Big Data is Not About the Data!

Gary King

Institute for Quantitative Social Science
Harvard University

Conference on the Future of Science, Venice, Italy 9/23/2016

\[1\]GaryKing.org
The Data In Big Data (about people)
The Data In Big Data (about people)

The Last 50 Years:

• Survey research
• Aggregate government statistics
• One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to:

• Much more of the above — improved, expanded, and applied
• Shrinking computers & the growing Internet: data everywhere
• The march of quantification: through academia, professions, government, & commerce
• The replication movement: data sharing (e.g., Dataverse)
• Governments encouraging data collection & experimentation
• Advances in statistical methods, informatics, & software

Impact:

— changed most Fortune 500 firms
— established new industries
— altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:

- Survey research

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
The *Data In Big Data* (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied

Impact:
- changed most Fortune 500 firms
- established new industries
- altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to…
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software

Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc.
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact:
The *Data* In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification:* through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries
The Data In Big Data (about people)

The Last 50 Years:
• Survey research
• Aggregate government statistics
• One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
• Much more of the above — improved, expanded, and applied
• Shrinking computers & the growing Internet: data everywhere
• The march of quantification: through academia, professions, government, & commerce
• The replication movement: data sharing (e.g., Dataverse)
• Governments encouraging data collection & experimentation
• Advances in statistical methods, informatics, & software
• Impact: changed most Fortune 500 firms; established new industries; altered friendship networks
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns
The Data In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis
The Data In Big Data (about people)

The Last 50 Years:

- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...

- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- The march of quantification: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to . . .
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports
The *Data In Big Data* (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification:* through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature,
The Data In Big Data (about people)

The Last 50 Years:
- Survey research
- Aggregate government statistics
- One off studies of individual places, people, or events

The Next 50 Years: Fast increases in new data sources, due to...
- Much more of the above — improved, expanded, and applied
- Shrinking computers & the growing Internet: data everywhere
- *The march of quantification*: through academia, professions, government, & commerce
- The replication movement: data sharing (e.g., Dataverse)
- Governments encouraging data collection & experimentation
- Advances in statistical methods, informatics, & software
- Impact: changed most Fortune 500 firms; established new industries; altered friendship networks, political campaigns, public health, legal analysis, policing, economics, sports, public policy, literature, etc., etc., etc
The *Value* in Big Data: the Analytics

- **Easy to come by; often a free byproduct of IT improvements**
- **Becoming commoditized**
- **Ignore it & every institution will have more every year**
- **With a bit of effort: huge data production increases**

Where the Value is: the Analytics

- **Output can be highly customized**
- **Moore's Law (doubling speed/power every 18 months)**
- **$2M computer v. 2 hours of algorithm design**
- **Low cost; little infrastructure; mostly human capital needed**
- **Innovative analytics: enormously better than off-the-shelf**
The *Value* in Big Data: the Analytics

- Data:
 - Data is often easy to come by, often a free byproduct of IT improvements.
 - It is becoming commoditized.
 - Ignore it, and every institution will have more every year.
 - With a bit of effort, huge data production increases can be achieved.

Where the Value is: the Analytics

- Output can be highly customized.
- Moore's Law (doubling speed/power every 18 months) vs. One good data scientist (1000x speed increase in 1 day).
- 2M computer vs. 2 hours of algorithm design.
- Low cost; little infrastructure; mostly human capital needed.
- Innovative analytics: enormously better than off-the-shelf.
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
The *Value* in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases
The Value in Big Data: the Analytics

• Data:
 • easy to come by; often a free byproduct of IT improvements
 • becoming commoditized
 • Ignore it & every institution will have more every year
 • With a bit of effort: huge data production increases

• Where the Value is: the Analytics
The *Value* in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months)
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
The Value in Big Data: the Analytics

- **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

- **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
 - $2M computer v. 2 hours of algorithm design
The Value in Big Data: the Analytics

• **Data:**
 - easy to come by; often a free byproduct of IT improvements
 - becoming commoditized
 - Ignore it & every institution will have more every year
 - With a bit of effort: huge data production increases

• **Where the Value is: the Analytics**
 - Output can be highly customized
 - Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
 - $2M computer v. 2 hours of algorithm design
 - Low cost; little infrastructure; mostly human capital needed
The Value in Big Data: the Analytics

• Data:
 • easy to come by; often a free byproduct of IT improvements
 • becoming commoditized
 • Ignore it & every institution will have more every year
 • With a bit of effort: huge data production increases

• Where the Value is: the Analytics
 • Output can be highly customized
 • Moore’s Law (doubling speed/power every 18 months) v. One good data scientist (1000x speed increase in 1 day)
 • $2M computer v. 2 hours of algorithm design
 • Low cost; little infrastructure; mostly human capital needed
 • Innovative analytics: enormously better than off-the-shelf
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

Examples of Bad Analytics:
- Physicians' "Verbal Autopsy" analysis
- Sentiment analysis via word counts

Unrelated substantive problems, same analytics solution:
- Key to both methods: classifying (deaths, social media posts)
- Key to both goals: estimating %'s

Modern Data Analytics: New method led to:
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:

 1. Physicians’ “Verbal Autopsy” analysis
 2. Sentiment analysis via word counts

Key to both methods: classifying (deaths, social media posts)
Key to both goals: estimating %’s

Modern Data Analytics: New method led to:

How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- Unrelated substantive problems, same analytics solution:
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- Unrelated substantive problems, same analytics solution:
 - Key to both methods: *classifying* (deaths, social media posts)
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

• Examples of Bad Analytics:
 • Physicians’ “Verbal Autopsy” analysis
 • Sentiment analysis via word counts

• Unrelated substantive problems, same analytics solution:
 • Key to both methods: *classifying* (deaths, social media posts)
 • Key to both goals: *estimating %’s*
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- **Examples of Bad Analytics:**
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- **Unrelated substantive problems, same analytics solution:**
 - Key to both methods: *classifying* (deaths, social media posts)
 - Key to both goals: *estimating* %’s

- **Modern Data Analytics:** New method led to:
How to Read a Trillion Social Media Posts & Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- Unrelated substantive problems, same analytics solution:
 - Key to both methods: *classifying* (deaths, social media posts)
 - Key to both goals: *estimating %’s*

- Modern Data Analytics: New method led to:
 1.
How to Read a Trillion Social Media Posts
& Classify Deaths without Physicians

- Examples of Bad Analytics:
 - Physicians’ “Verbal Autopsy” analysis
 - Sentiment analysis via word counts

- Unrelated substantive problems, same analytics solution:
 - Key to both methods: *classifying* (deaths, social media posts)
 - Key to both goals: *estimating %’s*

- Modern Data Analytics: New method led to:
 1. Worldwide cause-of-death estimates for
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:

自由
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:

自由 “Freedom”
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:

自由 “Freedom”
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:

自由
自由："Freedom"
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1:

自由
自由
“Freedom”
目田
目田
“Eye field”
Example Substitution 1:

自由 “Freedom”
目田 “Eye field” (nonsensical)
Example Substitution 1: Homograph

自由
自由
“Freedom”
“Eye field” (nonsensical)
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自 由 “Freedom”
目 田 “Eye field” (nonsensical)
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目地 “Eye field” (nonsensical)

Example Substitution 2:
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
自由 “Eye field” (nonsensical)

Example Substitution 2:

和 谐
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan)
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan)
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由　“Freedom”
目田　“Eye field” (nonsensical)

Example Substitution 2:

和谐　“Harmonious [Society]” (official slogan)
河蟹
Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2:

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab”
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目 “Eye field” (nonsensical)

Example Substitution 2:

和 谐 “Harmonious [Society]” (official slogan)
河 蟹 “River crab” (irrelevant)
Example Substitution 1: Homograph

自 由 “Freedom”
目 田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐 “Harmonious [Society]” (official slogan)
河 蟹 “River crab” (irrelevant)
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 自由
自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐 和 谐
和 谐 “Harmonious [Society]” (official slogan)
河 蟹 河 蟹
河 蟹 “River crab” (irrelevant)

They can’t follow the conversation;
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由
自“Freedom”
自由
由“Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐
和“Harmonious [Society]” (official slogan)
河蟹
河“River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task:
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom”
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 “Harmonious [Society]” (official slogan)
河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search,
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 自由 “Freedom” (censored)
目 田 目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐 和谐 “Harmonious [Society]” (official slogan) (censored)
河 蟹 河蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search, (2) Government and industry analyst’s job,
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由 “Freedom” (censored)
目田 “Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐 “Harmonious [Society]” (official slogan) (censored)
河 蟹 “River crab” (irrelevant)

They can’t follow the conversation; Thresher can.
The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong),
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由
“Freedom” (censored)
目田
“Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐
“Harmonious [Society]” (official slogan) (censored)
河蟹
“River crab” (irrelevant)

They can't follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ~→ #BostonStrong), (4) Child pornographers,
Example Substitution 1: Homograph

自由 "Freedom" (censored)
目田 "Eye field" (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐 "Harmonious [Society]" (official slogan) (censored)
河蟹 "River crab" (irrelevant)

They can't follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling,
Example Substitution 1: Homograph

自由
“Freedom”
自由
“Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和谐
“Harmonious [Society]” (official slogan)
和谐
“River crab” (irrelevant)

They can’t follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling, (6) Starting point for other automated text methods,
Thresher: Finding Those Hiding in Plain Sight

Example Substitution 1: Homograph

自由
自
“Freedom”
“Eye field” (nonsensical)

Example Substitution 2: Homophone (sound like “hexie”)

和 谐
河 蟹
“Harmonious [Society]” (official slogan)
“River crab” (irrelevant)

They can’t follow the conversation; Thresher can.

The same task: (1) Long tail search, (2) Government and industry analyst’s job, (3) language drift (#BostonBombings ⇝ #BostonStrong), (4) Child pornographers, (5) Look-alike modeling, (6) Starting point for other automated text methods, (7) Infinitely improvable classification, eDiscovery, etc., etc.
To understand many documents, humans create categories to represent conceptualization, insight, etc.

Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information.

Bad Analytics:

- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated "Cluster Analysis": Many widely available, but none work (computers don't know what you want!)

Our alternative: Computer-assisted Categorization

- You decide what's important, but with help
- Invert effort: you innovate; the computer categorizes
- Insights: easier, faster, better

Technology: visualize the space of all possible clusterings

(Lots of technology, but it's behind the scenes)
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated "Cluster Analysis": Many widely available, but none work (computers don't know what you want!)
 - Our alternative: Computer-assisted Categorization
 - You decide what's important, but with help
 - Invert effort: you innovate; the computer categorizes
 - Insights: easier, faster, better
 - Technology: visualize the space of all possible clusterings
 - (Lots of technology, but it's behind the scenes)
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying *not* to innovate!
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
To understand many documents, humans create categories to represent conceptualization, insight, etc.

Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information

Bad Analytics:
- Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
- Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)

Our alternative: Computer-assisted Categorization
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
 - Invert effort: you innovate; the computer categorizes
Computer-Assisted Reading (Consilience)

- To understand many documents, humans \textit{create categories} to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- \textbf{Bad Analytics}:
 - Unassisted Human Categorization: time consuming; huge efforts trying \textit{not} to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- \textbf{Our alternative: Computer-assisted Categorization}
 - You decide what’s important, but \textit{with help}
 - Invert effort: you innovate; the computer categorizes
 - Insights: easier, faster, better
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- Bad Analytics:
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- Our alternative: Computer-assisted Categorization
 - You decide what’s important, but with help
 - Invert effort: you innovate; the computer categorizes
 - Insights: easier, faster, better
 - Technology: visualize the space of all possible clusterings
Computer-Assisted Reading (Consilience)

- To understand many documents, humans create categories to represent conceptualization, insight, etc.
- Most organizations: impose fixed categorizations to tally complaints, sort reports, retrieve information
- **Bad Analytics:**
 - Unassisted Human Categorization: time consuming; huge efforts trying not to innovate!
 - Fully Automated “Cluster Analysis”: Many widely available, but none work (computers don’t know what you want!)
- **Our alternative: Computer-assisted Categorization**
 - You decide what’s important, but with help
 - Invert effort: you innovate; the computer categorizes
 - Insights: easier, faster, better
 - Technology: visualize the space of all possible clusterings
 - (Lots of technology, but it’s behind the scenes)
Example Insight from Computer-Assisted Reading

- Data: 64,000 Senators' press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama's State of the Union: "You lie!"
 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks'"
 - Basically anything said by a 2016 presidential candidate!
- How common is it? 27% of all Senatorial press releases!
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators' press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama's State of the Union: "You lie!"
 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks'"
 - Basically anything said by a 2016 presidential candidate!
- How common is it?
 - 27% of all Senatorial press releases!
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
Example Insight from Computer-Assisted Reading

What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’ ”
 - Basically anything said by a 2016 presidential candidate!
What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: partisan taunting
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’”
 - Basically anything said by a 2016 presidential candidate!

- How common is it?
What Members of Congress Do

- Data: 64,000 Senators’ press releases
- Categorization: (1) advertising, (2) position taking, (3) credit claiming
- New Insight: *partisan taunting*
 - Joe Wilson during Obama’s State of the Union: “You lie!”
 - “Senator Lautenberg Blasts Republicans as ‘Chicken Hawks’”
 - Basically anything said by a 2016 presidential candidate!
- How common is it? 27% of all Senatorial press releases!
Modern Analytics to Improve Student Learning

The problem:

- How many students do reading assignments?
 - 20-30%
- How many students buy the book?
 - < 50%
- How much time do instructors have to write detailed quizzes?

Our solution:

Perusall

- A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
- > 90% of students do the reading
- Solitary reading assignments ⇝ engaging collective activities
- Intrinsic motivation: collaborative annotation in threads
- Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)
- Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading
- Instructors save time, stay engaged: automated student confusion reports

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:

 • How many students do reading assignments?
 - 20-30%

 • How many students buy the book?
 - < 50%

 • How much time do instructors have to write detailed quizzes?

Our solution:

 • Perusall

 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research

 • > 90% of students do the reading

 • Solitary reading assignments ⇝ engaging collective activities

 • Intrinsic motivation: collaborative annotation in threads

 • Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)

 • Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading

 • Instructors save time, stay engaged: automated student confusion reports

 • Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments?

- **Perusall**
 - A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 - > 90% of students do the reading
 - Solitary reading assignments ⇝ engaging collective activities
 - Intrinsic motivation: collaborative annotation in threads
 - Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)

 - Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading
 - Instructors save time, stay engaged: automated student confusion reports

- Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book?
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?

- **Our solution:** *Perusall*
 - A new type of (award-winning, patent pending) collaborative e-reader

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?

- **Our solution: Perusall**
 - A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics

\[8/13\]
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: **Perusall**
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments ⇝ engaging collective activities

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?

- **Our solution:** *Perusall*
 - A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 - >90% of students do the reading
 - Solitary reading assignments ⇝ engaging collective activities
 - Intrinsic motivation:
Modern Analytics to Improve Student Learning

- The problem:
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?

- Our solution: **Perusall**
 - A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 - >90% of students do the reading
 - Solitary reading assignments \leadsto engaging collective activities
 - Intrinsic motivation: collaborative annotation in threads

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

- **The problem:**
 - How many students do reading assignments? 20-30%
 - How many students buy the book? <50%
 - How much time do instructors have to write detailed quizzes?

- **Our solution:** *Perusall*
 - A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 - >90% of students do the reading
 - Solitary reading assignments ⇛ engaging collective activities
 - Intrinsic motivation: collaborative annotation in threads
 - Extrinsic motivation:
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments ⇝ engaging collective activities
 • Intrinsic motivation: collaborative annotation in threads
 • Extrinsic motivation: automated grading of annotations & engagement

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: **Perusall**
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments \leadsto engaging collective activities
 • Intrinsic motivation: collaborative annotation in threads
 • Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: **Perusall**
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments ⇝ engaging collective activities
 • Intrinsic motivation: collaborative annotation in threads
 • Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)
 • Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: Perusall
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments ⇝ engaging collective activities
 • Intrinsic motivation: collaborative annotation in threads
 • Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)
 • Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading
 • Instructors save time, stay engaged: automated student confusion reports

Want to try it here? see Perusall.com
Modern Analytics to Improve Student Learning

• The problem:
 • How many students do reading assignments? 20-30%
 • How many students buy the book? <50%
 • How much time do instructors have to write detailed quizzes?

• Our solution: **Perusall**
 • A new type of (award-winning, patent pending) collaborative e-reader, using novel data analytics, and cutting-edge behavioral research
 • >90% of students do the reading
 • Solitary reading assignments \leadsto engaging collective activities
 • Intrinsic motivation: collaborative annotation in threads
 • Extrinsic motivation: automated grading of annotations & engagement (better than instructors can do on their own)
 • Novel data analytics: keep students on track, with automated personal guidance, nudges, nonadversarial grading
 • Instructors save time, stay engaged: automated student confusion reports
 • Want to try it here? see Perusall.com
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: Download all posts before the Chinese censor them
• ≈ 13% censored overall

What Could be the Goal?

1. Stop collective action
 • Implications: Social Media is Actionable!
 • Chinese leaders:
 • measure criticism: to judge local officials
 • censor: to stop events with collective action potential
 • Thus, we can use criticism & censorship to predict:
 • Officials in trouble, likely to be replaced
 • Dissident arrests; new peace treaties; emerging scandals
 • Disagreements between central and local leaders
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them

≈ 13% censored overall

Everyone knows the Goal:

What Could be the Goal?

1. Stop collective action

Implications: Social Media is Actionable!

Chinese leaders:

- measure criticism: to judge local officials
- censor: to stop events with collective action potential

Thus, we can use criticism & censorship to predict:

- Officials in trouble, likely to be replaced
- Dissident arrests; new peace treaties; emerging scandals
- Disagreements between central and local leaders

9/13
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- ≈ 13% censored overall
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- $\approx 13\%$ censored overall
- **Everyone knows the Goal:**
Reverse Engineering Censorship in China

• Previous approach: watch a few posts; see what’s removed
• Data: Download all posts before the Chinese censor them
• ≈ 13% censored overall
• Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- ≈ 13% censored overall
- Everyone knows the Goal: Stop criticism and protest about the state, its leaders, and their policies. **Wrong**
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- ≈ 13% censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies **Wrong**
- What Could be the Goal?
 1. Stop criticism of the state
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies \textcolor{red}{Wrong}\n- What Could be the Goal?
 1. Stop criticism of the state
 2. Stop collective action
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
 - $\approx 13\%$ censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- ≈ 13% censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies Wrong
- What Could be the Goal?
 1. Stop criticism of the state Wrong
 2. Stop collective action Right
- Implications: Social Media is Actionable!
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
 - measure criticism: to judge local officials
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
- What Could be the Goal?
 1. Stop criticism of the state \textit{Wrong}
 2. Stop collective action \textit{Right}
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- ≈ 13% censored overall
- Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
- What Could be the Goal?
 1. Stop criticism of the state \textit{Wrong}
 2. Stop collective action \textit{Right}
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\%\) censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
- What Could be the Goal?
 1. Stop criticism of the state \textit{Wrong}
 2. Stop collective action \textit{Right}
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies Wrong
- What Could be the Goal?
 1. Stop criticism of the state Wrong
 2. Stop collective action Right

Implications: Social Media is Actionable!
- Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
- Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests;
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- $\approx 13\%$ censored overall

- Everyone knows the Goal:
 Stop criticism and protest about the state, its leaders, and their policies *Wrong*

- What Could be the Goal?
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*

- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential

- Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties;
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- **Everyone knows the Goal:**
 - Stop criticism and protest about the state, its leaders, and their policies *Wrong*
- **What Could be the Goal?**
 1. Stop criticism of the state *Wrong*
 2. Stop collective action *Right*
- **Implications: Social Media is Actionable!**
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties; emerging scandals
Reverse Engineering Censorship in China

- Previous approach: watch a few posts; see what’s removed
- Data: Download all posts before the Chinese censor them
- \(\approx 13\% \) censored overall
- Everyone knows the Goal:
 - Stop criticism and protest about the state, its leaders, and their policies \textit{Wrong}
- What Could be the Goal?
 1. Stop criticism of the state \textit{Wrong}
 2. Stop collective action \textit{Right}
- Implications: Social Media is Actionable!
 - Chinese leaders:
 - measure criticism: to judge local officials
 - censor: to stop events with collective action potential
 - Thus, we can use criticism & censorship to predict:
 - Officials in trouble, likely to be replaced
 - Dissident arrests; new peace treaties; emerging scandals
 - Disagreements between central and local leaders
Reverse Engineering China’s 50c Party
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants:
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies

Evidence?
Reverse Engineering China’s 50c Party

• Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies

Evidence? A few anecdotes;
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies

Evidence? A few anecdotes; “no ground truth”;
Reverse Engineering China’s 50c Party

• Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies

Evidence? A few anecdotes; “no ground truth”; “no successful attempts to quantify” 50c party activity;
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies

Evidence? A few anecdotes; “no ground truth”; “no successful attempts to quantify” 50c party activity; even several analyses with made up dependent variables!
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: 50c party argues against those who criticize the government, its leaders, and their policies. Wrong.
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: **50c party argues against those who criticize the government, its leaders, and their policies** *Wrong*
- Does not argue; does not engage on controversial issues
Reverse Engineering China’s 50c Party

- Prevailing view of scholars, activists, journalists, social media participants: **50c party argues against those who criticize the government, its leaders, and their policies** *Wrong*
- Does not argue; does not engage on controversial issues
- Distracts; redirects public attention from criticism and central issues to **cheerleading** and positive discussions of valence issues
The End of The Quantitative-Qualitative Divide

• The Quant-Qual divide exists in every field.
• Qualitative researchers: overwhelmed by information; need help.
• Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data.
• Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins.
• Moral of the story:
 • Fully human is inadequate
 • Fully automated fails
 • We need computer assisted, human controlled technology
 (Technically correct, & politically much easier)
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help

Moral of the story:
- Fully human is inadequate
- Fully automated fails
- We need computer assisted, human controlled technology
 (Technically correct, & politically much easier)
The End of The Quantitative-Qualitative Divide

• The Quant-Qual divide exists in every field.
• Qualitative researchers: overwhelmed by information; need help
• Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help
- Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
- Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins

Moral of the story:

- Fully human is inadequate
- Fully automated fails
- We need computer assisted, human controlled technology

(technically correct, & politically much easier)
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help
- Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
- Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins
- Moral of the story:
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help
- Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
- Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins
- Moral of the story:
 - Fully human is inadequate
The End of The Quantitative-Qualitative Divide

• The Quant-Qual divide exists in every field.
• Qualitative researchers: overwhelmed by information; need help
• Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
• Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins
• Moral of the story:
 • Fully human is inadequate
 • Fully automated fails
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help
- Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
- Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins
- Moral of the story:
 - Fully human is inadequate
 - Fully automated fails
 - We need computer assisted, human controlled technology
The End of The Quantitative-Qualitative Divide

- The Quant-Qual divide exists in every field.
- Qualitative researchers: overwhelmed by information; need help
- Quantitative researchers: recognize the huge amounts of information in qualitative analyses, starting to analyze unstructured text, video, audio as data
- Expert-vs-analytics contests: Whenever enough information is quantified, a right answer exists, and good analytics are applied: analytics wins
- Moral of the story:
 - Fully human is inadequate
 - Fully automated fails
 - We need computer assisted, human controlled technology
 - (Technically correct, & politically much easier)
How To Take Advantage of Big Analytics

- It's cheap and powerful; don't skimp!
- Off-the-shelf analytics ⇝ big advances
- Innovative analytics ⇝ immensely better than off-the-shelf
- Save it for last first!

- The goal is "inference": using facts you know to learn about facts you don't know
- The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems)
- Building analytics during design:
 - avoids problems before they occur
 - saves a fortune,
 - opens many more possibilities
- Build a new discipline of data science
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
How To Take Advantage of Big Analytics

- It's cheap and powerful; don't skimp!
 - Off-the-shelf analytics \leadsto big advances
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \rightsquigarrow big advances
 - Innovative analytics \rightsquigarrow immensely better than off-the-shelf
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \rightsquigarrow big advances
 - Innovative analytics \rightsquigarrow immensely better than off-the-shelf
- Save it for last first!

The goal is “inference”: using facts you know to learn about facts you don’t know.
The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems).
Building analytics during design:
- avoids problems before they occur
- saves a fortune,
- opens many more possibilities

Build a new discipline of data science.
How To Take Advantage of Big Analytics

- It's cheap and powerful; don't skimp!
 - Off-the-shelf analytics \leadsto big advances
 - Innovative analytics \leadsto immensely better than off-the-shelf
- Save it for last first!
 - The goal is “inference”:
 using facts you know to learn about facts you don’t know
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \(\rightsquigarrow\) big advances
 - Innovative analytics \(\rightsquigarrow\) immensely better than off-the-shelf
- Save it for last first!
 - The goal is “inference”: using facts you know to learn about facts you don’t know
 - The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems)
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \rightsquigarrow big advances
 - Innovative analytics \rightsquigarrow immensely better than off-the-shelf
- Save it for last first!
 - The goal is “inference”:
 using facts you know to learn about facts you don’t know
 - The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 - Building analytics during design:
How To Take Advantage of Big Analytics

- Its cheap and powerful; don’t skimp!
 - Off-the-shelf analytics \leadsto big advances
 - Innovative analytics \leadsto immensely better than off-the-shelf
- Save it for last first!
 - The goal is “inference”: using facts you know to learn about facts you don’t know
 - The uncertainties in inference: not having the facts you need (most statistics are designed solely to overcome data problems)
- Building analytics during design:
 - avoids problems before they occur
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics \rightsquigarrow big advances
 • Innovative analytics \rightsquigarrow immensely better than off-the-shelf

• Save it for last first!
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
 • saves a fortune,
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics \leadsto big advances
 • Innovative analytics \leadsto immensely better than off-the-shelf

• Save it for last first!
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
 • saves a fortune,
 • opens many more possibilities
How To Take Advantage of Big Analytics

• Its cheap and powerful; don’t skimp!
 • Off-the-shelf analytics ⇝ big advances
 • Innovative analytics ⇝ immensely better than off-the-shelf

• Save it for last first!
 • The goal is “inference”:
 using facts you know to learn about facts you don’t know
 • The uncertainties in inference: not having the facts you need
 (most statistics are designed solely to overcome data problems)
 • Building analytics during design:
 • avoids problems before they occur
 • saves a fortune,
 • opens many more possibilities

• Build a new discipline of data science
For more information

GaryKing.org

Institute for Quantitative Social Science
Harvard University