Big Data is Not About the Data!

Gary King

Institute for Quantitative Social Science
Harvard University

Talk at Microsoft, 2/5/2015

1GaryKing.org
The *Data* In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to:

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable "big data" articles)

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to:

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable "big data" articles)

Impact:

- Changed most Fortune 500 firms
- Established new industries
- Altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable "big data" articles)

Impact:
- Changed most Fortune 500 firms
- Established new industries
- Altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data In Big Data* (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to.

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable "big data" articles)

Impact:
- Changed most Fortune 500 firms
- Established new industries
- Altered friendship networks
- Political campaigns
- Public health
- Legal analysis
- Policing
- Economics
- Sports
- Public policy
- Literature

...
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere

Impact:
- changed most Fortune 500 firms
- established new industries
- altered friendship networks
- political campaigns
- public health
- legal analysis
- policing
- economics
- sports
- public policy
- literature, etc., etc., etc
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software

Impact:
changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The **Data In Big Data** (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to . . .

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification:* through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)

Impact:

- changed most Fortune 500 firms
- established new industries
- altered friendship networks
- public health
- legal analysis
- policing
- economics
- sports
- public policy
- literature,
- etc., etc., etc
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact:
The Data In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (SuperCrunchers, The Numerati, MoneyBall, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification*: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks
The *Data In Big Data* (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification*: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (SuperCrunchers, The Numerati, MoneyBall, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (SuperCrunchers, The Numerati, MoneyBall, and innumerable "big data" articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (SuperCrunchers, The Numerati, MoneyBall, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing
The *Data In Big Data (about people)*

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification:* through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics
The Data In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- The march of quantification: through academia, professions, government, & commerce (SuperCrunchers, The Numerati, MoneyBall, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification*: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy
The Data In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to . . .

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification:* through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature,
The *Data In Big Data (about people)*

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to . . .
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- *The march of quantification*: through academia, professions, government, & commerce (*SuperCrunchers*, *The Numerati*, *MoneyBall*, and innumerable “big data” articles)
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Value* in Big Data: the Analytics

- Data: easy to come by; often a free byproduct of IT improvements
- Becoming commoditized
- Ignore it & every institution will have more every year
- With a bit of effort: huge data production increases

Where the Value is: the Analytics

- Output can be highly customized
- Moore's Law (doubling speed/power every 18 months) vs One good data scientist (1000x speed increase in 1 day)
- $2M computer vs 2 hours of algorithm design
- Low cost; little infrastructure; mostly human capital needed
- Innovative analytics: enormously better than off-the-shelf
The Value in Big Data: the Analytics

- Data:

 - Easy to come by; often a free byproduct of IT improvements
 - Becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

Where the Value is: the Analytics

- Output can be highly customized
- Moore's Law (doubling speed/power every 18 months) vs. One good data scientist (1000x speed increase in 1 day)
- $2M computer vs. 2 hours of algorithm design
- Low cost; little infrastructure; mostly human capital needed
- Innovative analytics: enormously better than off-the-shelf
The *Value* in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
The *Value* in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
The *Value* in Big Data: the Analytics

Data:
- easy to come by; often a free byproduct of IT improvements
- becoming commoditized
- Ignore it & every institution will have more every year
The Value in Big Data: the Analytics

Data:
- easy to come by; often a free byproduct of IT improvements
- becoming commoditized
- Ignore it & every institution will have more every year
- With a bit of effort: huge data production increases
The Value in Big Data: the Analytics

• Data:
 • easy to come by; often a free byproduct of IT improvements
 • becoming commoditized
 • Ignore it & every institution will have more every year
 • With a bit of effort: huge data production increases

• Where the Value is: the Analytics
The Value in Big Data: the Analytics

• Data:
 • easy to come by; often a free byproduct of IT improvements
 • becoming commoditized
 • Ignore it & every institution will have more every year
 • With a bit of effort: huge data production increases

• Where the Value is: the Analytics
 • Output can be highly customized
The Value in Big Data: the Analytics

• **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

• **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months)
The Value in Big Data: the Analytics

Data:
- easy to come by; often a free byproduct of IT improvements
- becoming commoditized
- Ignore it & every institution will have more every year
- With a bit of effort: huge data production increases

Where the Value is: the Analytics
- Output can be highly customized
- Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
 - $2M computer v. 2 hours of algorithm design
The Value in Big Data: the Analytics

• Data:
 • easy to come by; often a free byproduct of IT improvements
 • becoming commoditized
 • Ignore it & every institution will have more every year
 • With a bit of effort: huge data production increases

• Where the Value is: the Analytics
 • Output can be highly customized
 • Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
 • $2M computer v. 2 hours of algorithm design
 • Low cost; little infrastructure; mostly human capital needed
The *Value* in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months)
 v. One good data scientist (1000x speed increase in 1 day)
 - $2M computer v. 2 hours of algorithm design
 - Low cost; little infrastructure; mostly human capital needed
 - **Innovative analytics:** enormously better than off-the-shelf
Exciting Data, But Useless without Novel Analytics

• Opinions of activists:
 A few thousand interviews ➞ billions of political opinions in social media posts (650M/day)

• Exercise:
 A survey: “How many times did you exercise last week?” ➞ 500K people carrying cell phones with accelerometers

• Social contacts:
 A survey: “Please tell me your 5 best friends” ➞ continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books

• Economic development in developing countries:
 Dubious or nonexistent governmental statistics ➞ satellite images of human-generated light at night, road networks, other infrastructure

• Many, many, more...

In each: without new analytics, the data are useless
Exciting Data, But Useless without Novel Analytics

- Opinions of activists:
 - A few thousand interviews
 - Billions of political opinions in social media posts (650M/day)

- Exercise:
 - A survey: "How many times did you exercise last week?"
 - 500K people carrying cell phones with accelerometers

- Social contacts:
 - A survey: "Please tell me your 5 best friends"
 - Continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books

- Economic development in developing countries:
 - Dubious or nonexistent governmental statistics
 - Satellite images of human-generated light at night, road networks, other infrastructure

- Many, many, more...
 - In each: without new analytics, the data are useless
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews

- **Exercise:** A survey: "How many times did you exercise last week?" 500K people carrying cell phones with accelerometers

- **Social contacts:** A survey: "Please tell me your 5 best friends" continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books

- **Economic development in developing countries:** Dubious or nonexistent governmental statistics satellite images of human-generated light at night, road networks, other infrastructure

- **Many, many, more...**

In each: without new analytics, the data are useless
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \sim billions of political opinions in social media posts (650M/day)
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \(\sim\) billions of political opinions in social media posts (650M/day)
- **Exercise:**

4/14
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists**: A few thousand interviews \leadsto billions of political opinions in social media posts (650M/day)
- **Exercise**: A survey: “How many times did you exercise last week?”
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \leadsto billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \leadsto 500K people carrying cell phones with accelerometers
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists**: A few thousand interviews \(\sim\) billions of political opinions in social media posts (650M/day)
- **Exercise**: A survey: “How many times did you exercise last week? \(\sim\) 500K people carrying cell phones with accelerometers
- **Social contacts**:
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \leadsto billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \leadsto 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends”
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \rightsquigarrow billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \rightsquigarrow 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends” \rightsquigarrow continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \(\rightsquigarrow\) billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \(\rightsquigarrow\) 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends” \(\rightsquigarrow\) continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
- **Economic development in developing countries:**
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists**: A few thousand interviews \(\sim\) billions of political opinions in social media posts (650M/day)
- **Exercise**: A survey: “How many times did you exercise last week? \(\sim\) 500K people carrying cell phones with accelerometers
- **Social contacts**: A survey: “Please tell me your 5 best friends” \(\sim\) continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
- **Economic development in developing countries**: Dubious or nonexistent governmental statistics
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \leadsto billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week?” \leadsto 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends” \leadsto continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
- **Economic development in developing countries:** Dubious or nonexistent governmental statistics \leadsto satellite images of human-generated light at night, road networks, other infrastructure
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \leadsto billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \leadsto 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends” \leadsto continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
- **Economic development in developing countries:** Dubious or nonexistent governmental statistics \leadsto satellite images of human-generated light at night, road networks, other infrastructure
- **Many, many, more...**
Exciting Data, But Useless without Novel Analytics

- **Opinions of activists:** A few thousand interviews \(\sim\) billions of political opinions in social media posts (650M/day)
- **Exercise:** A survey: “How many times did you exercise last week? \(\sim\) 500K people carrying cell phones with accelerometers
- **Social contacts:** A survey: “Please tell me your 5 best friends” \(\sim\) continuous record of phone calls, emails, text messages, bluetooth, social media connections, address books
- **Economic development in developing countries:** Dubious or nonexistent governmental statistics \(\sim\) satellite images of human-generated light at night, road networks, other infrastructure
- **Many, many, more...**
- **In each:** without new analytics, the data are useless
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:
 • Key to both methods: classifying (deaths, social media posts)
 • Key to both goals: estimating %’s

Modern Data Analytics: New method led to:
1. Worldwide cause-of-death estimates for 5/14
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:

- Physicians’ “Verbal Autopsy” analysis
- Sentiment analysis via word counts
- Unrelated substantive problems, same analytics solution:
 - Key to both methods: classifying (deaths, social media posts)
 - Key to both goals: estimating %’s

Modern Data Analytics: New method led to:
1. Worldwide cause-of-death estimates for 5/14
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts
- Unrelated substantive problems, same analytics solution:
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:
 • Key to both methods: *classifying* (deaths, social media posts)
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- Unrelated substantive problems, same analytics solution:
 - Key to both methods: *classifying* (deaths, social media posts)
 - Key to both goals: *estimating %’s*
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:
 • Key to both methods: *classifying* (deaths, social media posts)
 • Key to both goals: *estimating* %’s

• Modern Data Analytics: New method led to:
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- **Examples of Bad Analytics:**
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- **Unrelated substantive problems, same analytics solution:**
 - Key to both methods: *classifying* (deaths, social media posts)
 - Key to both goals: *estimating* %’s

- **Modern Data Analytics:** New method led to:
 1.
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:
 • Key to both methods: \textit{classifying} (deaths, social media posts)
 • Key to both goals: \textit{estimating} %’s

• Modern Data Analytics: New method led to:
 1.

 2. Worldwide cause-of-death estimates for
Bias in Social Security Administration Forecasts

Social Security: single largest government program; lifted a whole generation out of poverty; extremely popular

Forecasts: used for programs comprising >50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out

First evaluation of SSA forecasts in 85 years:

Methods: little changed; mostly qualitative; a time when we've learned more about forecasting than at any time in history

Results: unbiased until 2000; systematically biased after 2000

Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes

In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)

New customized analytics we developed:

Logical consistency (e.g., older people have higher mortality)

Far more accurate forecasts

⇝ Trust fund needs > $800 million more than SSA thought

Many other applications to different types of forecasts
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $>50\%$ of the US expenditures;
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out

- First evaluation of SSA forecasts in 85 years:
 - Methods: little changed; mostly qualitative; a time when we've learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)

- New customized analytics we developed:
 - Logical consistency (e.g., older people have higher mortality)
 - Far more accurate forecasts
 - Trust fund needs >800 million more than SSA thought

- Many other applications to different types of forecasts
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising \(> 50\% \) of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years:**

 - **Methods**: little changed; mostly qualitative; a time when we've learned more about forecasting than at any time in history
 - **Results**: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
 - New customized analytics we developed:
 - Logical consistency (e.g., older people have higher mortality)
 - Far more accurate forecasts
 - \(\Rightarrow \) Trust fund needs \(> 800 \) million more than SSA thought
 - Many other applications to different types of forecasts
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods:
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising \(> 50\% \) of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed;
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $\geq 50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative;
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising > 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - **Methods**: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
Bias in Social Security Administration Forecasts

- **Social Security:** single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts:** used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years:**
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results:
Bias in Social Security Administration Forecasts

- **Social Security:** single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts:** used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years:**
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000;
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising ≥ 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - **Methods**: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - **Results**: unbiased until 2000; systematically biased after
 - **Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes**
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising > 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts:
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $\geq 50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising > 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
- **New customized analytics we developed**:
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising \(\geq 50\% \) of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
- **New customized analytics we developed**:
 - Logical consistency (e.g., older people have higher mortality)
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising > 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
- **New customized analytics we developed**:
 - Logical consistency (e.g., older people have higher mortality)
 - Far more accurate forecasts
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising $>50\%$ of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years**:
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
- **New customized analytics we developed**:
 - Logical consistency (e.g., older people have higher mortality)
 - Far more accurate forecasts
 - \Rightarrow Trust fund needs >800 million more than SSA thought
Bias in Social Security Administration Forecasts

- **Social Security**: single largest government program; lifted a whole generation out of poverty; extremely popular
- **Forecasts**: used for programs comprising > 50% of the US expenditures; e.g., if retirees draw benefits longer than expected, the Trust Fund runs out
- **First evaluation of SSA forecasts in 85 years:**
 - Methods: little changed; mostly qualitative; a time when we’ve learned more about forecasting than at any time in history
 - Results: unbiased until 2000; systematically biased after
 - Actuaries hunkered down, insulated themselves, refused to budge when Democrats & Republicans pushed hard for changes
 - In the process, they also insulated themselves from the facts: Especially since 2000, Americans started living unexpectedly longer lives (due to statins, early cancer detection, etc.)
- **New customized analytics we developed:**
 - Logical consistency (e.g., older people have higher mortality)
 - Far more accurate forecasts
 - Trust fund needs > $800 million more than SSA thought
 - Many other applications to different types of forecasts
Social Psychological Conditions that make Bias *Possible*

• The soc-psych literature: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks— exactly OCACT’s situation & procedures

• Qualitative uncertainty estimates are also likely biased

• “Experts” are usually overconfident.

• “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)

• The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005)

• It’s not about the person: “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)

• It can’t be learned: “Teaching psychology is mostly a waste of time” (Kahneman 2011)

• Fixes are not always quantitative: Violin competitions behind a curtain, without shoes
Social Psychological Conditions that make Bias *Possible*

- The soc-psyh literature:
 - Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT's situation & procedures
 - Qualitative uncertainty estimates are also likely biased
 - "Experts" are usually overconfident
 - "Do not trust anyone — including yourself — to tell you how much you should trust their judgment" (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005)
 - It's not about the person: "Trying harder," or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)
 - It can't be learned: "Teaching psychology is mostly a waste of time" (Kahneman 2011)
 - Fixes are not always quantitative: Violin competitions behind a curtain, without shoes
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks,
Social Psychological Conditions that make Bias *Possible*

- The soc-psych literature: **Bias is likely** when humans perform complex tasks, with discretion,
Social Psychological Conditions that make Bias Possible

- The soc-psyh literature: Bias is likely when humans perform complex tasks, with discretion, little feedback,
Social Psychological Conditions that make Bias *Possible*

- **The soc-psycho literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure,
Social Psychological Conditions that make Bias Possible

• The soc-psych literature: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group,
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks
Social Psychological Conditions that make Bias Possible

• The soc-psych literature: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT's situation & procedures
Social Psychological Conditions that make Bias Possible

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures
- **Qualitative uncertainty estimates are also likely biased**
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures.

- Qualitative uncertainty estimates are also likely biased
 - “Experts” are usually overconfident.

- "Do not trust anyone — including yourself — to tell you how much you should trust their judgment" (Kahneman 2011)

- The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005)

- It's not about the person: “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)

- It can't be learned: “Teaching psychology is mostly a waste of time” (Kahneman 2011)

- Fixes are not always quantitative: Violin competitions behind a curtain, without shoes...
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT's situation & procedures.

- **Qualitative uncertainty estimates are also likely biased**
 - "Experts" are usually overconfident.
 - "Do not trust anyone — including yourself — to tell you how much you should trust their judgment" (Kahneman 2011)
Social Psychological Conditions that make Bias Possible

• The soc-psych literature: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures

• Qualitative uncertainty estimates are also likely biased
 • “Experts” are usually overconfident.
 • “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 • The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005)
Social Psychological Conditions that make Bias Possible

- **The soc-psych literature**: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures

- Qualitative uncertainty estimates are also likely biased
 - “Experts” are usually overconfident.
 - “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central
Social Psychological Conditions that make Bias Possible

- The soc-psych literature: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures
- Qualitative uncertainty estimates are also likely biased
 - “Experts” are usually overconfident.
 - “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central
- It’s not about the person: “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)
Social Psychological Conditions that make Bias Possible

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT's situation & procedures

- Qualitative uncertainty estimates are also likely biased
 - “Experts” are usually overconfident.
 - “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central

- **It's not about the person:** “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)

- **It can’t be learned:** “Teaching psychology is mostly a waste of time” (Kahneman 2011)
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures
- Qualitative uncertainty estimates are also likely biased
 - “Experts” are usually overconfident.
 - “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central
- It’s not about the person: “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)
- It can’t be learned: “Teaching psychology is mostly a waste of time” (Kahneman 2011)
- Fixes are not always quantitative: Violin competitions
Social Psychological Conditions that make Bias Possible

- **The soc-psych literature**: Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT's situation & procedures
- **Qualitative uncertainty estimates are also likely biased**
 - "Experts" are usually overconfident.
 - "Do not trust anyone — including yourself — to tell you how much you should trust their judgment" (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central
- **It's not about the person**: "Trying harder," or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)
- **It can’t be learned**: "Teaching psychology is mostly a waste of time" (Kahneman 2011)
- **Fixes are not always quantitative**: Violin competitions behind a curtain,
Social Psychological Conditions that make Bias *Possible*

- **The soc-psych literature:** Bias is likely when humans perform complex tasks, with discretion, little feedback, high pressure, in a group, and few external checks — exactly OCACT’s situation & procedures.

- **Qualitative uncertainty estimates are also likely biased**
 - “Experts” are usually overconfident.
 - “Do not trust anyone — including yourself — to tell you how much you should trust their judgment” (Kahneman 2011)
 - The more prominent or central a forecaster, the more overconfident their statements (Tetlock 2005) — OCACT could hardly be more central.

- **It’s not about the person:** “Trying harder,” or replacing one person with another, usually has no effect (Banaji and Greenwald 2013)

- **It can’t be learned:** “Teaching psychology is mostly a waste of time” (Kahneman 2011)

- **Fixes are not always quantitative:** Violin competitions behind a curtain, without shoes
Humans are Horrible at Thinking of Keywords

An experiment:
"We have 10,000 twitter posts, each containing the word 'healthcare', from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obamacare."

Examples:
unconstitutional, coverage, obama, ACA...

Median keywords recalled: 8
Unique keywords recalled by 43 undergrads: 149
Keywords 42 of 43 failed to recall: 98 (66%)
Humans are **Horrible** at Thinking of Keywords

- An experiment:

 "We have 10,000 twitter posts, each containing the word 'healthcare', from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obamacare."

- Examples:

 unconstitutional, coverage, obama, ACA, ...

- Median keywords recalled: 8
- Unique keywords recalled by 43 undergrads: 149
- Keywords 42 of 43 failed to recall: 98 (66%)
Humans are Horrible at Thinking of Keywords

- An experiment: “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

- **Examples:**
Humans are Horrible at Thinking of Keywords

- An experiment: “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- Examples: unconstitutional,
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

- **Examples:** unconstitutional, coverage,
Humans are _Horrible_ at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

- **Examples:** unconstitutional, coverage, obama,
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA…
Humans are Horrible at Thinking of Keywords

• An experiment: “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

• Examples: unconstitutional, coverage, obama, ACA...

• Median keywords recalled:
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA...
- **Median keywords recalled:** 8
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA…
- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:**
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA...
- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:** 149
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

- **Examples:** unconstitutional, coverage, obama, ACA...

- **Median keywords recalled:** 8

- **Unique keywords recalled by 43 undergrads:** 149

- **Keywords 42 of 43 failed to recall:**
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”

- **Examples:** unconstitutional, coverage, obama, ACA…

- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:** 149
- **Keywords 42 of 43 failed to recall:** 98 (66%)
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA…
- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:** 149
- **Keywords 42 of 43 failed to recall:** 98 (66%)
- ~ Humans recognize keywords well, recall them poorly
Humans are **Horrible** at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA...
- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:** 149
- **Keywords 42 of 43 failed to recall:** 98 (66%)
- **Humans recognize keywords well, recall them poorly**
- **Thresher:** New technology to discover the right keywords
Humans are Horrible at Thinking of Keywords

- **An experiment:** “We have 10,000 twitter posts, each containing the word ‘healthcare’, from the time period surrounding the Supreme Court decision on Obamacare. Please list any keywords which come to mind that will select posts in this set related to Obamacare and will not select posts unrelated to Obama care.”
- **Examples:** unconstitutional, coverage, obama, ACA...
- **Median keywords recalled:** 8
- **Unique keywords recalled by 43 undergrads:** 149
- **Keywords 42 of 43 failed to recall:** 98 (66%)
- **Humans recognize keywords well, recall them poorly**
- **Thresher:** New technology to discover the right keywords
Following Conversations that Hide in Plain Sight
Following Conversations that Hide in Plain Sight

Example Substitution 1:
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由

自由
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由 “Freedom”
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由 “Freedom”

Example Substitution 2:

和 谐 “Harmonious [Society]” (official slogan)

They can't follow the conversation; Thresher can.

The same task:
(1) Long tail search,
(2) Government and industry analyst's job,
(3) language drift (#BostonBombings ⇝ #BostonStrong),
(4) Child pornographers,
(5) Look-alike modeling,
(6) Starting point for other automated text methods,
(7) Infinitely improvable classification, eDiscovery
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由
目由

“Freedom”

Example Substitution 2:

和
谐

“Harmonious [Society]” (official slogan)

河
蟹

“River crab” (irrelevant)

They can't follow the conversation; Thresher can.

The same task:
(1) Long tail search,
(2) Government and industry analyst's job,
(3) language drift (#BostonBombings ⇝ #BostonStrong),
(4) Child pornographers,
(5) Look-alike modeling,
(6) Starting point for other automated text methods,
(7) Infinitely improvable classification,
eDiscovery

9/14
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由 自由 “Freedom”
目田 目田 “Eye field”

They can't follow the conversation; Thresher can.

The same task:
(1) Long tail search,
(2) Government and industry analyst's job,
(3) language drift (#BostonBombings ⇝ #BostonStrong),
(4) Child pornographers,
(5) Look-alike modeling,
(6) Starting point for other automated text methods,
(7) Infinitely improvable classification, eDiscovery
Following Conversations that Hide in Plain Sight

Example Substitution 1:

自由
自由 "Freedom" (censored)
目由 "Eye field" (nonsensical)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 自由
自由 “Freedom”
目田 “Eye field” (nonsensical)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自 由
自 由
“Freedom”
目 田
目 田
“Eye field” (nonsensical)

Example Substitution 2:
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由
自由
“Freedom”

自
由
“Eye field” (nonsensical)

Example Substitution 2:

和谐
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom” [CENSORED]
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan) [CENSORED]
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan)
河蟹
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由
“Freedom”

目田
“Eye field” (nonsensical)

Example Substitution 2:

和谐
“Harmonious [Society]” (official slogan)

河蟹
“River crab”
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由
“Freedom”
自
“Eye field” (nonsensical)

Example Substitution 2:

和谐
“Harmonious [Society]” (official slogan)
合
“River crab” (irrelevant)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation;
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 自由 “Freedom”
目 扮 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐 和谐 “Harmonious [Society]” (official slogan)
河 蟹 河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task:
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 自由 “Freedom”
目田 目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 和谐 “Harmonious [Society]” (official slogan)
河蟹 河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由
自由
“Freedom”
“Freedom”

目田
目田
“Eye field” (nonsensical)
“Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐
和谐
“Harmonious [Society]” (official slogan)
“Harmonious [Society]” (official slogan)

河蟹
河蟹
“River crab” (irrelevant)
“River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search, (2) Government and industry analyst’s job,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 自由 “Freedom” (censored)
目田 目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 和谐 “Harmonious [Society]” (official slogan) (censored)
河蟹 河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong),
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph
自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)
和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目由 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和諧 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can't follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 自由 “Freedom” (censored)
目 田 目 田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 和谐 “Harmonious [Society]” (official slogan) (censored)
河 蟹 河 蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling, (6) Starting point for other automated text methods,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom” [CENSORED]
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan) [CENSORED]
河蟹 “River crab” (irrelevant)

They can't follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (♯BostonBombings ⇝ ♯BostonStrong), (4) Child pornographers, (5) Look-alike modeling, (6) Starting point for other automated text methods, (7) Infinitely improvable classification,
Following Conversations that Hide in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling, (6) Starting point for other automated text methods, (7) Infinitely improvable classification, eDiscovery
To understand many documents, humans create categories to represent conceptualization, insight, etc. Most firms impose fixed categorizations to tally customer complaints, sort reports, retrieve information. Bad Analytics:

- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)

Our alternative: Computer-assisted Categorization

- You decide what’s important, but with help
- Invert effort: you innovate; the computer categorizes
- Insights: easier, faster, better
- Technology: visualize the space of all possible clusterings (Lots of technology, but it’s behind the scenes)
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
Computer-Assisted Reading (Consilience)

• To understand many documents, humans create categories to represent conceptualization, insight, etc.

• Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
Computer-Assisted Reading (Consilience)

- To understand many documents, humans **create categories** to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- **Bad Analytics:**

 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
 - Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
 - Invert effort: you innovate; the computer categorizes
 - Insights: easier, faster, better
 - Technology: visualize the space of all possible clusterings
 - (Lots of technology, but it’s behind the scenes)
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
 - Invert effort: you innovate; the computer categorizes
To understand many documents, humans create categories to represent conceptualization, insight, etc.

Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information

Bad Analytics:
- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)

Our alternative: Computer-assisted Categorization
- You decide what’s important, but with help
- Invert effort: you innovate; the computer categorizes
- Insights: easier, faster, better
To understand many documents, humans create categories to represent conceptualization, insight, etc.

Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information.

Bad Analytics:
- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)

Our alternative: Computer-assisted Categorization
- You decide what’s important, but with help
- Invert effort: you innovate; the computer categorizes
- Insights: easier, faster, better
- Technology: visualize the space of all possible clusterings
To understand many documents, humans create categories to represent conceptualization, insight, etc.

Most firms: impose fixed categorizations to tally customer complaints, sort reports, retrieve information

Bad Analytics:

- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)

Our alternative: Computer-assisted Categorization

- You decide what’s important, but with help
- Invert effort: you innovate; the computer categorizes
- Insights: easier, faster, better
- Technology: visualize the space of all possible clusterings
- (Lots of technology, but it’s behind the scenes)
Example Insight from Computer-Assisted Reading

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming

New Insight: partisan taunting
- Joe Wilson during Obama’s State of the Union: “You lie!”
- “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
- Basically anything said by a 2016 presidential candidate!

How common is it?
- 27% of all Senatorial press releases!
Example Insight from Computer-Assisted Reading

What Members of Congress Do

• Data: 64,000 Senators' press releases
• Categorization: (1) advertising, (2) position taking, (3) credit claiming
• New Insight: partisan taunting
 • Joe Wilson during Obama's State of the Union: "You lie!"
 • "Senator Lautenberg Blasts Republicans as 'Chicken Hawks'"
 • Basically anything said by a 2016 presidential candidate!
• How common is it?
 • 27% of all Senatorial press releases!
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming

New Insight:
- Partisan taunting
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
- Basically anything said by a 2016 presidential candidate!

How common is it?
- 27% of all Senatorial press releases!
What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’”
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
 - Basically anything said by a 2016 presidential candidate!

27% of all Senatorial press releases!
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
 - Basically anything said by a 2016 presidential candidate!
- How common is it?
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
 - Basically anything said by a 2016 presidential candidate!
- How common is it? 27% of all Senatorial press releases!
Reverse Engineering Censorship in China

Previous approach: watch a few posts; see what’s removed

Data: We get posts before the Chinese censor them

≈ 13% censored overall

What Could be the Goal?

1. Stop collective action

Right

• Implications: Social Media is Actionable!

Chinese leaders:

• measure criticism: to judge local officials
• censor: to stop events with collective action potential

Thus, we can use criticism & censorship to predict:

• Officials in trouble, likely to be replaced
• Dissident arrests; new peace treaties; emerging scandals
• Disagreements between central and local leaders
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed

≈ 13% censored overall

What Could be the Goal?

1. Stop collective action

Implications: Social Media is Actionable!

Chinese leaders:

- measure criticism: to judge local officials
- censor: to stop events with collective action potential

Thus, we can use criticism & censorship to predict:

- Officials in trouble, likely to be replaced
- Dissident arrests; new peace treaties; emerging scandals
- Disagreements between central and local leaders
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them

≈13% censored overall

Everyone knows the Goal:

1. Stop collective action
 - Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties; emerging scandals
 - Disagreements between central and local leaders
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- $\approx 13\%$ censored overall
- Everyone knows the Goal:
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- $\approx 13\%$ censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:** Stop criticism and protest about the state, its leaders, and their policies *Wrong*
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: We get posts before the Chinese censor them
• ≈ 13% censored overall
• Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
• What Could be the Goal?
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: We get posts before the Chinese censor them
• ≈ 13% censored overall
• **Everyone knows the Goal:**
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
• **What Could be the Goal?**
 1. Stop criticism of the state
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: We get posts before the Chinese censor them
• $\approx 13\%$ censored overall
• **Everyone knows the Goal:** Stop criticism and protest about the state, its leaders, and their policies *Wrong*
• **What Could be the Goal?**
 1. Stop criticism of the state
 2. Stop collective action
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- $\approx 13\%$ censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- What Could be the Goal?
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications:** Social Media is Actionable!
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: We get posts before the Chinese censor them
• \(\approx 13\% \) censored overall
• Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
• What Could be the Goal?
 1. Stop criticism of the state \textit{Wrong}
 2. Stop collective action \textit{Right}
• Implications: Social Media is Actionable!
 • Chinese leaders:
 • measure criticism: to judge local officials
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall

Everyone knows the Goal:
Stop criticism and protest about the state, its leaders, and their policies *Wrong*

What Could be the Goal?
1. Stop criticism of the state *Wrong*
2. Stop collective action *Right*

Implications: Social Media is Actionable!
- Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- ≈ 13% censored overall
- Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- What Could be the Goal?
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- $\approx 13\%$ censored overall
- Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- What Could be the Goal?
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests;
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties;
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: We get posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties; emerging scandals
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: We get posts before the Chinese censor them
• ≈ 13% censored overall
• Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
• What Could be the Goal?
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
• Implications: Social Media is Actionable!
 • Chinese leaders:
 • measure criticism: to judge local officials
 • censor: to stop events with collective action potential
 • Thus, we can use criticism & censorship to predict:
 • Officials in trouble, likely to be replaced
 • Dissident arrests; new peace treaties; emerging scandals
 • Disagreements between central and local leaders
How To Take Advantage of Big Analytics

- It's cheap and powerful; don't skimp!
- Off-the-shelf analytics ⇝ big advances
- Innovative analytics ⇝ immensely better than off-the-shelf
 (Much harder to hire for innovative analytics; some mix in house hires and outside experts)
- Save it for last first!
- The goal is "inference": using facts you know to learn about facts you don’t know
- The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems)
- Building analytics during design:
 - avoids problems before they occur
 - saves a fortune,
 - opens many more possibilities
How To Take Advantage of Big Analytics

- It's cheap and powerful; don’t skimp!
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \leadsto big advances
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \(\rightsquigarrow\) big advances
 - Innovative analytics \(\rightsquigarrow\) immensely better than off-the-shelf

The goal is "inference": using facts you know to learn about facts you don’t know

The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems)

Building analytics during design:
 - Avoids problems before they occur
 - Saves a fortune,
 - Opens many more possibilities
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics ⇝ big advances
 • Innovative analytics ⇝ immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \implies big advances
 - Innovative analytics \implies immensely better than off-the-shelf
 - (Much harder to hire for innovative analytics;
 some mix in house hires and outside experts)

- Save it for last first!
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \Rightarrow big advances
 - Innovative analytics \Rightarrow immensely better than off-the-shelf
 - (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

- Save it for last first!
 - The goal is “inference”: using facts you know to learn about facts you don’t know
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics \rightsquigarrow big advances
 • Innovative analytics \rightsquigarrow immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

• Save it for last first!
 • The goal is “inference”: using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
How To Take Advantage of Big Analytics

• **It's cheap and powerful; don't skimp!**
 • Off-the-shelf analytics \(\rightsquigarrow\) big advances
 • Innovative analytics \(\rightsquigarrow\) immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

• **Save it for last first!**
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
How To Take Advantage of Big Analytics

• **It's cheap and powerful; don't skimp!**
 • Off-the-shelf analytics \(\leadsto\) big advances
 • Innovative analytics \(\leadsto\) immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

• **Save it for last first!**
 • The goal is “inference”: using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics \leadsto big advances
 • Innovative analytics \leadsto immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

• Save it for last first!
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
 • saves a fortune,
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics \mapsto big advances
 • Innovative analytics \mapsto immensely better than off-the-shelf
 • (Much harder to hire for innovative analytics; some mix in house hires and outside experts)

• Save it for last first!
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
 • saves a fortune,
 • opens many more possibilities
For more information

GaryKing.org

Institute for Quantitative Social Science
Harvard University