How the News Media Activate Public Expression and Influence National Agendas

Gary King

Institute for Quantitative Social Science
Harvard University

Department of Sociology, Harvard University, 5/2/2018

1Based on joint work with Benjamin Schneer and Ariel White (Science 2017)
2GaryKing.org
Introduction

Research Design

Results

Supporting Analyses

Implications
Statistical Problems: We Can’t Randomize

• Statistical Problems
• Randomization: usually impossible
• Endogeneity: media outlets compete for readers
• Spillover: 1 intervention may affect all potential subjects

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others…

• But we still can’t randomize
• Assumptions: better, but unavoidably dubious
 ⇝ “Profound biases,” > 600% difference from truth
• Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- Statistical Problems

Introduction
Statistical Problems: We Can’t Randomize

- Statistical Problems
 - Randomization: usually impossible
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers

- Assumptions: better, but unavoidably dubious
 - "Profound biases," > 600% difference from truth
- Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 • **Randomization:** usually impossible
 • **Endogeneity:** media outlets compete for readers
 • **Spillover:** 1 intervention may affect all potential subjects

Assumptions: better, but unavoidably dubious

⇝ "Profound biases," > 600% difference from truth

• **Estimands:** different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- Statistical Problems
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers
 - Spillover: 1 intervention may affect all potential subjects

- Clever Research Designs (trying to approximate randomization)

Assumptions: better, but unavoidably dubious

⇝ "Profound biases," > 600% difference from truth

Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers
 - Spillover: 1 intervention may affect all potential subjects

- **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow

- Assumptions: better, but unavoidably dubious
 - "Profound biases," > 600% difference from truth

- Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers
 • Spillover: 1 intervention may affect all potential subjects

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers
 • Spillover: 1 intervention may affect all potential subjects

• **Clever Research Designs (trying to approximate randomization)**
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 - **Randomization:** usually impossible
 - **Endogeneity:** media outlets compete for readers
 - **Spillover:** 1 intervention may affect all potential subjects

• **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others...
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers
 • Spillover: 1 intervention may affect all potential subjects

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others…

• But we still can’t randomize
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers
 • Spillover: 1 intervention may affect all potential subjects

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others...

• But we still can’t randomize
 • Assumptions: better, but unavoidably dubious
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers
 • Spillover: 1 intervention may affect all potential subjects

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others...

• But we still can’t randomize
 • Assumptions: better, but unavoidably dubious
 ↦ “Profound biases,” > 600% difference from truth
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers
 - Spillover: 1 intervention may affect all potential subjects

- **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others...

- **But we still can’t randomize**
 - Assumptions: better, but unavoidably dubious
 - “Profound biases,” > 600% difference from truth
 - Estimands: different, of sometimes questionable relevance
Political Problems: They Won’t Let Us Randomize

What we’d do without constraints
- Sign up many news media outlets
- Randomize news content and timing for each
- Control collaboration to induce cross-outlet correlations

Why is this plan so hard for media outlets?
- Need to take actions few (if any) have ever before agreed to
- Outlets are competitors: trying to scoop each other
- Must share information with us (even if not with each other)
- Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

More specifically, to randomize
- Journalists require: total control over what’s published & when
- Scientists require: total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each

Why is this plan so hard for media outlets?

• Need to take actions few (if any) have ever before agreed to
• Outlets are competitors: trying to scoop each other
• Must share information with us (even if not with each other)
• Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

More specifically, to randomize

• Journalists require: total control over what’s published & when
• Scientists require: total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements,
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection,
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination,
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• **More specifically, to randomize**
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• More specifically, to randomize
 • Journalists require:
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

- **More specifically, to randomize**
 - **Journalists require:** total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• **More specifically, to randomize**
 - **Journalists require:** total control over what’s published & when
 - **Scientists require:**
• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• **More specifically, to randomize**
 • **Journalists require:** total control over what’s published & when
 • **Scientists require:** total control over what’s published & when
Our Approach:

Let's Randomize

• Build trust: 5 years of negotiating & communicating
• Develop incentive compatible research design: both get 100%, no compromises; ⇝ solve a political problem technologically
• Convince 48 media outlets to let us experiment on them
• Whenever possible, choose realism (even if inconvenient)
• Stick close to outlets’ standard operating procedures
• Embed treatment within ordinary routines
 • More expensive, logistically complicated, and time-consuming, but more generalizable
• Goal: Build platform to continue experiments
• A work of: political science
Our Approach: Let’s Randomize

• Build trust: 5 years of negotiating & communicating

• Develop incentive compatible research design: both get 100%, no compromises; ⇝ solve a political problem technologically

• Convince 48 media outlets to let us experiment on them

• Whenever possible, choose realism (even if inconvenient)

• Stick close to outlets’ standard operating procedures

• Embed treatment within ordinary routines

• More expensive, logistically complicated, and time-consuming, but more generalizable

• Goal: Build platform to continue experiments

• A work of: political science
Our Approach: Let’s Randomize

• **Build trust**: 5 years of negotiating & communicating
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- Develop *incentive compatible* research design:
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises;
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises; → solve a political problem technologically

- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
- Stick close to outlets’ standard operating procedures
- Embed treatment within ordinary routines
- More expensive, logistically complicated, and time-consuming, but more generalizable

- Goal: Build platform to continue experiments
- A work of political science
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises; solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises; ⇒ solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
Our Approach: Let’s Randomize

• **Build trust:** 5 years of negotiating & communicating
• **Develop incentive compatible research design:** both get 100%, no compromises; ⇝ solve a political problem technologically
• Convince 48 media outlets to let us experiment on them
• Whenever possible, choose realism (even if inconvenient)
 • Stick close to outlets’ standard operating procedures
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises; \(\leadsto\) solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises; ⇝ solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - ⇝ More expensive, logistically complicated, and time-consuming, but more generalizable
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises; \(\leadsto\) solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - \(\leadsto\) More expensive, logistically complicated, and time-consuming, but more generalizable
- **Goal**: Build platform to continue experiments
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises; \(\rightsquigarrow\) solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - \(\rightsquigarrow\) More expensive, logistically complicated, and time-consuming, but more generalizable

- **Goal**: Build platform to continue experiments
- **A work of**: political science
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises; \(\Rightarrow\) solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - \(\Rightarrow\) More expensive, logistically complicated, and time-consuming, but more generalizable
- **Goal**: Build platform to continue experiments
- **A work of**: political science
Our Approach: Let’s Randomize

- Build trust: 5 years of negotiating & communicating
- Develop incentive compatible research design: both get 100%, no compromises; \(\Rightarrow \) solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - \(\Rightarrow \) More expensive, logistically complicated, and time-consuming, but more generalizable
- Goal: Build platform to continue experiments
- A work of: political science
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - Outcome variable: individual knowledge and opinion
 - Effects: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - Measurement: survey research

- **Collective Effects: Impact on the national conversation**
 - Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - Classic definition of public opinion, predating survey research
 - Measurement:
 - Previously: hallway conversations, "water-cooler events", soapbox speeches in public squares, editorials, etc.
 - Now: 750M public social media posts/day
 - Target population: different than survey research!
 - Surveys: pop quizzes of everyone, even uninformed & inactive
 - Social media: counts only activated opinion
 - Democracies: Can ignore individuals, but collective expression sets agendas
 - Autocracies: Ignore criticism, but censor expression about collective action
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**

 - Outcome variable: individual knowledge and opinion
 - Effects: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - Measurement: survey research

- **Collective Effects: Impact on the national conversation**

 - Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - Classic definition of public opinion, predating survey research
 - Measurement:
 - Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - Now: 750M public social media posts/day
 - Target population: different than survey research!
 - Surveys: pop quizzes of everyone, even uninformed & inactive
 - Social media: counts only activated opinion
 - Democracies: Can ignore individuals, but collective expression sets agendas
 - Autocracies: Ignore criticism, but censor expression about collective action
Define Outcome Variable: Types of News Media Effects

- Individual-level Effects

- Collective Effects: Impact on the national conversation
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion

- **Collective Effects:** Impact on the national conversation
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing,

- **Collective Effects: Impact on the national conversation**
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects:** Impact on the national conversation
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion:** predating survey research
 - **Measurement**
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
 - **Target population:** different than survey research!
Define Outcome Variable: Types of News Media Effects

• Individual-level Effects
 • Outcome variable: individual knowledge and opinion
 • Effects: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 • Measurement: survey research

• Collective Effects: Impact on the national conversation
 • Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 • Classic definition of public opinion, predating survey research
 • Measurement
 • Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 • Now: 750M public social media posts/day
 • Target population: different than survey research!
 • Surveys: pop quizzes of everyone, even uninformed & inactive
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
 - **Target population:** different than survey research!
 - **Surveys:** pop quizzes of everyone, even uninformed & inactive
 - **Social media:** counts only activated opinion
Define Outcome Variable: Types of News Media Effects

- Individual-level Effects
 - Outcome variable: individual knowledge and opinion
 - Effects: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - Measurement: survey research

- Collective Effects: Impact on the national conversation
 - Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - Classic definition of public opinion, predating survey research
 - Measurement
 - Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - Now: 750M public social media posts/day
 - Target population: different than survey research!
 - Surveys: pop quizzes of everyone, even uninformed & inactive
 - Social media: counts only activated opinion
 - Democracies: Can ignore individuals, but collective expression sets agendas
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
 - **Target population:** different than survey research!
 - **Surveys:** pop quizzes of everyone, even uninformed & inactive
 - **Social media:** counts only activated opinion
 - **Democracies:** Can ignore individuals, but collective expression sets agendas
 - **Autocracies:** Ignore criticism, but censor expression about collective action
Introduction

Research Design

Results

Supporting Analyses

Implications
Setup

- Signup 48 small media outlets (& > 12 others just for info)
- 17 for trial runs, 33 in experiment, 2 in both
- Median size: The Progressive, 50,000 subscribers

Examples:
- Establish 11 broad policy areas
- Rules: (a) major national importance; (b) interest to outlets
- race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
- Using 11 rather than 1: more representative; larger \(n \) needed
Setup

- Signup 48 small media outlets (& > 12 others just for info)
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both

Research Design
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
 - Examples:

![Magazine Covers]

Research Design
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers

Examples:

- Establish 11 broad *policy areas*
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: The Progressive, 50,000 subscribers
- Examples:
 - Establish 11 broad policy areas
 - Rules: (a) major national importance; (b) interest to outlets
Setup

• Signup 48 small media outlets (& > 12 others just for info)
 • 17 for trial runs, 33 in experiment, 2 in both
 • Median size: *The Progressive*, 50,000 subscribers
 • Examples:

 ![Magazines]

• Establish 11 broad *policy areas*
 • Rules: (a) major national importance; (b) interest to outlets
 • race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
 - Examples:

 ![Magazines](image.png)

 - Establish 11 broad *policy areas*
 - Rules: (a) major national importance; (b) interest to outlets
 - race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
 - Using 11 rather than 1: more representative; larger *n* needed
Treatment

• We choose a policy area

• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)

• The pack chooses subject for articles

• We approve: If rejected outlets can publish outside experiment

• Requirement: No breaking news (stories may be held for weeks)

• Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members

• Example. Policy area: technology policy. Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia

• Outlets Publish Simultaneously: (following usual procedures)

• One article on subject per pack member

• Distribute via website, print, video, podcast, etc.

• Promote via Google adwords, social media, email lists, SEO…

• Co- and cross-promote with outlets in same pack
Treatment

- We choose a policy area (1 of 11)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles

• Outlets Publish Simultaneously: (following usual procedures)
Treatment

- We choose a *policy area* (1 of 11)
- Outlets volunteer for a *pack* of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- The pack chooses *subject* for articles
 - We approve: If rejected outlets can publish outside experiment

- Outlets Publish Simultaneously: (following usual procedures)
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)

• Outlets Publish Simultaneously: (following usual procedures)
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)
 • Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members

• Outlets Publish Simultaneously: (following usual procedures)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve**: If rejected outlets can publish outside experiment
 - **Requirement**: No breaking news (stories may be held for weeks)
 - **Options**: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example**.

- **Outlets Publish Simultaneously**: (following usual procedures)
Treatment

- We choose a *policy area* (1 of 11)
- Outlets volunteer for a *pack* of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- The pack chooses *subject* for articles
 - We approve: If rejected outlets can publish outside experiment
 - Requirement: No breaking news (stories may be held for weeks)
 - Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - Example. *Policy area:* technology policy.

- Outlets Publish Simultaneously: (following usual procedures)
Treatment

• We choose a *policy area* (1 of 11)
• Outlets volunteer for a *pack* of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses *subject* for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)
 • Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • Example. Policy area: technology policy.
 Subject: what Uber drivers think about driverless cars,

• Outlets Publish Simultaneously: (following usual procedures)
Treatment

• We choose a *policy area* (1 of 11)
• Outlets volunteer for a *pack* of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses *subject* for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)
 • Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • Example. *Policy area*: technology policy.
 Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
• Outlets Publish Simultaneously: (following usual procedures)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve:** If rejected outlets can publish outside experiment
 - **Requirement:** No breaking news (stories may be held for weeks)
 - **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example. Policy area:** technology policy.
 - **Subject:** what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia

- **Outlets Publish Simultaneously:** (following usual procedures)
 - One article on subject per pack member
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve:** If rejected outlets can publish outside experiment
 - **Requirement:** No breaking news (stories may be held for weeks)
 - **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example. Policy area:** technology policy.
 - **Subject:** what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
- **Outlets Publish Simultaneously:** (following usual procedures)
 - One article on subject per pack member
 - Distribute via website, print, video, podcast, etc.
Treatment

• We choose a *policy area* (1 of 11)
• Outlets volunteer for a *pack* of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses *subject* for articles
 • **We approve:** If rejected outlets can publish outside experiment
 • **Requirement:** No breaking news (stories may be held for weeks)
 • **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • **Example. Policy area:** technology policy.
 • **Subject:** what Uber drivers think about driverless cars, *or* how a trade agreement affects hiring in Philadelphia

• **Outlets Publish Simultaneously:** (following usual procedures)
 • One article on subject per pack member
 • Distribute via website, print, video, podcast, etc.
 • Promote via Google adwords, social media, email lists, SEO...
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve**: If rejected outlets can publish outside experiment
 - **Requirement**: No breaking news (stories may be held for weeks)
 - **Options**: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example. Policy area**: technology policy.
 - **Subject**: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia

- **Outlets Publish Simultaneously**: (following usual procedures)
 - One article on subject per pack member
 - Distribute via website, print, video, podcast, etc.
 - Promote via Google adwords, social media, email lists, SEO...
 - Co- and cross-promote with outlets in same pack
Randomization

Matched Pair Randomization

• Select pair of weeks: matched on similarity of predicted news
• One coin flip: which week is treatment and which control
• Treatment week: publish & promote articles (usually Tuesday)
• Control week: no compensation or special actions

(Ex post: Predictions accurate; flips, news shocks uncorrelated)
Randomization

Matched Pair Randomization

Select pair of weeks: matched on similarity of predicted news

One coin flip: which week is treatment and which control

Treatment week: publish & promote articles (usually Tuesday)

Control week: no compensation or special actions

(Ex post: Predictions accurate; flips, news shocks uncorrelated)
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news

SEPTMBER 2015

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of *predicted* news
- *One* coin flip: which week is treatment and which control

Research Design
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions

![Calendar](calendar.png)

SEPTEMBER 2015

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Ex post: Predictions accurate; flips, news shocks uncorrelated
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions

SEPTEMBER 2015

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Treatment Week

Control Week
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions

![September 2015 Calendar](calendar-image)
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & "political" robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- Few experiments/outlet: Less interference; more heterogeneity
- Nation as unit of treatment: no spillover, more cost
- **(Ex post:** Automated text analysis & qualitative evidence: indistinguishable from normal publications & practices; no outlet received a single complaint)
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news
- One coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization:
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news
- One coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & “political” robustness;
Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions
- **(Ex post)**: Predictions accurate; flips, news shocks uncorrelated

Reasoning

- **Cf. complete randomization**: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs;
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- **Cf. complete randomization:** more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions
- **(Ex post)**: Predictions accurate; flips, news shocks uncorrelated

Reasoning

- **Cf. complete randomization**: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- **Few experiments/outlet**: Less interference; more heterogeneity
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- **Few experiments/outlet:** Less interference; more heterogeneity
- **Nation as unit of treatment:** no spillover, more cost
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- **Cf. complete randomization:** more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- **Few experiments/outlet:** Less interference; more heterogeneity
- **Nation as unit of treatment:** no spillover, more cost
- **(Ex post:** Automated text analysis & qualitative evidence: indistinguishable from normal publications & practices; no outlet received a single complaint)
Quantities of Interest (& observable implications)
Quantities of Interest (& observable implications)

Random Treatment → Articles Published → Pageviews → Posts on Subject → Posts in Policy Area

Intervention • Downloads from outlets • Special access to Google Analytics • Social media: King, Pan, Roberts (2017) • Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Random Treatment
- Articles Published
- Pageviews
- Posts on Subject
- Posts in Policy Area

- Intervention

Research Design
Quantities of Interest (& observable implications)

- Random Treatment
- Articles Published
- Pageviews
- Posts on Subject
- Posts in Policy Area

- Intervention

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Random Treatment
- Articles Published
- Pageviews
- Posts on Subject
- Posts in Policy Area

- Intervention
- Downloads from outlets

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Random Treatment
- Articles Published
- Pageviews
- Posts on Subject
- Posts in Policy Area

- Intervention
- Downloads from outlets
- Special access to Google Analytics

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Intervention
- Downloads from outlets
- Special access to Google Analytics
- Social media: King, Pan, Roberts (2017)
- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Determining n via Sequential Hypothesis Testing

Most analysts: fix n, run experiment, discover p-value

If n is too large: waste time & resources
If n is too small: waste the entire experiment
\Rightarrow neither is acceptable with such massive logistical costs

Power calculations: require knowing QOI!

Better: fix p-value, run experiment sequentially, discover n

Collect only as much data as you need (Why should you be in grad school longer than necessary?)

Valid statistically under likelihood or Bayes (Careful of misinformation in some applied literatures)

Need to check sensitivity to priors and models

We introduce new methods to:

- Evaluate robustness under frequentist theory
- Remove parametric assumptions
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value

- Collect only as much data as you need
- Valid statistically under likelihood or Bayes
- Need to check sensitivity to priors and models

We introduce new methods to:
- Evaluate robustness under frequentist theory
- Remove parametric assumptions
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources

- Power calculations: require knowing QOI!

- **Better:** fix p-value, run experiment sequentially, discover n,
 collect only as much data as you need
 - Why should you be in grad school longer than necessary?

- Valid statistically under likelihood or Bayes
 (Careful of misinformation in some applied literatures)

- Need to check sensitivity to priors and models

- We introduce new methods to:
 - Evaluate robustness under frequentist theory
 - Remove parametric assumptions
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \[\leadsto \text{neither is acceptable with such massive logistical costs} \]
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \leadsto neither is acceptable with such massive logistical costs
- **Power calculations**: require knowing QOI!
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \leadsto neither is acceptable with such massive logistical costs
- **Power calculations**: require knowing QOI!
- **Better**: fix p-value, run experiment sequentially, discover n
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \rightsquigarrow neither is acceptable with such massive logistical costs
- **Power calculations**: require knowing QOI!

- **Better**: fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \implies neither is acceptable with such massive logistical costs
- **Power calculations:** require knowing QOI!

- **Better:** fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school *longer* than necessary?)
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \sim neither is acceptable with such massive logistical costs
- Power calculations: require knowing QOI!

- **Better**: fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school longer than necessary?)
 - Valid statistically under likelihood or Bayes
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \Rightarrow neither is acceptable with such massive logistical costs
- **Power calculations**: require knowing QOI!

- **Better**: fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school *longer* than necessary?)
 - **Valid statistically** under likelihood or Bayes
 (Careful of misinformation in some applied literatures)
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \Rightarrow neither is acceptable with such massive logistical costs
- **Power calculations:** require knowing QOI!

- **Better:** fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school longer than necessary?)
 - Valid statistically under likelihood or Bayes
 (Careful of misinformation in some applied literatures)
 - Need to check sensitivity to priors and models
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \leadsto neither is acceptable with such massive logistical costs
- **Power calculations:** require knowing QOI!

- **Better:** fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school longer than necessary?)
 - Valid statistically under likelihood or Bayes
 (Careful of misinformation in some applied literatures)
 - Need to check sensitivity to priors and models
 - We introduce new methods to:
Determining n via Sequential Hypothesis Testing

- **Most analysts:** fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \implies neither is acceptable with such massive logistical costs
- **Power calculations:** require knowing QOI!

- **Better:** fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school longer than necessary?)
 - Valid statistically under likelihood or Bayes
 (Careful of misinformation in some applied literatures)
 - Need to check sensitivity to priors and models
 - We introduce new methods to:
 - Evaluate robustness under frequentist theory
Determining n via Sequential Hypothesis Testing

- **Most analysts**: fix n, run experiment, discover p-value
 - If n is too large: waste time & resources
 - If n is too small: waste the entire experiment
 \leadsto neither is acceptable with such massive logistical costs
- **Power calculations**: require knowing QOI!
- **Better**: fix p-value, run experiment sequentially, discover n
 - Collect only as much data as you need
 (Why should you be in grad school longer than necessary?)
 - Valid statistically under likelihood or Bayes
 (Careful of misinformation in some applied literatures)
 - Need to check sensitivity to priors and models
 - We introduce new methods to:
 - Evaluate robustness under frequentist theory
 - Remove parametric assumptions
Introduction

Research Design

Results

Supporting Analyses

Implications
Results from Sequential Hypothesis Tests

Our Stopping Rule:

- $p \leq 0.05$
- joint test: day 1, 2, 3, policy, subject;
- for n, $n-1$, & $n-2$

Recognizing more data is better and logistics are complicated (they might stop us!)

Empirical result:

- $n = 70$ (35 experiments)

Frequentist validation:

- extensive [non]parametric tests
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**

 - $p \leq 0.05$
 - Joint test: day 1, 2, 3, policy, subject
 - For n, $n-1$, and $n-2$
 - Recognizing more data is better
 - Logistics are complicated (they might stop us!)

Empirical result: $n = 70$ (35 experiments)

Frequentist validation: extensive [non]parametric tests
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - $p \leq 0.05$,
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - $p \leq 0.05$, joint test: day 1,2,3, policy, subject;

- Recognizing more data is better and logistics are complicated (they might stop us!)

- Empirical result: $n = 70$ (35 experiments)

- Frequentist validation: extensive [non]parametric tests
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - $p \leq 0.05$, joint test: day 1,2,3, policy, subject; for $n, n-1, \& n-2$

Recognizing more data is better and logistics are complicated (they might stop us!)

Empirical result: $n = 70$ (35 experiments)

Frequentist validation: extensive [non]parametric tests
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - \(p \leq 0.05 \), joint test: day 1,2,3, policy, subject; for \(n, n-1, \& n-2 \)
 - recognizing more data is better
Results from Sequential Hypothesis Tests

• **Our Stopping Rule:**
 - \(p \leq 0.05 \), joint test: day 1,2,3, policy, subject; for \(n, n - 1, \& n - 2 \)
 - recognizing more data is better
 - and logistics are complicated (they might stop us!)
Results from Sequential Hypothesis Tests

• **Our Stopping Rule:**
 - $p \leq 0.05$, joint test: day 1, 2, 3, policy, subject; for n, $n - 1$, & $n - 2$
 - recognizing more data is better
 - and logistics are complicated (they might stop us!)

• **Empirical result:**

\[\text{\(n = 70 \) (35 experiments)} \]
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - $p \leq 0.05$, joint test: day 1, 2, 3, policy, subject; for n, $n - 1$, & $n - 2$
 - recognizing more data is better
 - and logistics are complicated (they might stop us!)

- **Empirical result:** $n = 70$ (35 experiments)
Results from Sequential Hypothesis Tests

- **Our Stopping Rule:**
 - \(p \leq 0.05 \), joint test: day 1,2,3, policy, subject; for \(n, n-1, \) & \(n-2 \)
 - recognizing more data is better
 - and logistics are complicated (they might stop us!)

- **Empirical result:** \(n = 70 \) (35 experiments)
Results from Sequential Hypothesis Tests

• **Our Stopping Rule:**
 - \(p \leq 0.05 \), joint test: day 1,2,3, policy, subject; for \(n, n-1, \& n-2 \)
 - recognizing more data is better
 - and logistics are complicated (they might stop us!)

• **Empirical result:** \(n = 70 \) (35 experiments)

\[\begin{array}{cccccc}
\text{Agree} & \alpha = 0.05 & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
\text{Joint} & 1 & 1-2 & 1-3 & 1-4 & 1-5 & 1-6 \\
\text{Subject} & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{Policy} & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\]

• **Frequentist validation:** extensive [non]parametric tests
Main Causal Effect: Public Expression in Policy Areas

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Day 2</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Day 3</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Day 4</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Day 5</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Day 6</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)

Causal effects:
- 1st day: 19.4% increase,
- Total: 62.7% increase

Context:
- 3 small media outlets have huge effect on the national conversation
Main Causal Effect: Public Expression in Policy Areas

Results

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
- **Causal effects:**
 - 1st day: 19.4% increase,
 - Total: 62.7% increase
- **Context:**
 - 3 small media outlets have huge effect on the national conversation
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots:** model-based estimate (assumes linearity over days)
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects:**
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 19.4% increase,
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 19.4% increase, Total: 62.7% increase
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 19.4% increase, Total: 62.7% increase
- **Context**: 3 small media outlets have huge effect on the national conversation
Causal Effect: Indistinguishable Across Subgroups
Causal Effect: Indistinguishable Across Subgroups
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Heterogeneity: Leave-One-Outlet-Out

- **Red Dots:** Original (model-based) estimates
- **Open circles:** same, with one outlet dropped from any packs

Results: no dominant outlet; high heterogeneity
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

Results

Red Dots: Original (model-based) estimates
Open circles: same, with one outlet dropped from any packs
Results: no dominant outlet; high heterogeneity
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

Results

- **Red Dots**: Original (model-based) estimates
Causal Heterogeneity: Leave-One-Outlet-Out
Jackknife Estimation on Policy Area Effects

- **Red Dots:** Original (model-based) estimates
- **Open circles:** same, with one outlet dropped from any packs
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

• **Red Dots:** Original (model-based) estimates
• **Open circles:** same, with one outlet dropped from any packs
• **Results:** no dominant outlet; high heterogeneity
High Experimental Compliance

• # Articles published by pack in policy area

What's the goal?

• Average # media outlets per pack:

3.1

Causal effect on # articles:

2.94

⟹ high compliance

Pageviews (on subject of articles, relative to a day's volume)

• Causal effect on # pageviews:

969.6% (52,223 views) increase

• ⟹ high compliance
High Experimental Compliance

• # Articles published by pack in policy area
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack:

 - Causal effect on # articles: 2.94
 - Causal effect on # pageviews: 969.6% (52,223 views) increase

 \[\therefore \] high compliance
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
High Experimental Compliance

• # Articles published by pack in policy area
 • What’s the goal? Average # media outlets per pack: 3.1
 • Causal effect on # articles:

• Pageviews (on subject of articles, relative to a day’s volume)
 • Causal effect on # pageviews: 969.6% (52,223 views) increase
 • High compliance
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
 - ⟹ high compliance
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
 - \Rightarrow high compliance
- Pageviews (on subject of articles, relative to a day’s volume)
High Experimental Compliance

- **# Articles published by pack in policy area**
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
 - ⟹ high compliance

- **Pageviews** (on subject of articles, relative to a day’s volume)
 - Causal effect on # pageviews: 969.6% (52,223 views) increase
High Experimental Compliance

• # Articles published by pack in policy area
 • What’s the goal? Average # media outlets per pack: 3.1
 • Causal effect on # articles: 2.94
 • ➞ high compliance

• Pageviews (on subject of articles, relative to a day’s volume)
 • Causal effect on # pageviews: 969.6% (52,223 views) increase
 • ➞ high compliance
Causal Effect on Subject of Articles

Supporting Analyses
Causal Effect on Subject of Articles

Supporting Analyses
Causal Effect on Subject of Articles

- **Red Dots:** model-based estimate (assumes linearity over days)
Causal Effect on Subject of Articles

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
Causal Effect on Subject of Articles

Red Dots: model-based estimate (assumes linearity over days)
Open circles: model-free estimate (no model, higher variance)
Causal effects:
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 454% increase,
Causal Effect on Subject of Articles

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
- **Causal effects:** 1st day: 454% increase, Total: 1,666% increase
Other Supporting Analyses

- More Results
 - Opinion change: 2.3% change in direction of article opinion
- Large news media outlets: Observational evidence, >15x effect
- Robustness checks
 - # of unique authors: little change from effect on posts
 - Removing bots, retweets: No real change
 - Week 1 to 2 spillover, noncompliance: No evidence
 - Treatment articles: representative of all on complexity, type
Other Supporting Analyses

- More Results
Other Supporting Analyses

• More Results
 • Opinion change: 2.3% change in direction of article opinion
Other Supporting Analyses

- More Results
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect
Other Supporting Analyses

• More Results
 • Opinion change: 2.3% change in direction of article opinion
 • Large news media outlets: Observational evidence, >15x effect

• Robustness checks
Other Supporting Analyses

- **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

- **Robustness checks**
 - # of unique authors: little change from effect on posts
Other Supporting Analyses

• **More Results**
 • Opinion change: 2.3% change in direction of article opinion
 • Large news media outlets: Observational evidence, >15x effect

• **Robustness checks**
 • # of unique authors: little change from effect on posts
 • Removing bots, retweets: No real change
Other Supporting Analyses

• **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

• **Robustness checks**
 - # of unique authors: little change from effect on posts
 - Removing bots, retweets: No real change
 - Week 1 to 2 spillover, noncompliance: No evidence
Other Supporting Analyses

- **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

- **Robustness checks**
 - # of unique authors: little change from effect on posts
 - Removing bots, retweets: No real change
 - Week 1 to 2 spillover, noncompliance: No evidence
 - Treatment articles: representative of all on complexity, type
Summary and Implications

 Summary

 Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change

 Larger outlets: even bigger average effects

 Heterogeneous effects: large, highly variable viral patterns

 Implications: for individual journalists

 Remarkable power; serious responsibility; not just another job

 Implications: for ecosystem of media outlets

 Control over editorial boards and mastheads

 Balance and diversity of outlet opinion

 Effects of fake news

 Impact on agendas, elections, public policy, discourse

 Journalism jobs: 25% drop in last decade

 What should be next?

 We wrote a paper, built a platform, & showed how others can

 What experiment would you (or should we) run next?

 For more information:

 GaryKing.org/media
Summary and Implications

- Summary

 Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change

 Larger outlets: even bigger average effects

 Heterogeneous effects: large, highly variable viral patterns

Implications: for individual journalists

 Remarkable power; serious responsibility; not just another job

Implications: for ecosystem of media outlets

 Control over editorial boards and mastheads

 Balance and diversity of outlet opinion

 Effects of fake news

 Impact on agendas, elections, public policy, discourse

Journalism jobs: 25% drop in last decade

What should be next?

 We wrote a paper, built a platform, & showed how others can

What experiment would you (or should we) run next?

For more information: GaryKing.org/media
Summary and Implications

• Summary

• Implications: for individual journalists

For more information: GaryKing.org/media
Summary and Implications

- Summary

- Implications: for individual journalists

- Implications: for ecosystem of media outlets

For more information: GaryKing.org/media
Summary and Implications

• **Summary**

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews,

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

- **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy),

- **Implications: for individual journalists**

- **Implications: for ecosystem of media outlets**

- **What should be next?**

For more information: GaryKing.org/media
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

- **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects

- Implications: for individual journalists

- Implications: for ecosystem of media outlets

- **What should be next?**
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

Summary
- **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
- **Larger outlets:** even bigger average effects
- **Heterogeneous effects:** large, highly variable viral patterns

Implications: for individual journalists
- Remarkable power; serious responsibility; not just another job

Implications: for ecosystem of media outlets
- Control over editorial boards and mastheads
- Balance and diversity of outlet opinion
- Effects of fake news
- Impact on agendas, elections, public policy, discourse
- Journalism jobs: 25% drop in last decade

What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• **Implications: for individual journalists**
 • Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 • Control over editorial boards and mastheads

• **What should be next?**

For more information: GaryKing.org/media
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion

• What should be next?
Summary and Implications

• **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse

• What should be next?

For more information:
GaryKing.org/media
Summary and Implications

- **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

- **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

- **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

- **What should be next?**
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

• **What should be next?**
 - We wrote a paper,
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform,
Summary and Implications

• **Summary**
 • **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 • **Larger outlets:** even bigger average effects
 • **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 • Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• **What should be next?**
 • We wrote a paper, built a platform, & showed how others can
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform, & showed how others can
 • What experiment would you (or should we) run next?
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform, & showed how others can
 • What experiment would you (or should we) run next?

For more information:
GaryKing.org/media
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, number of social media posts in policy area p ($p = 1, \ldots , 11$)
- **Experiment:** e ($e = 1, \ldots , E$)
- **Day of and after intervention:** d ($d = 1, \ldots , 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
- **Treated weeks:** $T_{ped1} = \ldots = T_{ped6} = 1$
- **Control weeks:** $T_{ped1} = \ldots = T_{ped6} = 0$

- **Quantities of Interest**
 - **Absolute Increase:** $\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)]$
 - **Proportionate Increase:** $\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[Y_{ped}(0)]}$
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in

- **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager

- **Treated weeks**: $T_{pe1} = \cdots = T_{pe6} = 1$

- **Control weeks**: $T_{pe1} = \cdots = T_{pe6} = 0$

- **Quantities of Interest**
 - **Absolute Increase**: $\lambda_d = \text{mean}_{p, e}[Y_{ped}(1)] - \text{mean}_{p, e}[Y_{ped}(0)]$
 - **Proportionate Increase**: $\phi_d = \frac{\lambda_d}{\text{mean}_{p, e}[Y_{ped}(0)]}$
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in
 - policy area p ($p = 1, ..., 11$)
 - experiment e ($e = 1, ..., E_p$)
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \ldots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \ldots = T_{pe6} = 0$

- **Quantities of Interest**
 - Absolute Increase: $\lambda_d = \text{mean}_{p,e}[y_{ped}(1)] - \text{mean}_{p,e}[y_{ped}(0)]$
 - Proportionate Increase: $\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[y_{ped}(0)]}$
Notation and Quantities of Interest

• **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

• **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \cdots = T_{pe6} = 0$

• **Quantities of Interest**

\[\lambda_d = \text{mean}_{p,e}[y_{ped}(1)] - \text{mean}_{p,e}[y_{ped}(0)] \]

\[\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[y_{ped}(0)]} \]
Notation and Quantities of Interest

• **Outcome Variable**: y_{ped}, # social media posts in
 • policy area p ($p = 1, \ldots, 11$)
 • experiment e ($e = 1, \ldots, E_p$)
 • day d of and after intervention ($d = 1, \ldots, 6$)

• **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 • Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
 • Control weeks: $T_{pe1} = \cdots = T_{pe6} = 0$

• **Quantities of Interest**
 • Absolute Increase: $\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)]$
Notation and Quantities of Interest

• **Outcome Variable:** \(y_{ped} \), # social media posts in
 - policy area \(p \) (\(p = 1, \ldots, 11 \))
 - experiment \(e \) (\(e = 1, \ldots, E_p \))
 - day \(d \) of and after intervention (\(d = 1, \ldots, 6 \))

• **Treatment Variable:** \(T_{ped} \), instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: \(T_{pe1} = \cdots = T_{pe6} = 1 \)
 - Control weeks: \(T_{pe1} = \cdots = T_{pe6} = 0 \)

• **Quantities of Interest**
 - Absolute Increase: \(\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)] \)
 - Proportionate Increase: \(\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[Y_{ped}(0)]} \)
Estimation Approaches

Model-Based Approach

• Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]

• The Model:
 \[E(z_{ped} | T_{ped}) = \beta_0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta_0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days:
 \[\eta_d = \eta_0 + \eta_1 d \]
 \[\gamma_d = \gamma_0 + \gamma_1 d \]
 - Assume conditional independence over \(p, e, d \)

Model-Free Approach:

• Drop linearity & conditional independence assumptions
• Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)
Estimation Approaches

• Model-Based Approach

- Transform outcome variable for normality & homoskedasticity: $z_{ped} = \ln(y_{ped} + 0.5)$

- The Model:
 $E(z_{ped} | T_{ped}) = \beta_0 + \beta_p + \eta_d + \gamma_d T_{ped}$

 - β_0: constant term
 - β_p: fixed effects for the 11 policy areas
 - Assume linearity over days: $\eta_d = \eta_0 + \eta_1 d$ and $\gamma_d = \gamma_0 + \gamma_1 d$

- Model-Free Approach:
 - Drop linearity & conditional independence assumptions
 - Regress z_{ped} on T_{ped} separately for each d
 - Equivalent to difference in means for each day (perhaps with policy fixed effects)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
Estimation Approaches

• **Model-Based Approach**

 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]

 - The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
Estimation Approaches

• **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term

• **Model-Free Approach**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas

- **Model-Free Approach**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)

- **Model-Free Approach**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)
Estimation Approaches

• Model-Based Approach
 • Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 • The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 • \(\beta^0 \): constant term
 • \(\beta_p \): fixed effects for the 11 policy areas
 • Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 • Assume conditional independence over p, e, d

• Model-Free Approach:
 • Drop linearity & conditional independence assumptions
 • Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 • Equivalent to difference in means for each day
Estimation Approaches

• Model-Based Approach
 • Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 • The Model: \(E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \)
 • \(\beta^0 \): constant term
 • \(\beta_p \): fixed effects for the 11 policy areas
 • Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 • Assume conditional independence over \(p, e, d \)

• Model-Free Approach:
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \(E(z_{ped} | T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \)
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 - Assume *conditional* independence over \(p, e, d \)

- **Model-Free Approach:**
 - Drop linearity & conditional independence assumptions
Estimation Approaches

• **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \(E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \)
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 - Assume *conditional* independence over \(p, e, d \)

• **Model-Free Approach**:
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days:
 \[\eta_d = \eta^0 + \eta^1 d \]
 \[\gamma_d = \gamma^0 + \gamma^1 d \]
 - Assume *conditional* independence over \(p, e, d \)

- **Model-Free Approach:**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
Estimation Approaches

• **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity: $z_{ped} = \ln(y_{ped} + 0.5)$
 - The Model: $E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_{d} + \gamma_{d}T_{ped}$
 - β^0: constant term
 - β_p: fixed effects for the 11 policy areas
 - Assume linearity over days: $\eta_d = \eta^0 + \eta^1d$ and $\gamma_d = \gamma^0 + \gamma^1d$
 - Assume *conditional* independence over p, e, d

• **Model-Free Approach:**
 - Drop linearity & conditional independence assumptions
 - Regress z_{ped} on T_{ped} separately for each d
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)