Matching Methods for Causal Inference & 21 Other Topics

Gary King

Institute for Quantitative Social Science
Harvard University

Summer Institute in Computational Social Science,
Princeton University, 6/20/2017

1GaryKing.org
3 Problems, 3 Solutions

1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 – "Why Propensity Scores Should Not Be Used for Matching" (Gary King, Richard Nielsen)

2. Do powerful methods have to be complicated?
 – "Causal Inference Without Balance Checking: Coarsened Exact Matching" (PA, 2011. Stefano M Iacus, Gary King, and Giuseppe Porro)

3. Matching methods optimize either imbalance (≈ bias) or # units pruned (≈ variance); users need both simultaneously:
 – "The Balance-Sample Size Frontier in Matching Methods for Causal Inference" (In press, AJPS; Gary King, Christopher Lucas and Richard Nielsen)
1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 \[\leadsto \text{“Why Propensity Scores Should Not Be Used for Matching” (Gary King, Richard Nielsen)}\]
3 Problems, 3 Solutions

1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 ⇝ “Why Propensity Scores Should Not Be Used for Matching” (Gary King, Richard Nielsen)

2. Do powerful methods have to be complicated?
3 Problems, 3 Solutions

1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 ~ “Why Propensity Scores Should Not Be Used for Matching” (Gary King, Richard Nielsen)

2. Do powerful methods have to be complicated?
 ~ “Causal Inference Without Balance Checking: Coarsened Exact Matching” (PA, 2011. Stefano M Iacus, Gary King, and Giuseppe Porro)
3 Problems, 3 Solutions

1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 ⇝ “Why Propensity Scores Should Not Be Used for Matching” (Gary King, Richard Nielsen)

2. Do powerful methods have to be complicated?
 ⇝ “Causal Inference Without Balance Checking: Coarsened Exact Matching” (PA, 2011. Stefano M Iacus, Gary King, and Giuseppe Porro)

3. Matching methods optimize either imbalance (≈ bias) or # units pruned (≈ variance); users need both simultaneously’:
3 Problems, 3 Solutions

1. The most popular method (propensity score matching, used in 76,900 articles!) sounds magical:
 ⇝ “Why Propensity Scores Should Not Be Used for Matching” (Gary King, Richard Nielsen)

2. Do powerful methods have to be complicated?
 ⇝ “Causal Inference Without Balance Checking: Coarsened Exact Matching” (PA, 2011. Stefano M Iacus, Gary King, and Giuseppe Porro)

3. Matching methods optimize either imbalance (≈ bias) or # units pruned (≈ variance); users need both simultaneously’:
 ⇝ “The Balance-Sample Size Frontier in Matching Methods for Causal Inference” (In press, AJPS; Gary King, Christopher Lucas and Richard Nielsen)
Matching to Reduce Model Dependence
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
The Problems Matching Solves

• Qualitative choice from unbiased estimates = biased estimator
e.g., Choosing from results of 50 randomized experiments

• Choosing based on “plausibility” is probably worse
conscienious effort doesn’t avoid biases (Banaji 2013)

• People do not have easy access to their own mental processes
or feedback to avoid the problem (Wilson and Brekke 1994)

• Experts overestimate their ability to control personal biases
more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)

• “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

• Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
• Choosing based on “plausibility” is probably worse
• Conscientious effort doesn’t avoid biases (Banaji 2013)
• People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
• Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
• “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance
The Problems Matching Solves

Without Matching:

Imbalance → Model Dependence

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse
- Conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion
The Problems Matching Solves

Without Matching:

Imbalance \Rightarrow Model Dependence \Rightarrow Researcher discretion \Rightarrow Bias
The Problems Matching Solves

Without Matching:

Imbalance \mapsto Model Dependence \mapsto Researcher discretion \mapsto Bias

- Qualitative choice from unbiased estimates = biased estimator
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates $=\text{biased estimator}$
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse
- conscientious effort doesn’t avoid biases (Banaji 2013)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse

- Conscientious effort doesn’t avoid biases (Banaji 2013)

- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse
- conscientious effort doesn’t avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
The Problems Matching Solves

Without Matching:

Imbalance \implies Model Dependence \implies Researcher discretion \implies Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse

- Conscientious effort doesn’t avoid biases (Banaji 2013)

- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)

- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)

- “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse
- Conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

A central project of statistics: Automating away human discretion
What’s Matching?

- \(Y_i \) dep var, \(T_i \) (1=treated, 0=control), \(X_i \) confounders

- Treatment Effect for treated observation:
 \[TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved} \]

- Estimate \(Y_i(0) \) with \(Y_j \) with a matched (\(X_i \approx X_j \)) control

- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[SATT = \text{Mean} \left(\sum_{i \in \{T_i = 1\}} (TE_i) \right) \]
 2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching

- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}$$

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control

Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:
 $$SATT = \text{Mean}_{i \in \{T_i=1\}}(TE_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching

Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[\text{TE}_i = Y_i(1) - Y_i(0) \]
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i(1) - Y_i(0) = \text{observed} - \text{unobserved}$$
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}$$
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[
 TE_i = Y_i - Y_i(0)
 = \text{observed} - \text{unobserved}
 \]
- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[
 \text{TE}_i = Y_i - Y_i(0) \\
 = \text{observed} - \text{unobserved}
 \]
- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[\text{TE}_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved} \]
- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[\text{SATT} = \frac{\text{Mean} \ (\text{TE}_i)}{i \in \{T_i=1\}} \]
What’s Matching?

• Y_i dep var, T_i (1=treated, 0=control), X_i confounders
• Treatment Effect for treated observation i:

$$\text{TE}_i = Y_i - Y_i(0)$$

= observed − unobserved

• Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control

• Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:

$$\text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (\text{TE}_i)$$

 2. FSATT: Feasible SATT (prune badly matched treateds too)
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[TE_i = Y_i - Y_i(0) \]
 \[
 = \text{observed} - \text{unobserved}
 \]

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[\text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (TE_i) \]
 2. FSATT: Feasible SATT (prune badly matched treateds too)
- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:
 \[\text{TE}_i = Y_i - Y_i(0) \]
 \[= \text{observed} - \text{unobserved} \]
- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[\text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (\text{TE}_i) \]
 2. FSATT: Feasible SATT (prune badly matched treateds too)
- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching
- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- Balance
- Covariates:
 - Complete Randomization
 - Fully Blocked
 - Observed
 - Unobserved

- On average

\Rightarrow

Fully blocked dominates complete randomization for:
- imbalance,
- model dependence,
- power,
- efficiency,
- bias,
- research costs,
- robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- Covariates:
 - Complete Randomization
 - Fully Blocked

- Observed On average
- Unobserved On average

→ Fully blocked dominates complete randomization for:
 - imbalance,
 - model dependence,
 - power,
 - efficiency,
 - bias,
 - research costs,
 - robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- **Balance**
 - **Covariates:**
 - Complete Randomization
 - Fully Blocked
 - Observed
 - On average
 - Unobserved
 - On average

⇝ Fully blocked dominates complete randomization for:
 - Imbalance,
 - Model dependence,
 - Power,
 - Efficiency,
 - Bias,
 - Research costs,
 - Robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- **PSM:** complete randomization
- **Other methods:** fully blocked
- **Other matching methods dominate PSM**
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- **Complete Randomization**
- **Fully Blocked**
- **Observed**
- **Exact**
- **Unobserved**

\[\Rightarrow \]

Fully blocked dominates **complete randomization** for:
- imbalance,
- model dependence,
- power,
- efficiency,
- bias,
- research costs,
- robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th></th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>

⇝

Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 60% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On average, fully blocked randomization dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On average, fully blocked randomization dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

Imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ Fully blocked dominates complete randomization
Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\[\Rightarrow \text{Fully blocked dominates complete randomization for:} \]
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>

⇝ *Fully blocked* dominates *complete randomization* for:

imbalance,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\(\Rightarrow\) Fully blocked dominates complete randomization for:
imbalance, model dependence,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>Unobserved</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power.
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\[\Rightarrow\] Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\Rightarrow *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>

\[\hookrightarrow\text{Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs,}\]
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\Rightarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th></th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow _Fully blocked_ dominates _complete randomization_ for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

imbus..model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: *complete randomization*
- Other methods: *fully blocked*
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\Rightarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM (wait, it gets worse)
Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)
 - \(\text{Distance}(X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)} \)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - $\text{Distance}(X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper
 - (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 • Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates FullyBlocked Experiment)

1. **Preprocess (Matching)**
 - Distance\((X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}\)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Distance\((X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}\)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > *caliper*

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance $>$ caliper
 - (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
Mahalanobis Distance Matching

Age
12 14 16 18 20 22 24 26 28

Education (years)
Mahalanobis Distance Matching

Age
12 14 16 18 20 22 24 26 28

Education (years)
20
30
40
50
60
70
80

C

T
Mahalanobis Distance Matching

Education (years)
Age
12 14 16 18 20 22 24 26 28
20
30
40
50
60
70
80
C
C
CC
C
C
C
C
C
CC
C
CC
C
CC
C
C
C
C
C
CC
CC
C
C
C
C
C
T
T
TT
T
T
T
T
T
T
T
T
T
Mahalanobis Distance Matching

Education (years)
Age
12 14 16 18 20 22 24 26 28
20
30
40
50
60
70
80
T T
T T
TT TT T TT
TTT TT
T
T TT
C
C
C C
CC
C
C
C CCC
C
C
CC C C C
C
Mahalanobis Distance Matching

Education (years)
Age
12 14 16 18 20 22 24 26 28
20 30 40 50 60 70 80
T T
T T
TT TT T TT
TTT TT
T
T TT
C
C
C C
CC
C
C
C CCC
C
C
CC C C C
C
Best Case: Mahalanobis Distance Matching
Best Case: Mahalanobis Distance Matching
Best Case: Mahalanobis Distance Matching

![Scatter plot showing the relationship between age and education level. The x-axis represents education (years) ranging from 12 to 28, and the y-axis represents age ranging from 20 to 80. The scatter plot includes data points marked with 'T' and 'C', indicating some form of analysis or classification.](image-url)
Method 2: Coarsened Exact Matching

1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. Estimation
 - Difference in means or a model
 - Weight controls in each stratum to equal treateds
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. Estimation
 - Difference in means or a model
 - Weight controls in each stratum to equal treateds
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$

2. Estimation Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - **Temporarily coarsen** X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - **Apply exact matching** to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. **Estimation** Difference in means or a model
 - Weight controls in each stratum to equal treateds
Coarsened Exact Matching
Coarsened Exact Matching

Education

- HS
- BA
- MA
- PhD
- 2nd PhD

Drinking age

Don't trust anyone over 30

The Big 40

Senior Discounts

Retirement

Old

CCC C
CC CC
C CC C CCC CCCC CCC CC CCC CCCCCC
C CCC CC C
T T
T T
TT TT T TT
TTT TT
T
T TT
Coarsened Exact Matching

Education

HS BA MA PhD 2nd PhD

Drinking age
Don't trust anyone over 30
The Big 40
Senior Discounts
Retirement
Old

C
C C
CC
CC C CC
C
TT T T TT
TT T
T
T TT
Best Case: Coarsened Exact Matching
Best Case: Coarsened Exact Matching
Best Case: Coarsened Exact Matching

![Graph showing Education vs Age with 'C' markers at various points on the graph.]

- Education
- Age
- 12 14 16 18 20 22 24 26 28
- 20 30 40 50 60 70 80
- 'C' markers at different coordinates on the graph.
Best Case: Coarsened Exact Matching

![Graph showing scatter plot with 'C' markers indicating data points for Education vs Age. The x-axis represents Education ranging from 12 to 28, and the y-axis represents Age ranging from 20 to 80. The data points are spread out across the graph.]
Method 3: Propensity Score Matching

1. Preprocess (Matching)
 • Reduce k elements of X to scalar $\pi_i = \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-x_i \beta}}$
 • Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 • Match each treated unit to the nearest control unit
 • Control units: not reused; pruned if unused
 • Prune matches if Distance > caliper

(Many adjustments available to this basic method)
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 • Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 • Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 • Match each treated unit to the nearest control unit
 • Control units: not reused; pruned if unused
 • Prune matches if Distance > caliper
 • (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 • Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-x_i\beta}} \]

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i \beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 - Reduce k elements of X to scalar
 $$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-x_i\beta}}$$
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-x_i\beta}} \]
 - Distance (X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1 \mid X) = \frac{1}{1 + e^{-X_i \beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > *caliper*

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance $>$ *caliper*
 - (Many adjustments available to this basic method)

2. **Estimation** Difference in means or a model
Propensity Score Matching

Propensity Score

Age

Education (years)

0
1

12 16 20 24 28
20
30
40
50
60
70
80
C
C
CC
C
C
C
C
C
CC
C
CC
C
CC
C
C
C
C
C CC
C
C
C
C
C
CC
CC
C
C C
C C
C
C
T TTT T
T
T
T
T
T
T
T
T
TT
T
T
T
T
T
1
0
Propensity Score Matching

Age

Education (years)

Propensity Score
Propensity Score Matching

Education (years)

Age

12 16 20 24 ...

T
T
T
T

1
0

Propensity Score

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

T T T T

T T T T

T T T T

T T T T

T T T T

T T T T

T T T T

14 / 27
Best Case: Propensity Score Matching
Best Case: Propensity Score Matching
Best Case: Propensity Score Matching

- Age
- Education (years)
- Propensity Score

Graph showing the relationship between age, education, and propensity score.
Best Case: Propensity Score Matching

![Graph showing a scatter plot with Education (years) on the x-axis and Age on the y-axis. The plot includes various markers and labels indicating different data points.](image-url)
Best Case: Propensity Score Matching is Suboptimal
Random Pruning Increases Imbalance

• "Random pruning": pruning process is independent of X

• Discrete example

- Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
- Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets: 2 balanced $\{M_t, M_c\}$, $\{F_t, F_c\}$, 2 imbalanced $\{M_t, F_c\}$, $\{F_t, M_c\}$

\Rightarrow random pruning increases imbalance

• Continuous example

- Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
- $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
- Random pruning $\Rightarrow n$ declines $\Rightarrow E(d^2)$ increases

\Rightarrow random pruning increases imbalance

• Result is completely general (see math in the paper)
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of \(X \)

• Discrete example

 Sex-balanced dataset: treateds \(M_t, F_t \), controls \(M_c, F_c \)

 Randomly prune 1 treated & 1 control

 \(\Rightarrow \) 4 possible datasets:

 2 balanced \{ \(M_t, M_c \), \(F_t, F_c \) \}

 2 imbalanced \{ \(M_t, F_c \), \(F_t, M_c \) \}

 \(\Rightarrow \) random pruning increases imbalance

• Continuous example

 Dataset: \(T \in \{ 0, 1 \} \) randomly assigned; \(X \) any fixed variable; with \(n \) units

 Measure of imbalance: squared difference in means \(d^2 \), where

 \(d = \overline{X}_t - \overline{X}_c \)

 \(E(d^2) = V(d) \propto 1/n \) (note: \(E(d) = 0 \))

 Random pruning \(\Rightarrow n \) declines \(\Rightarrow E(d^2) \) increases

 \(\Rightarrow \) random pruning increases imbalance

• Result is completely general (see math in the paper)
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

- Discrete example
 - Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets:
 - 2 balanced: $\{M_t, M_c\}$, $\{F_t, F_c\}$
 - 2 imbalanced: $\{M_t, F_c\}$, $\{F_t, M_c\}$
 - \Rightarrow random pruning increases imbalance

- Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 - Random pruning $\Rightarrow n$ declines $\Rightarrow E(d^2)$ increases
 - \Rightarrow random pruning increases imbalance

- Result is completely general (see math in the paper)
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- Discrete example

Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c

Randomly prune 1 treated & 1 control
\[\Rightarrow 4 \text{ possible datasets:} \]
- 2 balanced: \{ M_t, M_c \}, \{ F_t, F_c \}
- 2 imbalanced: \{ M_t, F_c \}, \{ F_t, M_c \}

\[= \Rightarrow \text{random pruning increases imbalance} \]

Continuous example

- Dataset: $T \in \{ 0, 1 \}$ randomly assigned; X any fixed variable;
 with n units

- Measure of imbalance: squared difference in means d^2, where
 \[d = \bar{X}_t - \bar{X}_c \]

\[E(d^2) = V(d) \propto 1/n \text{ (note: } E(d) = 0) \]

- Random pruning \[\Rightarrow n \text{ declines} \]
 \[\Rightarrow E(d^2) \text{ increases} \]

\[= \Rightarrow \text{random pruning increases imbalance} \]

- Result is completely general (see math in the paper)
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c

\[\Rightarrow \text{random pruning increases imbalance} \]

- Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$

\[E(d^2) = V(d) \propto \frac{1}{n} \] (note: $E(d) = 0$)

\[\Rightarrow \text{random pruning increases imbalance} \]

Result is completely general (see math in the paper)
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \rightsquigarrow 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced $\{M_t, M_c\}$, $\{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}$, $\{F_t, M_c\}$
 - \implies random pruning increases imbalance
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- **Discrete example**
 - Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \rightsquigarrow 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 - \implies random pruning increases imbalance
- **Continuous example**
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control $\sim\sim 4$ possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 • \implies random pruning increases imbalance
• Continuous example
 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 • \implies random pruning increases imbalance
• Continuous example
 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 • Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced \{ M_t, M_c \}, \{ F_t, F_c \}
 2 imbalanced \{ M_t, F_c \}, \{ F_t, M_c \}
 • \implies random pruning increases imbalance

• Continuous example
 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 • Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 • $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \rightsquigarrow 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 • \implies random pruning increases imbalance

• Continuous example
 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 • Measure of imbalance: squared difference in means d^2, where
 $d = \bar{X}_t - \bar{X}_c$
 • $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 • Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E(d^2)$ increases
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• **Discrete example**

 • Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c

 • Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:

 2 balanced \{ M_t, M_c \}, \{ F_t, F_c \}

 2 imbalanced \{ M_t, F_c \}, \{ F_t, M_c \}

 • \implies random pruning increases imbalance

• **Continuous example**

 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units

 • Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$

 • $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)

 • Random pruning $\leadsto n$ declines $\leadsto E(d^2)$ increases

 • \implies random pruning increases imbalance
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \rightsquigarrow 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 • \implies random pruning increases imbalance

• Continuous example
 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 • Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 • $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 • Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E(d^2)$ increases
 • \implies random pruning increases imbalance

• Result is completely general (see math in the paper)
PSM’s Statistical Properties

1. Low Standards:
 • Sometimes helps, never optimizes
 • Efficient relative to complete randomization, but
 • Inefficient relative to (the more powerful) full blocking
 • Other methods dominate:

2. The PSM Paradox:
 • When you do “better,” you do worse
 • Background: Random matching increases imbalance
 • When PSM approximates complete randomization (to begin
 with or, after some pruning)
 \[\hat{\pi}_c \approx \hat{\pi}_t \]
 \[\Rightarrow \]
 • Imbalance
 • Inefficiency
 • Model dependence
 • Bias
 • If the data have no good matches, the paradox won’t be a
 problem but you’re cooked anyway.
 • Doesn’t PSM solve the curse of dimensionality problem?
 Nope.
 • The PSM Paradox gets worse with more covariates
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
1. Low Standards: Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking

2. The PSM Paradox: When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning)
 $\implies \hat{\pi} \approx 0$ (or constant within strata)
 \implies pruning at random
 \implies Inefficency
 \implies Model dependence
 \implies Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem?
 Nope.
 The PSM Paradox gets worse with more covariates
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:

\[
\pi_c = \pi_t \Rightarrow \pi_c = \pi_t \neq 0 \Rightarrow X_c = X_t
\]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \] but
 \[\pi_c = \pi_t \not\implies X_c = X_t \]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \Rightarrow \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\Rightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning)
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \]
 \[\pi_c = \pi_t \nRightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata)
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random
PSM’s Statistical Properties

1. **Low Standards**: Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox**: When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \] but
 \[\pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random \(\implies \) Imbalance \(\implies \) Inefficency
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\sim \) pruning at random \(\sim \) Imbalance \(\sim \) Inefficiency \(\sim \) Model dependence
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance \(\leadsto \) Inefficency \(\leadsto \) Model dependence \(\leadsto \) Bias
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[
 X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t
 \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance \(\leadsto \) Inefficency \(\leadsto \) Model dependence \(\leadsto \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random \(\implies \) Imbalance \(\implies \) Inefficiency \(\implies \) Model dependence \(\implies \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem?
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \quad \text{but} \quad \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random \(\implies \) Imbalance \(\implies \) Inefficiency \(\implies \) Model dependence \(\implies \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope.
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[
 X_c = X_t \implies \pi_c = \pi_t \text{ but } \\
 \pi_c = \pi_t \nleftrightarrow X_c = X_t
 \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - Background: Random matching increases imbalance
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random \(\implies \) Imbalance \(\implies \) Inefficiency \(\implies \) Model dependence \(\implies \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
PSM is Blind Where Other Methods Can See
PSM is Blind Where Other Methods Can See
PSM is Blind Where Other Methods Can See

![Diagram showing scatter plots and bar charts comparing Mahalanobis and Propensity Score methods.]
What Does PSM Match?

MDM Matches

![MDM Matches Chart]

PSM Matches

![PSM Matches Chart]

Controls: \(X_1, X_2 \sim \text{Uniform}(0,5) \)
Treateds: \(X_1, X_2 \sim \text{Uniform}(1,6) \)
PSM Increases Model Dependence & Bias

Model Dependence

Bias

$$Y_i = 2T_i + X_{1i} + X_{2i} + \epsilon_i$$

$$\epsilon_i \sim N(0, 1)$$
The Propensity Score Paradox in Real Data

[Diagram showing results for real data sets, indicating similar patterns across 20 other real data sets checked.]
The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

Similar pattern for > 20 other real data sets we checked
The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

Similar pattern for > 20 other real data sets we checked
The Matching Frontier

• Frontier = matched dataset with lowest imbalance for each

• Bias-Variance trade off ⇝ Imbalance-n Trade Off

• Simple to use

• No need to choose or use a matching method

• All solutions are optimal

• No iteration or diagnostics required

• No cherry picking possible; you see everything optimal

• Choose an imbalance metric, then run.
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each n
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each \(n \)
- Bias-Variance trade off \(\rightsquigarrow \) Imbalance-\(n \) Trade Off
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each n
- Bias-Variance trade off \leadsto Imbalance-n Trade Off
- Simple to use
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each n
- Bias-Variance trade off \leadsto Imbalance-n Trade Off
- Simple to use
- No need to choose or use a matching method
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each \(n \)
- Bias-Variance trade off \(\leadsto \) Imbalance-\(n \) Trade Off
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each \(n \)
- Bias-Variance trade off \(\rightsquigarrow \) Imbalance-\(n \) Trade Off
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
- No iteration or diagnostics required
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each \(n \)
- Bias-Variance trade off \(\leadsto \) Imbalance-\(n \) Trade Off
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
- No iteration or diagnostics required
- No cherry picking possible; you see everything optimal
The Matching Frontier

- **Frontier** = matched dataset with lowest imbalance for each n
- Bias-Variance trade off \leadsto Imbalance-n Trade Off
- Simple to use
- No need to choose or use a matching method
- All solutions are optimal
- No iteration or diagnostics required
- No cherry picking possible; you see everything optimal
- Choose an imbalance metric, then run.
How hard is the frontier to calculate?

Consider 1 point on the SATT frontier:

- Start with matrix of N control units X_0
- Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
- Choose subset with lowest imbalance

Evaluations needed to compute the entire frontier:

- $\binom{N}{n}$ evaluations for each sample size $n = N, N-1, ..., 1$

The combination is the (gargantuan) “power set”

- e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe

\Rightarrow It’s hard to calculate!

We develop algorithms for the (optimal) frontier which:

- runs very fast
- operate as “greedy” but we prove are optimal
- do not require evaluating every subset
- work with very large data sets
- is the exact frontier (no approximation or estimation)

\Rightarrow It’s easy to calculate!
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:

 - Start with matrix of \(N \) control units \(X_0 \)
 - Calculate imbalance for all \(\binom{N}{n} \) subsets of rows of \(X_0 \)
 - Choose subset with lowest imbalance
 - Evaluations needed to compute the entire frontier:
 - \(\binom{N}{n} \) evaluations for each sample size \(n = N, N-1, \ldots, 1 \)
 - The combination is the (gargantuan) “power set”
 - e.g., \(N > 300 \) requires more imbalance evaluations than elementary particles in the universe
 - \(\Rightarrow \) It's hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)
 - \(\Rightarrow \) It's easy to calculate!
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of \(N \) control units \(X_0 \)

- Evaluations needed to compute the entire frontier:
 - \(\binom{N}{n} \) evaluations for each sample size \(n = N, N-1, \ldots, 1 \)

- The combination is the (gargantuan) “power set”
 - e.g., \(N > 300 \) requires more imbalance evaluations than elementary particles in the universe

- \(\Rightarrow \) It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - run very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)

- \(\Rightarrow \) It’s easy to calculate!
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N-1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe

- It's hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - run very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)

- It's easy to calculate!
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe

\(\Rightarrow \) It's hard to calculate!

We develop algorithms for the (optimal) frontier which:

- runs very fast
- operate as “greedy” but we prove are optimal
- do not require evaluating every subset
- work with very large data sets
- is the exact frontier (no approximation or estimation)

\(\Rightarrow \) It's easy to calculate!
How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
 • Start with matrix of N control units X_0
 • Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 • Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
 • $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 • The combination is the (gargantuan) “power set”
 • e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 • \Rightarrow It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 • runs very fast
 • operate as “greedy” but we prove are optimal
 • do not require evaluating every subset
 • work with very large data sets
 • is the exact frontier (no approximation or estimation)

- \Rightarrow It’s easy to calculate!
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
How hard is the frontier to calculate?

• Consider 1 point on the SATT frontier:
 • Start with matrix of \(N \) control units \(X_0 \)
 • Calculate imbalance for all \(\binom{N}{n} \) subsets of rows of \(X_0 \)
 • Choose subset with lowest imbalance

• Evaluations needed to compute the entire frontier:
 • \(\binom{N}{n} \) evaluations for each sample size \(n = N, N - 1, \ldots, 1 \)
 • The combination is the (gargantuan) “power set”
 • e.g., \(N > 300 \) requires more imbalance evaluations than elementary particles in the universe
 • \(\leadsto \) It’s hard to calculate!

• We develop algorithms for the (optimal) frontier which:
 • runs very fast
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s **hard** to calculate!

- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as “greedy” but we prove are optimal
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
How hard is the frontier to calculate?

- **Consider 1 point on the SATT frontier:**
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- **Evaluations needed to compute the entire frontier:**
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N-1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s **hard** to calculate!

- **We develop algorithms for the (optimal) frontier which:**
 - runs very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets

How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)
How hard is the frontier to calculate?

- Consider 1 point on the SATT frontier:
 - Start with matrix of N control units X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose subset with lowest imbalance

- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N - 1, \ldots, 1$
 - The combination is the (gargantuan) “power set”
 - e.g., $N > 300$ requires more imbalance evaluations than elementary particles in the universe
 - \Rightarrow It’s hard to calculate!

- We develop algorithms for the (optimal) frontier which:
 - runs very fast
 - operate as “greedy” but we prove are optimal
 - do not require evaluating every subset
 - work with very large data sets
 - is the exact frontier (no approximation or estimation)
 - \Rightarrow It’s easy to calculate!
• 185 Ts; pruning most 16,252 Cs won’t increase variance much
• Huge bias-variance trade-off after pruning most Cs
• Estimates converge to experiment after removing bias
• No mysteries: basis of inference clearly revealed
Conclusions

• Propensity score matching:
 • Approximates complete, not fully blocked, experiments
 • Ignores information; exacerbates model dependence

Some mistakes with PSM:
 • Controlling for irrelevant covariates;
 • Adjusting experimental data;
 • Reestimating propensity score after eliminating noncommon support;
 • 1/4 caliper on propensity score;
 • Not switching to other methods.

• A Simple and Powerful Method: CEM
• A New General Approach: The Matching Frontier
 • Fast; easy; no iteration; Software: MatchingFrontier
 • No need to choose among matching methods
 • Optimal results from your choice of imbalance metric

⇝ Using more information is simpler and more powerful
Conclusions

• Propensity score matching:

- Approximates complete, not fully blocked, experiments
- Ignores information; exacerbates model dependence
- Some mistakes with PSM:
 - Controlling for irrelevant covariates;
 - Adjusting experimental data;
 - Reestimating propensity score after eliminating noncommon support;
 - 1/4 caliper on propensity score;
 - Not switching to other methods.

• A Simple and Powerful Method: CEM
• A New General Approach: The Matching Frontier
 - Fast; easy; no iteration; Software: MatchingFrontier
 - No need to choose among matching methods
 - Optimal results from your choice of imbalance metric

⇒ Using more information is simpler and more powerful
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM:
Conclusions

• Propensity score matching:
 • Approximates complete, not fully blocked, experiments
 • Ignores information; exacerbates model dependence
 • Some mistakes with PSM: Controlling for irrelevant covariates;
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data;
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support;
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score;
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

A Simple and Powerful Method: CEM

A New General Approach: The Matching Frontier

\[\Rightarrow \]

Using more information is simpler and more powerful
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

- A Simple and Powerful Method: CEM
Conclusions

• Propensity score matching:
 • Approximates complete, not fully blocked, experiments
 • Ignores information; exacerbates model dependence
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A Simple and Powerful Method: CEM
• A New General Approach: The Matching Frontier
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

- A Simple and Powerful Method: CEM

- A New General Approach: The Matching Frontier
 - Fast; easy; no iteration; Software: MatchingFrontier
Conclusions

• Propensity score matching:
 • Approximates complete, not fully blocked, experiments
 • Ignores information; exacerbates model dependence
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A Simple and Powerful Method: CEM

• A New General Approach: The Matching Frontier
 • Fast; easy; no iteration; Software: MatchingFrontier
 • No need to choose among matching methods
Conclusions

• Propensity score matching:
 • Approximates complete, not fully blocked, experiments
 • Ignores information; exacerbates model dependence
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A Simple and Powerful Method: CEM

• A New General Approach: The Matching Frontier
 • Fast; easy; no iteration; Software: MatchingFrontier
 • No need to choose among matching methods
 • Optimal results from your choice of imbalance metric
Conclusions

- Propensity score matching:
 - Approximates complete, not fully blocked, experiments
 - Ignores information; exacerbates model dependence
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

- A Simple and Powerful Method: CEM

- A New General Approach: The Matching Frontier
 - Fast; easy; no iteration; Software: MatchingFrontier
 - No need to choose among matching methods
 - Optimal results from your choice of imbalance metric

- Using more information is simpler and more powerful
Some Other Topics

• Reverse Engineering Chinese Censorship & Fabrication
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
Some Other Topics

• Reverse Engineering Chinese Censorship & Fabrication
• Perusall: Ensure all your students do the reading
• How Human Subjects Research Rules Mislead You
• Bias and Nontransparency in Social Security Forecasts
• “Estimating the Reproducibility of Psychological Science”
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
Some Other Topics

• Reverse Engineering Chinese Censorship & Fabrication
• Perusall: Ensure all your students do the reading
• How Human Subjects Research Rules Mislead You
• Bias and Nontransparency in Social Security Forecasts
• “Estimating the Reproducibility of Psychological Science”
• Computer-Assisted Keyword Discovery
• Robust Standard Errors Expose Your Model’s Problems
• A Unified Approach to Measurement Error and Missing Data
• The Parable of Google Flu: Traps in Big Data Analysis
• Restructuring the Social Sciences: IQSS
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model's Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And . . . Ecological inference;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model's Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And ... Ecological inference; qualitative research;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model's Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And... Ecological inference; qualitative research; rare events;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And ... Ecological inference; qualitative research; rare events; forecasting mortality,
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And . . . Ecological inference; qualitative research; rare events; forecasting mortality, presidential elections,
Some Other Topics

• Reverse Engineering Chinese Censorship & Fabrication
• Perusall: Ensure all your students do the reading
• How Human Subjects Research Rules Mislead You
• Bias and Nontransparency in Social Security Forecasts
• “Estimating the Reproducibility of Psychological Science”
• Computer-Assisted Keyword Discovery
• Robust Standard Errors Expose Your Model’s Problems
• A Unified Approach to Measurement Error and Missing Data
• The Parable of Google Flu: Traps in Big Data Analysis
• Restructuring the Social Sciences: IQSS
• Estimating category proportions when text classifiers fail
• Anchoring vignettes (avoiding interpersonal incomparability)
• Giant field experiments: Mexican health care, media effects
• And ... Ecological inference; qualitative research; rare events; forecasting mortality, presidential elections, international conflict;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And ... Ecological inference; qualitative research; rare events; forecasting mortality, presidential elections, international conflict; fairness in legislative redistricting;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- "Estimating the Reproducibility of Psychological Science"
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model's Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And . . . Ecological inference; qualitative research; rare events; forecasting mortality, presidential elections, international conflict; fairness in legislative redistricting; dataverse;
Some Other Topics

- Reverse Engineering Chinese Censorship & Fabrication
- Perusall: Ensure all your students do the reading
- How Human Subjects Research Rules Mislead You
- Bias and Nontransparency in Social Security Forecasts
- “Estimating the Reproducibility of Psychological Science”
- Computer-Assisted Keyword Discovery
- Robust Standard Errors Expose Your Model’s Problems
- A Unified Approach to Measurement Error and Missing Data
- The Parable of Google Flu: Traps in Big Data Analysis
- Restructuring the Social Sciences: IQSS
- Estimating category proportions when text classifiers fail
- Anchoring vignettes (avoiding interpersonal incomparability)
- Giant field experiments: Mexican health care, media effects
- And ... Ecological inference; qualitative research; rare events; forecasting mortality, presidential elections, international conflict; fairness in legislative redistricting; dataverse;...
For more information, articles, & software

GaryKing.org