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1 Introduction

Compactness is treated in the law as an important legal bulwark against gerrymandering.

The Apportionment Act of 1901, many court decisions, and 18 state constitutions require

compactness for U.S. House districts, and 37 states require their legislative districts to

be compact (see j.mp/aRED). Compactness is also required in federal law as one of

the “traditional redistricting principles” which, when followed, can “defeat a claim that

a district has been gerrymandered. . . ” on the basis of race (Shaw v. Reno, 509 U.S. 630,

647, (1993)) or political party (Davis v. Bandemer, 478 U.S. 173, 2815, (1986)).1

Compactness is also important for the academic literature, where scholars seek to

help the redistricting and litigation processes, and also to study venerable political sci-

ence questions such as the causes, consequences, and normative implications of compact

districts over American history (e.g., Ansolabehere and Palmer, 2016; Ansolabehere and

Snyder Jr, 2012; Forgette and Platt, 2005). Compactness intuitively refers to both how

close a legislative district’s boundaries are to its geographic center and how “regular”

in shape a district appears to be. But upon deeper study, scholars have shown that in

fact compactness is a complicated multidimensional concept and have offered almost 100

measures of different features of it (e.g., Niemi, Grofman, Carlucci, and Hofeller, 1990).2

While many state constitutions explicitly require compactness, the vast majority pro-

vide no definition or measure for how to detect violations of the standard. For example,

the Constitution of Illinois says only “Legislative Districts shall be compact”. The Con-

stitution of Hawaii requires that “Insofar as practicable, districts shall be compact.” In

Arizona, the Constitution orders that “Districts shall be geographically compact and con-

1Claims about most other types of unfairness in redistricting all also seem to depend on a legal finding
of noncompactness (Davis v. Bandemer, 478 U.S. 165; Justice Powell in Vieth v. Jubilerer, 541 U.S. 267
(2004) 176-177; Kirkpatrick v. Preisler, supra, at 394 U. S. 526, 538).

2The empirical claim sometimes implied in the law, that compactness requirements constrain racial or
partisan gerrymandering, is the subject of active research program (Altman and McDonald, 2012; Barabas
and Jerit, 2004; Chen and Rodden, 2013), and the role of compactness in ensuring other important normative
virtues — such as better knowledge, communication, and trust between representatives and citizens — is
also contested (Cain, 1984; Pildes and Niemi, 1993). But regardless of the outcome of these important
debates, the degree of compactness of legislative districts will always have an essential role in defining the
nature of representation and electoral competition in modern democracies, and an accurate measurement is
essential to each debate.
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tiguous to the extent practicable.”3

The federal courts have been similarly vague. They have acknowledged both the mul-

titude of possible measures for compactness, and the fact that they often produce different

conclusions.4 Except in rare cases, the courts have not provided guidance on particular

measures or seen the need for them. For example, Justice Souter stated that “it is not

necessary now to say exactly how a district court would balance a good showing on one

of these indices against a poor showing on another, for that sort of detail is best worked

out case by case” (Vieth v. Jubelirer, 541 U.S. 267 (2004); Souter dissenting). And most

famously, a Supreme Court opinion indicated “One need not use Justice Stewart’s classic

definition of obscenity—‘I know it when I see it’—as an ultimate standard for judging

the constitutionality of a gerrymander to recognize that dramatically irregular shapes may

have sufficient probative force to call for an explanation” (Karcher v. Daggett, 462 U.S.

725, 755 (1983)). Here, the Court at once laments the absence of a single quantitative

standard while also implying that the concept is clear enough that all reasonable observers

should understand it in the same objective way.

Consistently invoking the idea of “compactness” without a clear definition or required

measure suggests two conclusions about the law. First, the law seems to imply that “com-

pactness” is a single, coherent, and agreed upon concept, discernable simply by examining

a district map. After all, how could the courts expect legislators to draw districts that com-

ply with “compactness” without a shared understanding of what it means? And second,

this lack of precision in the law has given redistricters and litigants battling over legisla-

tive maps in specific cases wide latitude to choose measures of compactness and reach

3Some states have passed laws highlighting certain features of compactness that may help with intuition
but neither precision nor application. For example, Virginia Senate Joint Resolution 224 (1/14/2015, Article
II, Section 6(5)) reads “Each legislative and congressional district shall be composed of compact territory.
Districts shall not be oddly shaped or have irregular or contorted boundaries, unless justified because the
district adheres to political subdivision lines. Fingers or tendrils extending from a district core shall be
avoided, as shall thin and elongated districts and districts with multiple core populations connected by thin
strips of land or water. . . .” Iowa (Iowa Code, Title II §42.4) and Michigan (Congressional Redistricting
Act 221 of 1999, Redistricting plan guidelines) mention some precise measures but not how to use this
information.

4“Indeed,” writes Justice Souter, dissenting in Vieth v. Jubelirer, “although compactness is at first blush
the least likely of these [traditional redistricting] principles to yield precision, it can be measured quantita-
tively in terms of dispersion, perimeter, and population ratios, and the development of standards would thus
be possible.”
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opposing conclusions (Defendant-Intervenors’ Post-Trial Brief [at pp. 18], Bethune-Hill

v. Va. State Bd. of Elections, 141 F. Supp. 3d 505 (E.D. Va. 2015) (No. 3:14 Civ. 852),

ECF No. 104; and Motion In Limine Regarding Plaintiffs’ New Compactness Test [at pp.

4], Vesilind v. Va. State Bd. of Elections, No. CL 15-3886 (Va. Cir. Ct. 3/31/2017).). Even

when litigants might agree on the compactness of any one district by knowing it when

they see it, systematically judging the compactness of many districts, or an entire redis-

tricting plan, cannot be accomplished by merely looking. As such, the courts and policy

makers tend to get very little benefit from the decades of work on quantitative measures

of compactness offered by social scientists.

We attempt to span this divide between the seemingly universal understanding of com-

pactness proposed in or needed for the application of the law, and the theoretical com-

plexity and multidimensionality revealed in the social science literature. We do this by

inferring, measuring, and validating the single underlying dimension of compactness that

practitioners may need to apply the law, and we find that people of all types seem to

agree upon it. In other words, since compactness in the law is, for all practical purposes,

defined by the judgment of human observers — including redistricters, experts, consul-

tants, lawyers, judges, public officials, and ordinary citizens — the claim of an objective

standard, measured on a single dimension, can only be supported if most educated people

evaluated a district’s compactness in the same way. We provide this objective measure and

show that these and other groups of observers all view compactness in accordance with it.

This new dimension is not the average (or principal component) of existing measures but

a new quantitative construction that accurately and reliably predicts human judgment.

In four sections, we proceed by conceptualizing, measuring, validating, and interpret-

ing our derived dimension of compactness. Section 2 inductively defines the underlying

dimension by building on the encyclopedia of existing diverse measures, adding new ones

that show how humans perceive objects like district shapes, and providing intuition about

the commonly perceived dimension we seek to measure. Section 3 then develops a way

to measure this concept by eliciting views of the compactness of specific districts from

respondents using a novel survey approach to rank order districts according to their com-
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pactness. We are forced to develop a new method because the standard approach in the

survey literature to a problem like this, Thurstone’s paired comparisons, completely fails

in our application. The high levels of intercoder and intracoder reliability produced by

our alternative approach are consistent with a unidimensionality hypothesis (and suggests

that our survey methodology may have other applications). This section then uses these

results to build a statistical model that predicts with high accuracy how individuals rank

districts, given only the the districts’ shapes.

Our results enable us to apply one of the most important principles of statistics —

defining the quantity of interest separately from the measure used to estimate it — and,

as a result, to provide evaluations that make our approach vulnerable to being proven

wrong. We do this in Section 4 with cross-validation and then extensive out-of-sample

validations in samples of public officials and judges from many jurisdictions, as well

as redistricting consultants and expert witnesses, law professors, law students, graduate

students, undergraduates, ordinary citizens, and Mechanical Turk workers. Application of

this same principle also enables us to provide the first uncertainty estimates for a measure

of compactness offered in the literature (see Supplementary Appendix D). Section 5 then

offers interpretations of the resulting measure, and Section 6 concludes.

2 Conceptualizing

We now attempt to inductively characterize the concept of compactness that most laws,

constitutions, judicial opinions, and participants in redistricting at least implicitly assume

human observers intuitively understand.

As districting is “one area in which appearances do matter” (Shaw v. Reno, 509 U.S.

630, 647, 1993), our approach is to measure the absolute compactness of the geometric

shape of a district, separately from other facts that can impact this measurement such as

geography or population. This is the most common basis for a compactness definition,

dating well before the famous “Gerry-Mander” cartoon (Tisdale, 1812), but not the only

one possible. Absolute compactness, in turn, may be constrained or influenced by fixed

features of the state geography, such as rivers, coastlines, or highways. We measure the
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quantity that would be influenced by these features, so that it measures the concept in

the law and can be useful for further research. If a researcher had the alternative goal

of defining and measuring relative compactness, based on how close it is to a realistic

ideal, then our measure would be a key component in that calculation. In addition to

measuring absolute compactness based on shape, our methods can also be used to measure

compactness based on other criteria, such as population dispersion (Fryer Jr and Holden,

2011; Hofeller and Grofman, 1990; Niemi, Grofman, Carlucci, and Hofeller, 1990); see

Section 3.3.

We attempt to characterize the compactness of each district separately. Although

changing the boundaries of one district obviously affects neighboring districts, separate

measurement follows major redistricting litigation, which typically evaluates the compact-

ness of districts individually or in a small group rather than for an entire state redistricting

plan all at once (e.g., Shaw v. Reno, 509 U.S. 630 (1993), pp. 637, 647, 656). This strat-

egy is especially useful for the most fine grained scholarly research on the causes and

consequences of compactness.5

Section 2.1 highlights empirical inconsistencies in existing shape-based measures to

convey that the possible conceptual definitions of compactness, underlying these mea-

sures, are multidimensional. Then Section 2.2 provides intuition and tools to build toward

a single concept of compactness.

2.1 Multiple Dimensions Underlying Existing Measures

Numerous specific compactness measures have been proposed in the academic literature,

each one fitting different qualitative conceptual definitions and intuitions for certain ge-

5Aspects of the overall methodology we develop here can also be applied to some other redistricting
criteria, when additional data are available (or to concepts unrelated to redistricting that you only know
when you see). These may include other characteristics of districts such as size; population equality across
districts; where people live within a district (Fryer Jr and Holden, 2011); whether the district divides com-
munities of interest or local political subdivisions; whether incumbents are paired or grouped in the same
district and so have to run against each other to keep their jobs; what types of people are included in or
excluded from a district; and, as a result, partisan fairness, electoral responsiveness (Gelman and King,
1994; Grofman and King, 2007), and racial fairness (King, Bruce, and Gelman, 1996). Redistricting also
influences more personalistic factors common in real redistricting cases, such as whether a specific district
includes features like a military base (which can influence a candidate’s policy preferences) or a prison
(which counts under “equal population” requirements but not votes), or even whether a candidate’s parents
homes or children’s schools are drawn out of his or her district.
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ographical configurations and violating it for others (Altman, 1998; Niemi, Grofman,

Carlucci, and Hofeller, 1990; Stoddart, 1965; Young, 1988). These measures are based

on geometric concepts such as perimeters, areas, vertices, and centroids, often in com-

parison with some pure form geometric object such as a circle, rectangle, polygon, or

convex hull. Each, however, focuses on a different dimension of what might be called

compactness. Consider, for example, the five most frequently used measures by academic

researchers, and also by experts in redistricting litigation: Length-Width Ratio, the ratio

of the length to the width of the minimum bounding rectangle (Harris 1964; Timmerman,

100 N.Y.S. 57, 51 Misc. Rep. 192 (N.Y. Sup. 1906)); Convex Hull, the ratio of the area of

the district to the area of the minimum bounding convex hull; Reock, the ratio of the area

of the district to the area of a minimum bounding circle (Reock, 1961); Polsby-Popper,

the ratio of the area of the district to the area of the circle with the same perimeter as the

district (Polsby and Popper, 1991; Schwartzberg, 1965); and (modified) Boyce-Clark, the

(normalized) mean absolute deviation in the radial lines from the centroid of the district

to its vertices (Boyce and Clark, 1964; Kaiser, 1966; MacEachren, 1985). For details on

these and others, see Supplementary Appendix A.

Without a gold standard, we cannot determine any measure’s formal statistical prop-

erties, its error rates, or when it might fail. Although different measures are sometimes

correlated, choices among these are presently made by qualitative judgment. Creative

scholars have managed to use existing measures productively in research by combining

multiple measures, adjusting or weighting each for specific purposes, or making careful

qualitative decisions in specific cases (Ansolabehere and Palmer, 2016; Niemi, Grofman,

Carlucci, and Hofeller, 1990).

We illustrate the issues with measuring compactness by presenting Figure 1, four state

house districts from Alabama in 2000. Readers may wish to draw their own conclusions

about the relative compactness of these districts, but we now provide in Table 1 an in-

dication of how the most popular five measures rank them (we discuss X-Symmetry and

significant corners in Section 2.2). As can be seen from the first five rows of Table 1, ev-

ery one of these measures gives a different rank order for the four districts. We introduce
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two new compactness measures in Section 2.2 for a different purpose; these are given at

the bottom of Table 1 and also give unique rankings of the same districts. This example

is merely a proof of concept, but finding such examples is easy: By random sampling,

we estimate that in our collection of 17,896 state legislative and congressional districts

(see Supplementary Appendix B), there exist 162 trillion sets of four districts such that

every one of the seven measures provides a unique rank order. Of course, there is a large

number from which to choose (this large number being about 0.15% of the total), but in-

consistencies among in rankings on fewer than seven measures is both commonplace and

is congruent with the long literature on this subject.

[Figure 1 about here.]

[Table 1 about here.]

2.2 Toward a Single Compactness Dimension

We now provide intuition helpful in turning the multiple types and dimensions of com-

pactness illustrated in Section 2.1 into a single unidimensional concept underlying com-

mon conceptions, but in the absence of political or personal biases. We continue to pro-

ceed inductively, with Section 3 devoted to measuring this concept. We do this in three

ways, followed by a characterization of the dimension of interest.

First, our goal is to elicit views about compactness, but without the biases psycholo-

gists have long demonstrated skew human judgments in the direction of our own political

and other preferences. Although such unbiased views may be the goal of lawyers ad-

vocating on behalf of their clients, research has shown that subject matter experts are as

vulnerable to bias as nonexperts, and more overconfident in the belief that they can avoid

it. The only reliable solution has been to remove even the possibility of bias by institut-

ing formal procedures (such as double blind experiments). (See Kahneman, 2011). We

thus elicit views about compactness without revealing to respondents how their decisions

in any one situation might benefit one political party or another. This is a critical point:

Because individual judges, advocates, redistricters, and experts do not have access to the
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mental processes in their own thinking that would enable them to evaluate and avoid these

biases (Wilson and Brekke, 1994), they would also be unable to come to the same judg-

ment as our measure in the context of a real redistricting contest by merely looking at a

district shape.

Second, all existing compactness measures are rotationally invariant, meaning that if

we rotate a district, say 45 degrees, a measure will have the same value. Although this is

a reasonable normative standard from some perspectives — and we discuss below how to

easily adjust our methods to impose this restriction if desired — human beings (includ-

ing judges) do not evaluate districts in this way. In fact, human perception is famously

sensitive to the rotation of objects: even familiar faces can become unrecognizable when

viewed upside down (e.g., Maurer, Le Grand, and Mondloch, 2002). Our own experi-

mentation done in R Shiny (Kaufman, 2020) suggests that people view long thin district

shapes located on a diagonal ( ) as less compact than the same shape located along

the horizontal axis ( ).6 In contrast, legislative districts always have a well defined

up (north) and down (south), as displayed on every commonly used map. Indeed, courts,

redistricters, and judges virtually always use this single standard orientation and do not

rotate districts when evaluating compactness; as a result, their decisions are not rotation-

ally invariant. In other words, since the usual orientation of a district has precedence in

how humans interpret it, some of our measures need to pick up on these features.7

Thus, primarily for illustration in this section, and later as a measurable feature of

district shape that can be included (and if desired controlled) in our statistical model,

we define here a new compactness measure that is not rotationally invariant. We do not

intend this measure to substitute for other measures or to even be especially important on

its own, but it will be useful to represent human perception. Thus, we define X-Symmetry

by dividing the overlapping area, between a district and its reflection across the horizontal

axis, by the area of the original district. Shapes like circles and rectangles have overlap

regions equal to that of the original district and so have X-Symmetry values of 1. A long

6This pattern may be related to the “horizontal-vertical illusion” discovered in psychology (Prinzmetal
and Gettleman, 1993).

7We note as well that, since all modern political boundaries are drawn with respect to cardinal directions,
those directions are necessarily considered in examining districts.
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thin district stretched out from top left to bottom right, or one like , have X-Symmetry

values close to zero. This measure, applied to the four districts in Figure 1, gives unique

rankings for each; see the sixth row of Table 1.

Since we are attempting to quantify human perception, we try to avoid imposing the-

oretical notions of what compactness should be, what might be rational, or what meets

various mathematically “pure” standards that implicate one normative preference or an-

other (such as rotational invariance). Finding the common objective measure that exists

in minds of districting authorities, the courts, and others requires respecting how humans

think rather replacing it with alternative normative preferences. Although the courts have

never addressed the issue, in all likelihood those who drafted compactness requirements

in legislative statues, judicial opinions, and state constitutions, that imply that the concept

is so simple that you know it when you see it, were not assuming rotational invariance.

However, if a rotational invariant measure is desirable or at some point required, we can

easily impose it using a procedure analogous to what we do for avoiding political bias.

Thus, we would use all the procedures described in this paper except that we would simply

display districts at random rotational angles when eliciting compactness evaluations.

Third, another feature of human perception is how we define what constitutes a “sig-

nificant” feature of a district. If a roughly circular district has a ragged border, which

of the small border inlets and peninsulas count as notable deviations from the circular

shape? For example, suppose we give a large number of people the task of drawing from

memory the shape of the continental United States. These drawings will all differ, but

they will likely all include some of the same features — a roughly rectangular shape, a

peninsula for Florida, a larger one for New England, and perhaps a somewhat rounded

western ocean boarder. In other words, despite the enormous number of specific small

features and vertices along the boarder to choose from, virtually all Americans are likely

to recall, thus judging as significant, a small number of the same features.

To include this highly qualitative feature of human perception, we consider algorithms

computer scientists design to list all of the “objects” in an image. There is no correct

answer, but it turns out that different people are likely to give similar answers, and the
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automation goal is to list the objects a human would identify. As we do with X-Symmetry,

we illustrate this idea quantitatively, and give an example that will later become part of our

model. To do this, we turn the geometric district shape into a set of pixels (i.e., changing

from vector to raster representation), apply a corner detection algorithm (Shi and Tomasi,

1993), and count the number of “significant” corners. The more significant corners, the

less compact the district by this metric. The last row of Table 1 gives the rankings of the

four districts in Figure 1 according to the number of significant corners. This measure

also gives the four districts a unique ordering.

Finally, we try to convey intuition about the underlying dimension of compactness we

will quantify in the next section. We do this visually, by presenting in Figure 2 a set of

districts that range from most (panel a) to least (panel d) compact. We find that almost

anyone familiar with the district-based nature of modern democracy, and some sense of

the word compactness, finds that district (a) is more compact than (b), which is more

compact than (c), which is more compact than (d). The question is how to quantify this

notion, so that it works for these four districts and all other geometric shapes, a topic to

which we now turn.

[Figure 2 about here.]

3 Measuring

We now develop a more explicit measure of the concept of compactness to satisfy our re-

quirements in Section 2. The immediate quantitative goal of the procedure is a continuous

measure for each district, between 1 and 100, that estimates the expected rank a respon-

dent would assign a district if embedded in a set with 99 others. With this measure, we

can rank order any set of n districts, given only quantitative measures of their geometric

shapes.

To construct this measure, we first develop a method of eliciting views about com-

pactness directly from survey respondents, something universally recognized as impor-

tant but rarely done in this literature except informally by researchers (Angel and Parent,

2011; Chou, Kimbrough, Murphy, Sullivan-Fedock, and Woodard, 2014). Appendix A
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attempts this by applying best current practices in survey research — using a modern

version (David, 1988) of Thurstone’s venerable paired comparisons (Thurstone, 1927), a

method that dates at least to 1860 (Fechner, 1966). Under this approach, we pose a set

of simple survey questions, each asking the respondent to decide which of two districts is

more compact and, from the many answers, we construct the full ranking. We explain the

motivation behind this approach and then demonstrate empirically that it utterly fails to

accomplish its goal for this application.

Given the failure of paired comparisons, we have no choice but to develop a new ap-

proach. Thus, in Section 3.1, we turn to the method that paired comparisons was originally

designed to supplant — asking respondents to rank many districts all at once. We show

that, as we apply it, this approach turns out to work extremely well in our application (and

may also work for many others too). As we describe, the supposed advantages of paired

comparisons turn out to be disadvantages and the disadvantages of ranking turn out to

be advantages. Section 3.2 takes the resulting survey elicitation method as our outcome

variable, and new gold standard, and builds a statistical model to predict it from geometric

features of the districts. Details about data used appear in Supplementary Appendix B.

3.1 How Ranking Outranks Paired Comparisons

Why does the method of paired comparisons perform so poorly? We propose four reasons,

which together leads us to a workable approach for our application, full ranking — the

method which paired comparisons originally supplanted.

First, although
(
n
2

)
paired comparisons is vastly smaller than n! rankings (see the

start of Appendix A), for some applications rankings make be quicker. After all, how

long would it take to carefully and accurately rank 20 district shapes by their degree of

compactness (or 20 friends by their heights or 20 animals by their friendliness)? A lot

less than 2 quintillion seconds. What the idea behind paired comparisons seems to miss is

that humans are excellent at pattern recognition and seeing the big picture. Humans also

intuitively apply time-saving heuristics that reduce the complexity of tasks, such as in our

application by grouping districts into distinct types, and considering all members of the

group at once before analyzing members within the group.
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Thus, in practice with full ranking, we have tried to ensure that respondents are using

their big picture skills, such as by suggesting to them that they simplify the task by work-

ing hierarchically, first grouping districts into three coarse groups, and then producing

groupings within each group, and finally starting from the top and checking and adjusting

each district’s position within the ranking; however, we found that heuristics and intu-

itions are strong enough that dropping these instructions did not degrade our full ranking

approach. We also tried full ranking with districts printed on paper and arrayed on a long

table, as well as via an online system we built that allows districts to be dragged and

dropped to their chosen location; we find no evidence that the mode of administration

matters either (as with Blasius, 2012).

Second, human respondents work better when motivated and engaged. While paired

comparisons successfully avoid the risk of asking respondents questions they do not un-

derstand, it is also an unavoidably boring and tedious task, especially after the first few

questions. In contrast, ranking a large set of districts is more intellectually challenging and

engaging (Fabbris, 2013). Our own cognitive debriefing strongly supports the advantages

of ranking in this regard.8

Third, if it is possible for a survey respondent to rank (say) 20 districts without much

trouble, then we can save considerable time by administering this one engaging survey

task rather than having to ask 190 tedious paired comparisons for each respondent. Rank-

ing would then save considerable time, expense, and respondent fatigue (Ip, Kwan, and

Chiu, 2007). As a hint that this might work, Krosnick (1999) (studying rating rather than

paired comparisons) finds that often “rankings give higher quality data than ratings”.

And finally, the literature makes clear that compactness is a multidimensional concept

(Niemi, Grofman, Carlucci, and Hofeller, 1990). Yet, we are trying to tap into a single

unidimensional concept of compactness that we hypothesize respondents, if given the

choice, would select and use. In this light, the fact that Thurstone’s approach enables

respondents to make each paired comparison independently of the others allows, and may

8We also experimented with having two coders participate together in ranking each set of districts, on
the theory that the social connections would make the task even more engaging. Our results support this
theory, in that respondents spent about 30% more time together completing the task, but this engagement
was unnecessary since it did not increase inter- or intracoder reliability.
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even encourage, them to use different dimensions for different comparisons. In other

words, while “roundness” may be the deciding factor for compactness in one given pair

of districts, length vs. width may be the relevant question in the next pair, and so forth.

This may then be what results in the low levels of intercoder and intracoder reliability

we have documented. In contrast, ranking has the advantage of encouraging respondents

to choose a single dimension of compactness and to use it for all their decisions. With

paired comparisons, the only way to do this would be to ask respondents to choose a

single dimension explicitly and to keep that dimension in their heads while they answer

190 randomly ordered survey questions. Although the goal of any survey question is to be

clear enough so respondents are answering the question intended by the researcher (i.e.,

on the dimension of interest), giving respondents multiple separate questions makes this

difficult to achieve.

To test our hypothesis that ranking will work better than paired comparisons, we ask

respondents to give a full rank order for 100 separate legislative districts by their degree

of compactness.

To begin, we embed our 40 districts (which we used in 20 pairs in the experiments in

Figures 7 and 8) among 60 others and ask a new set of respondents to rank all 100. To

compute a relative assessment of the two methods, we evaluated intercoder and intracoder

reliability of the implied paired comparisons of how these 20 pairs were ordered by full

ranking and compared them to reliability from the actual paired comparisons. That is,

from full ranking, we record only which district in each pair of 20 comparisons is ranked

higher. Then, to compute intracoder reliability, we waited two weeks, shuffled the rank

ordering, and asked the same respondents to rank the same 100 districts, again only using

the 20 designated pairs among these. We then computed the percent agreement over time

in these implied paired comparisons exactly as we did for the actual paired comparisons.

The results, which appear in the same two figures (salmon colored histogram, at the right

of each figure), are far more clearly separated from the random placebo test and have much

higher levels of intracoder reliability than the actual paired comparisons. For intercoder

reliability, in Figure 7, we have 75% agreement on average, and for intracoder reliability,
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in Figure 8, we have 88% agreement on average.

Now that we have a method that bests paired comparisons for measuring compactness

with respect to pairwise intracoder and intercoder reliability, we turn to evaluating full

ranking on its own terms. We begin with intercoder reliability by correlating the ranks for

100 districts coded independently by (all possible) pairs of respondents. We then present

in Figure 3 one scatterplot representing the pair of coders with the median correlation

(ρ = 0.77 in the top left panel) as well as the pair with a correlation in the first quartile

(bottom left) and in the third quartile (top right). In the bottom right of the same fig-

ure (salmon colored), we also present a density estimate (using a kernel truncated at the

minimum and maximum observed correlations) of all the correlations, along with a base-

line density estimate of correlations among randomly generated ranks. The conclusion

from this figure reveals high intercoder reliability, clearly distinguishable from chance,

and with no systematic error patterns in any individual scatterplot.

[Figure 3 about here.]

We then repeat this process for intracoder reliability by correlating the ranks for each

respondent with the same respondent, re-ranking the same districts, two weeks later. Fig-

ure 4 shows these results in the same format as Figure 3. As would be expected, our results

here are even stronger than for intercoder reliability. The median correlation (top left) is

ρ = 0.9, with not much spread around the median (see salmon colored histogram in the

bottom right panel). None of the scatterplots show any systematic patterns in deviations

from the 45◦ line, and all indicate high levels of intracoder reliability.

[Figure 4 about here.]

3.2 A Statistical Measurement Model

To construct our ultimate measure of compactness, we begin with a set of districts and

elicit the views of respondents via our full ranking survey approach. In Section 3.1, we

describe this survey methodology. Supplementary Appendix B gives details of how we re-

cruited our survey respondents, collected our set of districts, conducted our experiments,
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and wrote and presented the ranking task to respondents. We also discuss there the mech-

anism for how we elicited ranking preferences, both in person (sorting paper cards with

districts printed) and online (dragging and dropping district images).

Our data collection process results in six sets of 100 districts, each ranked by several

individuals or pairs of individuals working independently. We average away random er-

ror by calculating the first principal component of the rankings produced for each set of

100 districts, preserving the ranked scale. This first principle component, a summary of

human-derived compactness rankings, forms the outcome variable in our statistical model,

using only information from the shape of districts as predictors. To produce our predictor

variables, we calculate a set of geometric features including all seven compactness indi-

cators from Table 1 and the others described mathematically in Supplementary Appendix

A.

Finally, we train an ensemble of predictive methods with these data, consisting of

least squares, AdaBoosted decision trees, support vector machines, and random forests.

Supplementary Appendix C gives the details of these methods and of how we construct

this ensemble and its component parts.

All further details and code are available in our replication data file which accompanies

this paper. In the same way that logit or ordered probit take discrete outcome variables

and generates continuous predictors, our training data consists of integers from 1 to 100,

but our ensemble model produces continuous outputs.

3.3 Compactness as Shape and Population Dispersion

As described in Section 2, the concept of compactness in the law, most of the literature,

and our paper is based on district shape alone. However, other conceptualizations may be

of interest for some purposes, such as based on population, communities of interest, not

dividing political subdivisions, etc. For each of these, all the methodological procedures

we developed in this paper should be directly applicable. The measure that results from

the application of our procedures entirely depends, of course, on the quantity of interest

being estimated, and there is no guarantee that a measure of compactness based on shape

will be related to one based on other criteria.
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As one small proof-of-concept of the applicability of our approach, we repeated our

survey with district shapes that also represented where in each district people live (An-

solabehere and Palmer, 2016; Niemi, Grofman, Carlucci, and Hofeller, 1990). We ran this

population distribution experiment with six undergraduates from different universities on

the same set of 20 districts. Details of the experimental protocol appear in our replication

data set. Results indicate that the median correlation between the
(
6
2

)
= 15 possible pairs

of rankings was a substantial 0.94, with a range of 0.12. This is comparable to the results

we found using shape alone.

4 Validating

Via cross-validation (in Section 4.1) and out-of-sample prediction in diverse populations

(in Section 4.2), we now evaluate our single, unidimensional compactness measure, de-

terministically computed from a district shape, and confirm our hypothesis that the theo-

retical concept we are measuring is the same one people know when they see. The data

for this section come from diverse populations including participants directly involved in

decision making about legislative redistricting.

4.1 Cross-validation

We evaluate our model here with cross-validation, where each fold reserves one of our

six sets of 100 districts. To do this, we use six groups of survey respondents, potentially

making it harder for our model by mixing size of group, mode of administration, and

type of respondent: (1) two pairs of undergraduates (the two within each pair working

together) and one pair of graduate students; (2) one pair of undergraduates, one individ-

ual undergraduate, and one pair of graduate students; (3) 5 individual undergraduates, 5

pairs of undergraduates, and 16 Mechanical Turk workers; (4) 5 pairs and five individ-

ual undergraduates; (5) 8 undergraduates; (6) 8 undergraduates. (We found ex post that

respondents gave similar rankings regardless of whether they worked alone or in pairs.

Similarly, Mechanical Turk workers, undergraduates, and graduate students gave similar

rankings on the same sets of districts.)
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We then trained our model on groups 1–5 of respondents taken together, and predicted

the remaining “test set” of respondents in group 6; we repeated this six times in total,

with each group taking its turn as the test set and the remaining groups as the training

set. The prediction from this model uses all information from the training set but only

the district geometry (i.e., no survey information) from the test set. Figure 5 evaluates

the performance of this procedure by providing six scatterplots corresponding to each of

our training set-based predictions (horizontally) by the true test set values (vertically). As

is evident, these cross-validation results indicate very high predictive accuracy. Correla-

tions between predictions and test set values range from 0.92 to 0.96, with no noticeable

systematic error patterns in any graph.

[Figure 5 about here.]

4.2 Predictive Validation in Diverse Populations

The statistical model in Section 3.2 is designed to predict human judgment about the

compactness of any set of districts, given only the geometric shapes of the districts. Our

model can make a prediction for any legislative district shape, including new districts and

those that do not appear in our training set.

Our hypothesis is that any informed human being will judge the compactness of a set

of districts in almost the same way, thus admitting to high levels of statistical reliability.

We now test this hypothesis by asking a wide range of groups to evaluate the compactness

of different sets of legislative districts and comparing these evaluations to our predic-

tions. Our main test comes from 96 sitting justices, judges, and public officials, all with

some responsibility for redistricting or deciding redistricting cases. We also elicited the

views of 102 others, ranging from less to more involved in and knowledgeable about re-

districting, including Mechanical Turk workers, who received small monetary payments,

undergraduates, some of whom received hourly wages, and others who were not paid, in-

cluding political science PhD students, law students, law faculty, redistricting consultants

and expert witnesses, and lawyers involved in legislative redistricting cases.

We promised our respondents confidentiality, including their responses and the fact of
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their participation. This was most obviously a concern in recruiting judges and justices,

who decide redistricting cases, and other public officials, who have decision making au-

thority in or substantial influence on the process. It turned out to be of no less a concern

for some lawyers who try redistricting cases, and some consultants and expert witnesses

who are held to account for their previous statements and opinions. For these reasons,

we are not able to make these data available publicly, although we do make available the

software we designed to let respondents sort districts online and all our specific experi-

mental protocols. All these steps were approved by our university Institutional Review

Board. (We have also prepared and field tested teaching exercises for American govern-

ment classes that use our districts, enable students do the ranking exercise themselves,

and compare them to our predictions.)

In this experiment, we asked each respondent to rank order twenty legislative districts,

not included in our training data, by their degree of compactness; we represent the de-

gree of predictive accuracy by a simple correlation with our predictions. All respondents

ranked the same twenty districts. We portray our results in Figure 6 with a histogram for

each of nine categories of people. As a baseline, we present a density estimate (in blue) of

the percent agreement among random rankings, which is of course centered at zero, and

the variance of which conveys uncertainty given n = 20 districts. The (salmon-colored)

histogram is for Mechanical Turk workers. The remaining histograms of correlations ap-

pear in white, with black outlines. We do not distinguish among these for a further level

of confidentiality, but they all lead to the same conclusion of very high levels of predictive

accuracy.

[Figure 6 about here.]

We found no statistically significant differences between the size of the correlations

among different groups of respondents. The main predictor of the strength of the cor-

relations was the time spent on the task, with longer times yielding higher correlations.

This accounts for the larger variance of Mechanical Turk workers, as they are paid by the

completed task regardless of how long they spend.
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5 Interpreting

Having conceptualized, measured, and validated our estimate of compactness, we now in-

terpret the result. Of course, we already have one interpretation — that we know it when

we see it. That is, our fully automated quantification of the compactness of a district ge-

ography reproduces how informed human observers evaluate a never-before-seen district

shape. Our model can do this quickly for millions of potential districts in ways no human

could ever do — and so it could be used in a court case comparing entire legislative plans

or in academic research comparing many legislatures — but the quantity being estimated

by our model and by individual people is the same.

Nevertheless, a reasonable question is whether we can understand compactness via

some simpler geometric approach, analogous to any of the existing measures. The com-

mon difficulty of explaining how we as humans (or statistical models that approximate

them) perform sophisticated tasks — recognizing a friend’s face, developing a scientific

hypothesis, judging compactness when we see it, etc. — is known as “Polanyi’s paradox,”

that “we know more than we can tell” (Autor, 2015; Polanyi, 1966). We have studied, in

considerable detail, how to simplify our measure and find that indeed the simplest way to

know what we see is merely to look or to use our measure. A theoretically simpler version

may even be an illusory goal, since humans use such sophisticated combinations of these

mathematical simplifications rather than any one. We analyze this point in four ways, and

then discuss whether other approaches to this question might be possible.

First, we offer a direct answer from our extensive qualitative analyses of the outputs

of our approach along with the features that are most predictive: Our measure of com-

pactness favors districts that are squarish, with minimal arms, pockets, islands, or jagged

edges. (We use “squarish” rather than “circle-like” because many real districts are ap-

proximately square-shaped but almost none resemble circles.) Importantly, no existing

compactness measure estimates a theoretical quantity that can reasonably be described in

this way.

Second, we offer illustrations of the nature of the agreements and disagreements be-

tween our measure and each of the seven existing measures we discussed in Section 2.
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For each existing measure, we construct a 2 × 2 cross-tabulation of example districts

that reflect agreements (compact and noncompact) and disagreements (where the existing

measure says noncompact and ours compact, and the reverse). We array horizontally the

four cells of this 2×2 table for each measure in a row in Table 2. To generate this table, we

define “compact” districts as having a predicted compactness rank in the top 15 (of 100)

and “noncompact” as 85 or lower. (If no district appears in a cell of the cross-tabulation,

we expand our definition from 15 and 85 to 20 and 80, etc.) Then, to avoid cherry picking,

we choose the first in alphabetical order among all districts defined by each cell in each

table.9

[Table 2 about here.]

The results in Table 2 are striking. The agreements appear in the first two columns:

Column one includes seven obviously compact districts, and column two includes seven

clearly noncompact districts. The last two columns reflect disagreements between our

measure and an existing one. The first of these (in the third column) are districts that

our measure indicates are noncompact and an existing measure says are compact. Most

human observers agree with our measure (by design) that these are in fact highly non-

compact districts. Similarly, the final column includes districts judged as noncompact by

an existing measure, but compact by ours. This table clearly reveals how each existing

measure picks up important features of the compactness of legislative districts and omits

others. The features each measure picks up or misses are those widely discussed in the

existing compactness literature as benefits or failures of each measure, since in practice

this theoretical literature is using the standard from which our measure was derived (you

know it when you see it) to judge their own measures. In contrast, our measure seems to

pick up all the features identified throughout the literature as desirable, without obviously

missing any feature of a district shape generally seen as important.

Third, do different measures generate different conclusions in practice? The answer

here depends on in which legislature the comparison is being made. For any two measures,

9We define alphabetical order according to a specific naming convention. All districts receive an iden-
tifier which includes state, district set (upper chamber, lower chamber or Congress), district number, and
year. For example, Alaska’s first congressional district from 2010 is 01_CD_001_2010.
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it is easy to draw a districting plan where the measures change the rankings of compact-

ness in any arbitrary way. We could also be misled by stacking up data across legislatures

— and thus ignoring the bias from heterogeneous treatment effects — in which case we

would see that our measure correlates quite low with most measures but at about 0.9 for

convex hull and Polsby-Popper, and similarly high correlations for the naive average of

all measures. In fact, the only coherent way to answer the question is to use real world

legislatures, which is the context in which comparisons matter and, as it turns out, where

differences are significant. To pick an extreme case from the current US Congressional

map, Polsby-Popper correlates with our measure (i.e., the measure any human observer

would choose when evaluating districts) at 0.95 in Indiana’s 1970 map but −0.37 in its

1890 map. We thus study this question more systematically by analyzing the 778 leg-

islatures from our data with unique sets of district boundaries (i.e., for every available

state, legislative chamber, and year; e.g., Alabama State Senate in 1962). Comparisons

across measures in court mostly depend on which district or plan ranks highest and so

we compute the percent of times, across data sets, where each existing measure has the

highest correlation with our measure. The measure that winds up in the top position most

often is Convex Hull, but this occurs in only 54.5% of the data sets — followed by the

Polsby-Popper in 31.0%, Grofman in 6.2%, Y-axis Symmetry in 1.9%, Reock and X-axis

Symmetry at 1.6% and 1.5%, and Boyce-Clark at 0.6%; even measures such as the area of

the minimum bounding circle and the number of discontiguous polygons correlate most

highly sometimes. In other words, any existing measure can come out on top in approxi-

mating our measure depending on the particular features of the set of district shapes that

make up the legislature, and so none of these measures alone can be used as a simpler

replacement with our measure of what people know when they see, without checking the

relationship first (see Supplementary Appendix E).

Finally, the best practice in choosing predictive models, which we followed, involves

finding the most parsimonious model that predicts accurately; as such, we are by definition

unable to find an even more parsimonious model without giving up predictive accuracy.

Thus, we searched for a more parsimonious model that degraded performance by only
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a small amount. Unfortunately, we found no large discontinuity in the relationship be-

tween parsimony and performance. A straightforward principal component analysis of

the existing measures also does not yield a simple solution.

In summary, this section demonstrates that none of the existing measures, and no

measure we could find, offer a simple geometric representation for what humans know

when they see. To be clear, however, we have not proved that creating such a measure is

impossible. We thus leave this as an open question and encourage future researchers to

seek such a simplifying geometric definition, if that turns out to be possible.

6 Concluding Remarks

We conclude that the measure derived here reflects the underlying viewpoint held about

the concept of compactness by everyone from educated Americans to public officials,

judges, and justices. This measure appears to confirm and reflect the single, universally

recognizable standard implicit in legal compactness requirements of state constitutions,

federal and state legislation, and court decisions. Although “we know more than we can

tell” about how humans perceive compactness, this measure quantifies “what we know

when we see.” The measure is also visibly different (as per Table 2) from any existing

measure and, by design, much closer to how human beings perceive compactness.

Approaches developed here for measuring an ill-defined concept that you know only

when you see may also be applicable to other difficult-to-define concepts. These include

measurement by full ranking rather than paired comparisons, which saves time and turns

out, in our application, to have much higher levels of intra- and intercoder reliability;

the incorporation in a model rather than replacement of most existing measures and ap-

proaches; and formalization into a statistical model of an approach that predicts the views

of a wide range of different types of people.

The key aspect of our approach here is defining the concept of interest separately from

the measure used to estimate it, so that our measure becomes vulnerable to being proven

wrong and, as a result, our approach can improve over time. In this light, we encourage

others to take up this challenge and improve on the methods we propose, and develop
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statistical methods that outperform ours; this may now be possible, as clear performance

standards now exist. New features measuring compactness can also be included in our

approach as additional covariates in our statistical model, which may well be improved.

We hope the large collection of compactness data we make available with this paper

(for 17,896 state legislative and congressional districts) and software that makes it easy to

compute compactness on any new district enable future researchers to study a wide range

of questions related to this crucial concept (see Appendix E). As well, we hope that having

a single measure of compactness that all agree on will begin to constrain some aspects of

unbridled advocacy during the redistricting process and subsequent litigation.

Appendix A How Paired Comparisons Fails

The method of paired comparisons has been touted for more than a century and a half for

its two key advantages. First, this approach puts fewer demands on survey respondents

than asking respondents to do a full ranking. That is, to produce a ranking of n items

requires the choice among n! possible rankings, whereas the same information can be

elicited with only
(
n
2

)
paired comparisons. This is not trivial since n!�

(
n
2

)
; for example,

with n = 20, we have 20! = 2.4 × 1018, or 2 quintillion possible rankings, whereas(
20
2

)
= 190 paired comparisons is large but still manageable in a single survey (and may

even be reduced; see Mitliagkas, Gopalan, Caramanis, and Vishwanath 2011). For these

reasons, Converse and Presser (1986, p.28) comment on a historical example with only

13 items: “Tasks of this scope were soon seen as much too difficult. . . , and in our own

time, rank orders of this size are all but invisible in the literature”. Thus, if full ranking is

used, the best practice has been “not to use lists longer than three or four items” (Gideon,

2012).

Second, Thurstone’s approach only requires simple questions that are easy to under-

stand, concrete, and specific. With it, we ask a respondent which among a pair of legisla-

tive districts is more compact, and then repeat this simple question multiple times with

different pairs of districts. Then, after eliciting information in this manner, the researchers

combine these binary decisions into a ranked scale (using Guttman scaling or a more so-
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phisticated approach accounting for measurement error; e.g., Mitliagkas, Gopalan, Cara-

manis, and Vishwanath 2011). The method assumes all respondents will use the same

unidimensional scale to make their choices for all their paired comparisons (an issue we

return to). The supposed advantage of this approach is that respondents are asked only

what they know (a paired comparison) and researchers do what they are better at, which is

taking on the complicated task of inferring the underlying full ranking from all the elicited

information.

To apply this method, we conducted multiple iterated rounds of pre-testing and cog-

nitive debriefing while adjusting question wording and how the districts appeared10. But

despite dozens of trials over many months, testing numerous variations, and with a wide

range of research subjects, online and in person, our inter- and intracoder reliability statis-

tics were rarely much above random chance. To see what we found, consider a simple

experiment with 40 respondents (in this case on Amazon’s Mechanical Turk), each asked

to choose the more compact district from each of twenty pairs, producing a 20-length bi-

nary decision vector. This survey enabled us to compare the percent agreement among the

20 decisions for each of
(
40
2

)
= 780 pairs of respondents. Figure 7 gives a histogram of

these percent agreements (in blue, marked “paired”, computed as a density estimate). For

comparison, we also generate a placebo test, under the null hypothesis of no agreement,

by randomly generating 780 pairs of 20-length vectors and computing from them the per-

cent agreement and plotting its histogram (white with a black outline, marked “Random”).

(We discuss the “Ranking” figure in the next section.)

[Figure 7 about here.]

As expected when comparing coin flips, the random placebo percent agreement is cen-

tered at 50%. In contrast, the paired comparison percent agreement histogram is shifted

farther to the right than the placebo histogram, but the mean only moves to 54%, leaving

the two distributions with considerable overlap. Put differently, the best we could do with

the method of paired comparisons, even before the step of turning paired decisions into

rank orders, is results with unacceptably low levels of intercoder reliability.
10All districts are visualized at maximally high resolution to ensure that no features such as coastline are

lost.
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We now rule out the possibility that these results are due to different people having

incompatible notions of compactness by studying intracoder reliability. To do this, we

waited two weeks, randomly shuffled the order of the 20 paired comparison questions,

and administered the survey to the same people. (Of the 40 people, only one mentioned,

on post-survey cognitive debriefing, that “some” of the districts may have been the same

as the first week.)

These results appear in Figure 8 (also as a blue histogram marked “Paired”) and are

more distinct from the random placebo test (in white with a black outline marked “Ran-

dom”) than with intercoder reliability in Figure 7, as would be expected. The mean of

the paired comparison histogram is now at 65% agreement, although the overlap with the

random distribution is still large. (We discuss the third histogram in the next section.)

[Figure 8 about here.]

We thus conclude that these standard, best practice approaches are inadequate, at least

for our application, and turn to an alternative. See Section 3.
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(a) AL 1 (b) AL 37 (c) AL 23 (d) AL 2

Figure 1: Four Districts from the Alabama State House in 2000.
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(a) (b) (c) (d)

Figure 2: The Underlying Compactness Dimension, from most compact (a) to least com-
pact (d) (all five of the most common compactness measures agree with this ordering).
(Districts include, (a) Wyoming State House District 42, 2010; (b) Pennsylvania State
House District 185, 2010; (c) Oklahoma Congressional District 1, 1950; (d) Louisiana
State Senate District 3, 2010.)
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Figure 3: Intercoder Reliability for Full Ranking with 100 districts. Scatterplots are given
for the median correlation (top left panel), first quartile (bottom left) and third quartile
(top right). A density plot of all correlations, along with a placebo-based density plot
appear at the bottom right. Density plots are truncated to reflect the observed support.
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Figure 4: Intracoder Reliability for Full Ranking, following the same heuristics as Figure
3. Density plots are truncated to reflect the observed support.
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Figure 5: Cross-Validation of Model Predictions
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Figure 6: Histograms (via density estimates) of correlations between predictions from our
model and answers to survey questions from nine different groups of respondents.
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Figure 7: Intercoder Reliability of Thurstone’s Paired Comparisons (blue histogram), full
ranking (salmon histogram), and a random placebo distribution (white histogram), all
using density estimation.
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Figure 8: Intracoder Reliability of Thurstone’s Paired Comparisons (blue histogram), full
ranking (salmon histogram), and a random placebo distribution (white histogram), all
using density estimation.
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Legislative Districts
AL 21 AL 9 AL 62 AL 1

Convex Hull 1 2 3 4
Reock 4 3 2 1
Polsby-Popper 2 3 1 4
Boyce-Clark 3 4 1 2
Length/Width 4 2 3 1
X-axis Symmetry 4 1 2 3
Significant Corners 3 1 2 4

Table 1: Seven Unique Compactness Rankings of the Same Four Districts: Five Existing
and Two New Metrics
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Our measure: COMPACT noncompact noncompact COMPACT
Existing measure: COMPACT noncompact COMPACT noncompact

Reock

Convex Hull

Polsby-Popper

Boyce-Clark

Length/Width

X-Symmetry

Significant Corners

Table 2: Illustrations of agreements (in the first two columns) and disagreements (in the
last two columns) about the degree of compactness between each of seven existing mea-
sures and our measure. Each row represents a 2 × 2 table of our measure by an existing
measure, with a dichotomized compactness summary, displaying one example district in
each cell arbitrarily chosen via alphabetical order.
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