ranking (very old, rarely used)

- Why Paired Comparisons is **supposedly** better
 - Everyone does what they are good at:
 - Respondents answer simple, concrete questions
 - Researchers reconstruct the scale
 - Much easier: \(\binom{20}{2} = 190 \text{ pairs} \) v \(20! \approx 2 \text{ quintillion ranks} \)

- Why Ranking is **actually** better (at least in our application)
 - Humans use time-saving heuristics.
 Would it take you 2 quintillion seconds to rank 20 districts?
 - 190 paired comparisons is tedious and boring;
 Ranking is more intellectually engaging
 - Saves time: 1 task v 190 comparisons
 - Paired Comparisons can be answered on different dimensions
 Ranking: all evaluations on one dimension of user’s choice
Intercoder Reliability of Pairs
Intercoder Reliability of Pairs

Paired Comparisons: only slightly better than chance;
Intercoder Reliability of Pairs

Paired Comparisons: only slightly better than chance; Pairs implied by ranks: better
Intracoder Reliability of Pairs
Intracoder Reliability of Pairs

Paired Comparisons: better than chance;
Intracoder Reliability of Pairs

Paired Comparisons: better than chance; Pairs implied by ranks: much better
Intercoder Reliability on Ranks

\[\rho = 0.77 \]
Intercoder Reliability on Ranks

\[\rho = 0.77 \]

\[\rho = 0.81 \]
Intercoder Reliability on Ranks

\[\rho = 0.77 \]

\[\rho = 0.70 \]

\[\rho = 0.81 \]
Intercoder Reliability on Ranks

\[\rho = 0.77 \]

\[\rho = 0.70 \]

\[\rho = 0.81 \]
Intracoder Reliability on Ranks

\[\rho = .90 \]
Intracoder Reliability on Ranks

\[\rho = 0.90 \]

\[\rho = 0.92 \]
Intracoder Reliability on Ranks

\[\rho = 0.90 \]

\[\rho = 0.84 \]

\[\rho = 0.92 \]
Intracoder Reliability on Ranks

\[\rho = 0.90 \]

\[\rho = 0.84 \]

\[\rho = 0.92 \]

Random

Ranking
So we can measure it. Can we model it?

Training data: Outcome variable from human rankings

Outcome measure: A district's rank (in a set of 100)

Covariates. Features of district shape:
- Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark, etc.
- Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance, etc.
- New: X-axis symmetry, Y-axis symmetry, Significant Corners, etc.

Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests, etc.

Meaning of resulting measure:
Polanyi’s Paradox: we know more than we can tell.
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data**: Outcome variable from human rankings
So we can measure it. Can we model it?

Goal: Compactness score = f(shape)

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates**: Features of district shape

Existing: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark, …

Geometric: Perimeter, area, vertices, polygons, vertex variance, edge length variance, …

New: X-axis symmetry, Y-axis symmetry, Significant Corners, …

Ensemble of predictive methods: least squares, AdaBoosted decision trees, SVM, random forests, …

Meaning of resulting measure: Polanyi’s Paradox: We know more than we can tell—squirish, with minimal arms, pockets, islands, or jagged edges (Not a description of any one existing measure)
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
So we can measure it. Can we model it?

Goal: Compactness score = f(shape)

- **Training data:** Outcome variable from human rankings
- **Outcome measure:** A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark.
 - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance.
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark.
 - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance.
 - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners.

Polanyi’s Paradox: we know more than we can tell

Tell! squarish, with minimal arms, pockets, islands, or jagged edges

(Not a description of any one existing measure)
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data:** Outcome variable from human rankings
- **Outcome measure:** A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance...
 - **New:** X-axis symmetry, Y-axis symmetry, Significant Corners...
- **Ensemble of predictive methods:** least squares, AdaBoosted decision trees, SVM, random forests...
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data:** Outcome variable from human rankings
- **Outcome measure:** A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark.
 - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance.
 - **New:** X-axis symmetry, Y-axis symmetry, Significant Corners.
- **Ensemble of predictive methods:** least squares, AdaBoosted decision trees, SVM, random forests.
- **Meaning of resulting measure:**
So we can measure it. Can we model it?

Goal: Compactness score = $f(\text{shape})$

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark . . .
 - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- **Ensemble of predictive methods**: least squares, AdaBoosted decision trees, SVM, random forests. . .
- **Meaning of resulting measure**:
 - **Polanyi’s Paradox:**
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance...
 - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners...
- **Ensemble of predictive methods**: least squares, AdaBoosted decision trees, SVM, random forests...
- **Meaning of resulting measure**:
 - **Polanyi’s Paradox**: we know more than we can tell
So we can measure it. Can we model it?

Goal: Compactness score $= f(\text{shape})$

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark. . .
 - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance. . .
 - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners. . .
- **Ensemble of predictive methods**: least squares, AdaBoosted decision trees, SVM, random forests. . .
- **Meaning of resulting measure**:
 - **Polanyi’s Paradox**: we know more than we can tell
 - **Tell!**
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data**: Outcome variable from human rankings
- **Outcome measure**: A district’s rank (in a set of 100)
- **Covariates**: Features of district shape
 - **Existing**: Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark...
 - **Geometric**: Perimeter, area, vertices, polygons, vertex variance, edge length variance...
 - **New**: X-axis symmetry, Y-axis symmetry, Significant Corners...
- **Ensemble of predictive methods**: least squares, AdaBoosted decision trees, SVM, random forests...
- **Meaning of resulting measure**:
 - **Polanyi’s Paradox**: we know more than we can tell
 - **Tell!** squarish, with minimal arms, pockets, islands, or jagged edges
So we can measure it. Can we model it?

Goal: Compactness score = \(f(\text{shape}) \)

- **Training data:** Outcome variable from human rankings
- **Outcome measure:** A district’s rank (in a set of 100)
- **Covariates. Features of district shape**
 - **Existing:** Reock, Polsby-Popper, Convex Hull, Length/Width, Boyce-Clark.
 - **Geometric:** Perimeter, area, vertices, polygons, vertex variance, edge length variance.
 - **New:** X-axis symmetry, Y-axis symmetry, Significant Corners.
- **Ensemble of predictive methods:** least squares, AdaBoosted decision trees, SVM, random forests.
- **Meaning of resulting measure:**
 - **Polanyi’s Paradox:** we know more than we can tell
 - **Tell!** squarish, with minimal arms, pockets, islands, or jagged edges
 - (Not a description of any one existing measure)
Model Validation: 6-Fold Cross-validation
Model Validation: 6-Fold Cross-validation

Predict Test Set from 5 Training Sets
Model Validation: 6-Fold Cross-validation

Predict Test Set from 5 Training Sets

\[\rho = 0.91 \]
Model Validation: 6-Fold Cross-validation
Predict Test Set from 5 Training Sets
Model Validation: Diverse Respondents
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting.
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents
Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents
Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting.
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
Model Validation: Diverse Respondents

Respondents ranging from ordinary citizens to those responsible for redistricting
What do you think?

Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock

Boyce-Clark

Length/Width

24/27
What do you think?

<table>
<thead>
<tr>
<th>Our measure:</th>
<th>COMPACT</th>
<th>noncompact</th>
<th>noncompact</th>
<th>COMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing measure:</td>
<td>COMPACT</td>
<td>noncompact</td>
<td>COMPACT</td>
<td>noncompact</td>
</tr>
</tbody>
</table>

Reock
Boyce-Clark

Length/Width
X-Symmetry

24/27
What do you think?

Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock
What do you think?

Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock

Boyce-Clark
What do you think?

Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock

Boyce-Clark

Length/Width
<table>
<thead>
<tr>
<th>Measure</th>
<th>Reock</th>
<th>Boyce-Clark</th>
<th>Length/Width</th>
<th>X-Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our measure:</td>
<td>COMPACT</td>
<td>noncompact</td>
<td>noncompact</td>
<td>COMPACT</td>
</tr>
<tr>
<td>Existing measure:</td>
<td>COMPACT</td>
<td>noncompact</td>
<td>COMPACT</td>
<td>noncompact</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyce-Clark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length/Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do you think?

Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock

Boyce-Clark

Length/Width

X-Symmetry
Concluding Remarks

We address: Disconnect between political science & the real world

The Theoretical Concept: multidimensional and complex

The Legal Concept: one dimensional and simple

A proposed resolution: measure the one dimension everyone sees

Calculated solely from district geometry

Very high intercoder & intracoder reliability

Very high predictive validity

Diverse people see it the same way

⇝

Continue political science tradition of contributing to a fundamental part of representative democracy

Accompanying this paper:

Measures: for 18,215 Congressional & State Legislative districts

Software to calculate compactness from any district shape

Along the way:

New perspective on 150 year consensus of ranking v paired comparisons

New directions for two venerable literatures
Concluding Remarks

- We address: Disconnect between political science & the real world
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
Concluding Remarks

- We address: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
We address: Disconnect between political science & the real world
- The Theoretical Concept: multidimensional and complex
- The Legal Concept: one dimensional and simple

A proposed resolution: measure the one dimension everyone sees
- Calculated solely from district geometry

- Very high intercoder & intracoder reliability
- Very high predictive validity
- Diverse people see it the same way

⇝

Continue political science tradition of contributing to a fundamental part of representative democracy

Accompanying this paper:
- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape

Along the way:
- New perspective on >150 year consensus of ranking vs paired comparisons
- New directions for two venerable literatures
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way

Accompanying this paper:
- Measures: for 18,215 Congressional & State Legislative districts
- Software to calculate compactness from any district shape

Along the way:
- New perspective on >150 year consensus of ranking v paired comparisons
- New directions for two venerable literatures
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - Continue political science tradition of contributing to a fundamental part of representative democracy
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - \(\rightsquigarrow\) Continue political science tradition of contributing to a fundamental part of representative democracy
- **Accompanying this paper:**
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
 - Along the way: New perspective on >150 year consensus of ranking v paired comparisons
 - New directions for two venerable literatures
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
- Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper:**
 - Measures: for 18,215 Congressional & State Legislative districts
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - Continue political science tradition of contributing to a fundamental part of representative democracy
- **Accompanying this paper:**
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
Concluding Remarks

- **We address:** Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution:** measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - Continue political science tradition of contributing to a fundamental part of representative democracy
- **Accompanying this paper:**
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape
- **Along the way:**
Concluding Remarks

- **We address**: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution**: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper**:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape

- **Along the way**:
 - New perspective on > 150 year consensus of ranking v paired comparisons
Concluding Remarks

- **We address**: Disconnect between political science & the real world
 - The Theoretical Concept: multidimensional and complex
 - The Legal Concept: one dimensional and simple
- **A proposed resolution**: measure the one dimension everyone sees
 - Calculated solely from district geometry
 - Very high intercoder & intracoder reliability
 - Very high predictive validity
 - Diverse people see it the same way
 - \(\leadsto \) Continue political science tradition of contributing to a fundamental part of representative democracy

- **Accompanying this paper**:
 - Measures: for 18,215 Congressional & State Legislative districts
 - Software to calculate compactness from any district shape

- **Along the way**:
 - New perspective on \(> 150 \) year consensus of ranking v paired comparisons
 - New directions for two venerable literatures
For more information

AaronRKaufman.com

GaryKing.org

MayyaKomisarchik.com

Paper, data, software, slides: j.mp/Compactness