How the News Media Activate Public Expression and Influence National Agendas

Gary King

Institute for Quantitative Social Science
Harvard University

University of Vermont, 4/30/2018

Based on joint work with Benjamin Schneer and Ariel White (Science 2017)

GaryKing.org
Introduction

Research Design

Results

Supporting Analyses

Implications
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others…

• But we still can’t randomize
 • Assumptions: better, but unavoidably dubious
 ⇝ “Profound biases,” > 600% difference from truth
 • Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - *Randomization: usually impossible*
• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers

Statistical Problems: We Can’t Randomize
Statistical Problems: We Can’t Randomize

- Statistical Problems
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers
- Clever Research Designs (trying to approximate randomization)
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow

Introduction
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - **Randomization**: usually impossible
 - **Endogeneity**: media outlets compete for readers

- **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events

Assumptions: better, but unavoidably dubious
⇝ “Profound biases,” > 600% difference from truth

Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - **Randomization**: usually impossible
 - **Endogeneity**: media outlets compete for readers

- **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others

Assumptions:

- better, but unavoidably dubious
 - “Profound biases,” > 600% difference from truth

Estimands:

- different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers

• **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others…

But we still can’t randomize

Assumptions: better, but unavoidably dubious

⇝ Profound biases,

> 600% difference from truth

Estimands: different, of sometimes questionable relevance
Statistical Problems: We Can’t Randomize

- **Statistical Problems**
 - Randomization: usually impossible
 - Endogeneity: media outlets compete for readers
- **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others...
- **But we still can’t randomize**
Statistical Problems: We Can’t Randomize

• Statistical Problems
 • Randomization: usually impossible
 • Endogeneity: media outlets compete for readers

• Clever Research Designs (trying to approximate randomization)
 • New TV tower. Some behind hill, in radio shadow
 • Before/after studies of “surprise” media events
 • Roll out of Fox News to some towns and not others
 • Many others...

• But we still can’t randomize
 • Assumptions: better, but unavoidably dubious
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 - **Randomization**: usually impossible
 - **Endogeneity**: media outlets compete for readers

• **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others...

• **But we still can’t randomize**
 - **Assumptions**: better, but unavoidably dubious
 ~ Profound biases,” > 600% difference from truth
Statistical Problems: We Can’t Randomize

• **Statistical Problems**
 - **Randomization:** usually impossible
 - **Endogeneity:** media outlets compete for readers

• **Clever Research Designs (trying to approximate randomization)**
 - New TV tower. Some behind hill, in radio shadow
 - Before/after studies of “surprise” media events
 - Roll out of Fox News to some towns and not others
 - Many others...

• **But we still can’t randomize**
 - **Assumptions:** better, but unavoidably dubious
 ⇝ “Profound biases,” > 600% difference from truth
 - **Estimands:** different, of sometimes questionable relevance
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• More specifically, to randomize
 • Journalists require: total control over what’s published & when
 • Scientists require: total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

- What we’d do without constraints
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets

Why is this plan so hard for media outlets?
• Need to take actions few (if any) have ever before agreed to
• Outlets are competitors: trying to scoop each other
• Must share information with us (even if not with each other)
• Need numerous agreements,
technical infrastructure for large
scale collaboration & data collection,
extensive coordination,
high levels of trust

• More specifically, to randomize
• Journalists require:
 total control over what’s published & when
• Scientists require:
 total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

- What we’d do without constraints
 - Sign up many news media outlets
 - Randomize news content and timing for each

Why is this plan so hard for media outlets?
- Need to take actions few (if any) have ever before agreed to
- Outlets are competitors: trying to scoop each other
- Must share information with us (even if not with each other)
- Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

More specifically, to randomize
- Journalists require: total control over what’s published & when
- Scientists require: total control over what’s published & when

Introduction
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- Why is this plan so hard for media outlets?
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

- More specifically, to randomize
 - Journalists require: total control over what’s published & when
 - Scientists require: total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 • Need to take actions few (if any) have ever before agreed to
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements,
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection,
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination,
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust
Political Problems: They Won’t Let Us Randomize

• **What we’d do without constraints**
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• **Why is this plan so hard for media outlets?**
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• **More specifically, to randomize**
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

- **More specifically, to randomize**
 - **Journalists require:**
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• More specifically, to randomize
 • Journalists require: total control over what’s published & when
Political Problems: They Won’t Let Us Randomize

- **What we’d do without constraints**
 - Sign up many news media outlets
 - Randomize news content and timing for each
 - Control collaboration to induce cross-outlet correlations

- **Why is this plan so hard for media outlets?**
 - Need to take actions few (if any) have ever before agreed to
 - Outlets are competitors: trying to scoop each other
 - Must share information with us (even if not with each other)
 - Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

- **More specifically, to randomize**
 - **Journalists require:** total control over what’s published & when
 - **Scientists require:**
Political Problems: They Won’t Let Us Randomize

• What we’d do without constraints
 • Sign up many news media outlets
 • Randomize news content and timing for each
 • Control collaboration to induce cross-outlet correlations

• Why is this plan so hard for media outlets?
 • Need to take actions few (if any) have ever before agreed to
 • Outlets are competitors: trying to scoop each other
 • Must share information with us (even if not with each other)
 • Need numerous agreements, technical infrastructure for large scale collaboration & data collection, extensive coordination, high levels of trust

• More specifically, to randomize
 • Journalists require: total control over what’s published & when
 • Scientists require: total control over what’s published & when
Our Approach:

- Build trust: 5 years of negotiating & communicating
- Develop incentive compatible research design: both get 100%, no compromises ⇝ solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
- Stick close to outlets' standard operating procedures
- Embed treatment within ordinary routines ⇝ More expensive, logistically complicated, and time-consuming, but more generalizable
- Goal: Build platform to continue experiments
- A work of political science

Introduction
Our Approach: Let’s Randomize

- Build trust: 5 years of negotiating & communicating
- Develop incentive compatible research design: both get 100%, no compromises ⇒ solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
- Stick close to outlets’ standard operating procedures
- Embed treatment within ordinary routines ⇒ More expensive, logistically complicated, and time-consuming, but more generalizable
- Goal: Build platform to continue experiments
- A work of: political science
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
Our Approach: Let’s Randomize

• **Build trust:** 5 years of negotiating & communicating
• Develop *incentive compatible* research design:
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises

• More expensive, logistically complicated, and time-consuming, but more generalizable

• **Goal**: Build platform to continue experiments

• A work of political science
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises \Rightarrow solve a political problem technologically
Our Approach: Let’s Randomize

• **Build trust:** 5 years of negotiating & communicating

• **Develop incentive compatible research design:** both get 100%, no compromises ⟷ solve a political problem technologically

• **Convince 48 media outlets to let us experiment on them**
Our Approach: Let’s Randomize

• **Build trust**: 5 years of negotiating & communicating
• **Develop incentive compatible research design**: both get 100%, no compromises ⟷ solve a political problem technologically
• Convince 48 media outlets to let us experiment on them
• Whenever possible, choose realism (even if inconvenient)
Our Approach: Let’s Randomize

- **Build trust**: 5 years of negotiating & communicating
- **Develop incentive compatible research design**: both get 100%, no compromises \Rightarrow solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
 - Stick close to outlets’ standard operating procedures
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises ⟷ solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
Our Approach: Let’s Randomize

• **Build trust:** 5 years of negotiating & communicating
• **Develop incentive compatible research design:** both get 100%, no compromises ⇨ solve a political problem technologically
• Convince 48 media outlets to let us experiment on them
• Whenever possible, choose realism (even if inconvenient)
 • Stick close to outlets’ standard operating procedures
 • Embed treatment within ordinary routines
 • ⇨ More expensive, logistically complicated, and time-consuming, but more generalizable
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises ⇝ solve a political problem technologically
- Convince 48 media outlets to let us experiment on them
- Whenever possible, choose realism (even if inconvenient)
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - ⇝ More expensive, logistically complicated, and time-consuming, but more generalizable
- **Goal:** Build platform to continue experiments
Our Approach: Let’s Randomize

• **Build trust:** 5 years of negotiating & communicating

• **Develop incentive compatible research design:** both get 100%, no compromises ⇒ solve a political problem technologically

• **Convince 48 media outlets to let us experiment on them**

• **Whenever possible, choose realism (even if inconvenient)**
 • Stick close to outlets’ standard operating procedures
 • Embed treatment within ordinary routines
 • ⇒ More expensive, logistically complicated, and time-consuming, but more generalizable

• **Goal:** Build platform to continue experiments

• **A work of:** political science
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises ⇝ solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - ⇝ More expensive, logistically complicated, and time-consuming, but more generalizable
- **Goal:** Build platform to continue experiments
- **A work of:** political science
Our Approach: Let’s Randomize

- **Build trust:** 5 years of negotiating & communicating
- **Develop incentive compatible research design:** both get 100%, no compromises ⟷ solve a political problem technologically
- **Convince 48 media outlets to let us experiment on them**
- **Whenever possible, choose realism (even if inconvenient)**
 - Stick close to outlets’ standard operating procedures
 - Embed treatment within ordinary routines
 - ⟷ More expensive, logistically complicated, and time-consuming, but more generalizable
- **Goal:** Build platform to continue experiments
- **A work of:** political science
Define Outcome Variable: Types of News Media Effects

Individual-level Effects
Outcome variable: individual knowledge and opinion
Effects: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
Measurement: survey research

Collective Effects: Impact on the national conversation
Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
Classic definition of public opinion, predating survey research
Measurement
Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
Now: 750M public social media posts/day
Target population: different than survey research!
Surveys: pop quizzes of everyone, even uninformed & inactive
Social media: counts only activated opinion
Democracies: Can ignore individuals, but collective expression sets agendas
Autocracies: Ignore criticism, but censor expression about collective action
Define Outcome Variable: Types of News Media Effects

- Individual-level Effects

 - Outcome variable: individual knowledge and opinion
 - Effects: persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - Measurement: survey research

- Collective Effects: Impact on the national conversation

 - Outcome variable: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - Classic definition of public opinion, predating survey research
 - Measurement
 - Previously: hallway conversations, "water-cooler events", soapbox speeches in public squares, editorials, etc.
 - Now: 750M public social media posts/day
 - Target population: different than survey research!
 - Surveys: pop quizzes of everyone, even uninformed & inactive
 - Social media: counts only activated opinion

Introduction
Define Outcome Variable: Types of News Media Effects

- Individual-level Effects

- Collective Effects: Impact on the national conversation
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion

- **Collective Effects: Impact on the national conversation**
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable**: individual knowledge and opinion
 - **Effects**: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing,

- **Collective Effects**: Impact on the national conversation
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research
- **Collective Effects:** Impact on the national conversation

Introduction
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion, predating survey research**

- Target population: different than survey research!
- Surveys: pop quizzes of everyone, even uninformed & inactive
- Social media: counts only activated opinion

- Democracies: Can ignore individuals, but collective expression sets agendas
- Autocracies: Ignore criticism, but censor expression about collective action
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 • **Outcome variable:** individual knowledge and opinion
 • **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 • **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 • **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 • **Classic definition of public opinion,** predating survey research
 • **Measurement**
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion**, predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M public social media posts/day
 - **Target population:** different than survey research!
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable**: individual knowledge and opinion
 - **Effects**: Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement**: survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable**: activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion**, predating survey research
 - **Measurement**
 - Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - Now: 750M public social media posts/day
 - **Target population**: different than survey research!
 - **Surveys**: pop quizzes of everyone, even uninformed & inactive
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M *public* social media posts/day
 - **Target population:** different than survey research!
 - **Surveys:** pop quizzes of everyone, even uninformed & inactive
 - **Social media:** counts only activated opinion
Define Outcome Variable: Types of News Media Effects

• **Individual-level Effects**
 • **Outcome variable:** individual knowledge and opinion
 • **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 • **Measurement:** survey research

• **Collective Effects: Impact on the national conversation**
 • **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 • **Classic definition of public opinion,** predating survey research
 • **Measurement**
 • **Previously:** hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 • **Now:** 750M public social media posts/day
 • **Target population:** different than survey research!
 • **Surveys:** pop quizzes of everyone, even uninformed & inactive
 • **Social media:** counts only activated opinion
 • **Democracies:** Can ignore individuals, but collective expression sets agendas
Define Outcome Variable: Types of News Media Effects

- **Individual-level Effects**
 - **Outcome variable:** individual knowledge and opinion
 - **Effects:** Persuasion, attitude formation, diffusion, gatekeeping, priming, issue framing, etc.
 - **Measurement:** survey research

- **Collective Effects: Impact on the national conversation**
 - **Outcome variable:** activated public opinion, views of all those trying to express themselves publicly about policy and politics
 - **Classic definition of public opinion,** predating survey research
 - **Measurement**
 - Previously: hallway conversations, “water-cooler events”, soapbox speeches in public squares, editorials, etc.
 - **Now:** 750M public social media posts/day
 - **Target population:** different than survey research!
 - **Surveys:** pop quizzes of everyone, even uninformed & inactive
 - **Social media:** counts only activated opinion
 - **Democracies:** Can ignore individuals, but collective expression sets agendas
 - **Autocracies:** Ignore criticism, but censor expression about collective action
Introduction

Research Design

Results

Supporting Analyses

Implications
Setup

• Signup for 48 small media outlets (and >12 others just for info)
• 17 for trial runs, 33 in experiment, 2 in both
• Median size: The Progressive, 50,000 subscribers
• Examples: Establish 11 broad policy areas
• Rules: (a) major national importance; (b) interest to outlets
• race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
• Using 11 rather than 1: more representative; larger \(n \) needed
Setup

- Signup 48 small media outlets (& > 12 others just for info)
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
Setup

• Signup 48 small media outlets (& > 12 others just for info)
 • 17 for trial runs, 33 in experiment, 2 in both
 • Median size: *The Progressive*, 50,000 subscribers
 • Examples:
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
- Examples:
 - Establish 11 broad policy areas
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
 - Examples:

 ![Magazines](image)

 - Establish 11 broad *policy areas*
 - Rules: (a) major national importance; (b) interest to outlets
Setup

- Signup 48 small media outlets (& > 12 others just for info)
 - 17 for trial runs, 33 in experiment, 2 in both
 - Median size: *The Progressive*, 50,000 subscribers
 - Examples:

 - Establish 11 broad *policy areas*
 - Rules: (a) major national importance; (b) interest to outlets
 - race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
Setup

• Signup 48 small media outlets (& > 12 others just for info)
 • 17 for trial runs, 33 in experiment, 2 in both
 • Median size: *The Progressive*, 50,000 subscribers
 • Examples:

 - Establish 11 broad *policy areas*
 • Rules: (a) major national importance; (b) interest to outlets
 • race, immigration, jobs, abortion, climate, food policy, water, education policy, refugees, domestic energy production, and reproductive rights
 • Using 11 rather than 1: more representative; larger n needed
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
• We approve: If rejected outlets can publish outside experiment
• Requirement: No breaking news (stories may be held for weeks)
• Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
• Example. Policy area: technology policy. Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
• Outlets Publish Simultaneously: (following usual procedures)
• One article on subject per pack member
• Distribute via website, print, video, podcast, etc.
• Promote via Google adwords, social media, email lists, SEO…
• Co- and cross-promote with outlets in same pack
Treatment

• We choose a policy area (1 of 11)
Treatment

- We choose a policy area (1 of 11)
- Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
Treatment

- We choose a policy area (1 of 11)
- Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- The pack chooses subject for articles
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles

- **Outlets Publish Simultaneously:** (following usual procedures)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve**: If rejected outlets can publish outside experiment

- **Outlets Publish Simultaneously**: (following usual procedures)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve:** If rejected outlets can publish outside experiment
 - **Requirement:** No breaking news (stories may be held for weeks)

- **Outlets Publish Simultaneously:** (following usual procedures)
Treatment

• We choose a **policy area** (1 of 11)
• **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• **The pack chooses subject** for articles
 • **We approve:** If rejected outlets can publish outside experiment
 • **Requirement:** No breaking news (stories may be held for weeks)
 • **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members

• **Outlets Publish Simultaneously:** (following usual procedures)
Treatment

- We choose a policy area (1 of 11)
- Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- The pack chooses subject for articles
 - We approve: If rejected outlets can publish outside experiment
 - Requirement: No breaking news (stories may be held for weeks)
 - Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - Example.

- Outlets Publish Simultaneously: (following usual procedures)
Treatment

• **We choose a policy area** (1 of 11)

• **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)

• **The pack chooses subject** for articles

 • **We approve:** If rejected outlets can publish outside experiment

 • **Requirement:** No breaking news (stories may be held for weeks)

 • **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members

 • **Example. Policy area:** technology policy.

• **Outlets Publish Simultaneously:** (following usual procedures)
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)
 • Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • Example. Policy area: technology policy.
 Subject: what Uber drivers think about driverless cars,

• Outlets Publish Simultaneously: (following usual procedures)
Treatment

- **We choose a policy area** (1 of 11)
- **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- **The pack chooses subject** for articles
 - **We approve:** If rejected outlets can publish outside experiment
 - **Requirement:** No breaking news (stories may be held for weeks)
 - **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example. Policy area:** technology policy.
 Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
- **Outlets Publish Simultaneously:** (following usual procedures)
Treatment

• **We choose a policy area** (1 of 11)
• **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• **The pack chooses subject for articles**
 - **We approve:** If rejected outlets can publish outside experiment
 - **Requirement:** No breaking news (stories may be held for weeks)
 - **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - **Example. Policy area:** technology policy.
 - **Subject:** what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
• **Outlets Publish Simultaneously:** (following usual procedures)
 - One article on subject per pack member
Treatment

• We choose a policy area (1 of 11)
• Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• The pack chooses subject for articles
 • We approve: If rejected outlets can publish outside experiment
 • Requirement: No breaking news (stories may be held for weeks)
 • Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • Example. Policy area: technology policy.
 Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
• Outlets Publish Simultaneously: (following usual procedures)
 • One article on subject per pack member
 • Distribute via website, print, video, podcast, etc.
Treatment

• **We choose a policy area** (1 of 11)
• **Outlets volunteer for a pack** of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
• **The pack chooses subject** for articles
 • **We approve:** If rejected outlets can publish outside experiment
 • **Requirement:** No breaking news (stories may be held for weeks)
 • **Options:** large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 • **Example. Policy area:** technology policy.
 Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia
• **Outlets Publish Simultaneously:** (following usual procedures)
 • One article on subject per pack member
 • Distribute via website, print, video, podcast, etc.
 • Promote via Google adwords, social media, email lists, SEO...
Treatment

- We choose a policy area (1 of 11)
- Outlets volunteer for a pack of 2–5 (with our approval), following “project manager” protocol (e.g., Panama Papers)
- The pack chooses subject for articles
 - We approve: If rejected outlets can publish outside experiment
 - Requirement: No breaking news (stories may be held for weeks)
 - Options: large investigations, interview-based journalism, opinion pieces, or others normally published by pack members
 - Example. Policy area: technology policy.
 Subject: what Uber drivers think about driverless cars, or how a trade agreement affects hiring in Philadelphia

- Outlets Publish Simultaneously: (following usual procedures)
 - One article on subject per pack member
 - Distribute via website, print, video, podcast, etc.
 - Promote via Google adwords, social media, email lists, SEO...
 - Co- and cross-promote with outlets in same pack
Randomization

• Matched Pair Randomization

 • Select pair of weeks: matched on similarity of predicted news

 • One coin flip: which week is treatment and which control

 • Treatment week: publish & promote articles (usually Tuesday)

 • Control week: no compensation or special actions

 (Ex post: Predictions accurate; flips, news shocks uncorrelated)
Randomization

Matched Pair Randomization

• Select pair of weeks: matched on similarity of predicted news
• One coin flip: which week is treatment and which control
• Treatment week: publish & promote articles (usually Tuesday)
• Control week: no compensation or special actions

(Ex post: Predictions accurate; flips, news shocks uncorrelated)
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news

![Calendar of September 2015](calendar_image)
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control

SEPTEMBER 2015

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of *predicted* news
- *One* coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions

![Calendar showing the treatment and control weeks]
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions

SEPTEMBER 2015

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

- Treatment Week: 8th
- Control Week: 14th
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions

![September 2015 Calendar]

Ex post: Predictions accurate; flips, news shocks uncorrelated
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of *predicted* news
- *One* coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- *(Ex post: Predictions accurate; flips, news shocks uncorrelated)*
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions
- (**Ex post**: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- Few experiments/outlet: Less interference; more heterogeneity
- Nation as unit of treatment: no spillover, more cost
- (**Ex post**: Automated text analysis & qualitative evidence: indistinguishable from normal publications & practices; no outlet received a single complaint)
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news
- One coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization:
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- *(Ex post: Predictions accurate; flips, news shocks uncorrelated)*

Reasoning

- **Cf. complete randomization:** more power, efficiency, & “political” robustness;
Randomization

Matched Pair Randomization

- **Select pair of weeks**: matched on similarity of *predicted* news
- **One coin flip**: which week is treatment and which control
 - **Treatment week**: publish & promote articles (usually Tuesday)
 - **Control week**: no compensation or special actions
- **(Ex post)**: Predictions accurate; flips, news shocks uncorrelated

Reasoning

- **Cf. complete randomization**: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs;
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news
- One coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- **Cf. complete randomization:** more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- **Few experiments/outlet:** Less interference; more heterogeneity
Randomization

Matched Pair Randomization

- **Select pair of weeks:** matched on similarity of *predicted* news
- **One coin flip:** which week is treatment and which control
 - **Treatment week:** publish & promote articles (usually Tuesday)
 - **Control week:** no compensation or special actions
- **(Ex post:** Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- **Cf. complete randomization:** more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- **Few experiments/outlet:** Less interference; more heterogeneity
- **Nation as unit of treatment:** no spillover, more cost
Randomization

Matched Pair Randomization

- Select pair of weeks: matched on similarity of predicted news
- One coin flip: which week is treatment and which control
 - Treatment week: publish & promote articles (usually Tuesday)
 - Control week: no compensation or special actions
- (Ex post: Predictions accurate; flips, news shocks uncorrelated)

Reasoning

- Cf. complete randomization: more power, efficiency, & “political” robustness; less bias, model dependence, & research costs; SEs as much as 600% smaller (Imai, King, Nall 2008)
- Few experiments/outlet: Less interference; more heterogeneity
- Nation as unit of treatment: no spillover, more cost
- (Ex post: Automated text analysis & qualitative evidence: indistinguishable from normal publications & practices; no outlet received a single complaint)
Quantities of Interest (& observable implications)
Quantities of Interest (& observable implications)

Random Treatment → Articles Published → Pageviews → Posts on Subject → Posts in Policy Area
Quantities of Interest (& observable implications)

- Random Treatment

- Articles Published

- Pageviews

- Posts on Subject

- Posts in Policy Area

• Intervention

Research Design
Quantities of Interest (& observable implications)

- Random Treatment
- Articles Published
- Pageviews
- Posts on Subject
- Posts in Policy Area

- Intervention

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

Random Treatment • Articles Published • Pageviews • Posts on Subject • Posts in Policy Area

- Intervention
- Downloads from outlets

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Intervention
- Downloads from outlets
- Special access to Google Analytics

- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Quantities of Interest (& observable implications)

- Intervention
- Downloads from outlets
- Special access to Google Analytics
- Social media: King, Pan, Roberts (2017)
- Social media: Crimson Hexagon, Inc.; Methods: readme, 2010; readme2, 2018
Introduction

Research Design

Results

Supporting Analyses

Implications
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
- **Causal effects:**
 - 1st day: 19.4% increase,
 - Total: 62.7% increase
- **Context:**
 - 3 small media outlets have huge effect on the national conversation
Main Causal Effect: Public Expression in Policy Areas

Results
Main Causal Effect: Public Expression in Policy Areas

- Red Dots: model-based estimate (assumes linearity over days)
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects:**

Results
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
- **Causal effects:** 1st day: 19.4% increase,
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)
- **Causal effects:** 1st day: 19.4% increase, Total: 62.7% increase
Main Causal Effect: Public Expression in Policy Areas

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 19.4% increase, Total: 62.7% increase
- **Context**: 3 small media outlets have huge effect on the national conversation
Causal Effect: Indistinguishable Across Subgroups
Causal Effect: Indistinguishable Across Subgroups
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Effect: Indistinguishable Across Subgroups

Effect on the national conversation in major policy areas is national
Causal Heterogeneity: Leave-One-Outlet-Out

- Red Dots: Original (model-based) estimates
- Open circles: same, with one outlet dropped from any packs

Results: no dominant outlet; high heterogeneity

Results
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

Red Dots: Original (model-based) estimates
Open circles: same, with one outlet dropped from any packs
Results: no dominant outlet; high heterogeneity
Causal Heterogeneity: Leave-One-Outlet-Out
Jackknife Estimation on Policy Area Effects

- **Red Dots:** Original (model-based) estimates
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

- **Red Dots**: Original (model-based) estimates
- **Open circles**: same, with one outlet dropped from any packs
Causal Heterogeneity: Leave-One-Outlet-Out

Jackknife Estimation on Policy Area Effects

- **Red Dots:** Original (model-based) estimates
- **Open circles:** same, with one outlet dropped from any packs
- **Results:** no dominant outlet; high heterogeneity
High Experimental Compliance

- Articles published by pack in policy area
- What's the goal?
- Causal effect on # articles: 2.94
- Pageviews (on subject of articles, relative to a day's volume)
- Causal effect on # pageviews: 969.6% (52,223 views) increase
- \[\Rightarrow\] high compliance

Supporting Analyses
High Experimental Compliance

• # Articles published by pack in policy area
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack:

- Causal effect on # articles: 2.94
- Pageviews on subject of articles, relative to a day’s volume:
 - Causal effect on # pageviews: 969.6% (52,223 views) increase
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles:
High Experimental Compliance

• # Articles published by pack in policy area
 • What’s the goal? Average # media outlets per pack: 3.1
 • Causal effect on # articles: 2.94

Pageviews (on subject of articles, relative to a day’s volume)
• Causal effect on # pageviews: 969.6% (52,223 views) increase
 • high compliance
High Experimental Compliance

• # Articles published by pack in policy area
 • What’s the goal? Average # media outlets per pack: 3.1
 • Causal effect on # articles: 2.94
 • ⟹ high compliance
High Experimental Compliance

- # Articles published by pack in policy area
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
 - ⟹ high compliance

- Pageviews (on subject of articles, relative to a day’s volume)
High Experimental Compliance

• # Articles published by pack in policy area
 • What’s the goal? Average # media outlets per pack: 3.1
 • Causal effect on # articles: 2.94
 • ⟹ high compliance

• Pageviews (on subject of articles, relative to a day’s volume)
 • Causal effect on # pageviews: 969.6% (52,223 views) increase
High Experimental Compliance

- **# Articles published by pack in policy area**
 - What’s the goal? Average # media outlets per pack: 3.1
 - Causal effect on # articles: 2.94
 - ⟹ high compliance

- **Pageviews** (on subject of articles, relative to a day’s volume)
 - Causal effect on # pageviews: 969.6% (52,223 views) increase
 - ⟹ high compliance
Causal Effect on Subject of Articles

<table>
<thead>
<tr>
<th>Day 6</th>
<th>Day 5</th>
<th>Day 4</th>
<th>Day 3</th>
<th>Day 2</th>
<th>Day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change in Posts</td>
<td>Total Effect</td>
<td>Change in Number of Posts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Red Dots:** model-based estimate (assumes linearity over days)
- **Open circles:** model-free estimate (no model, higher variance)

Causal effects:
- 1st day: 454% increase,
- Total: 1,666% increase
Causal Effect on Subject of Articles

Supporting Analyses
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects:**
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 454% increase,
Causal Effect on Subject of Articles

- **Red Dots**: model-based estimate (assumes linearity over days)
- **Open circles**: model-free estimate (no model, higher variance)
- **Causal effects**: 1st day: 454% increase, Total: 1,666% increase
Other Supporting Analyses

• More Results

• Opinion change: 2.3% change in direction of article opinion

• Large news media outlets: Observational evidence, >15x effect

• Robustness checks

• # of unique authors: little change from effect on posts

• Removing bots, retweets: No real change

• Week 1 to 2 spillover, noncompliance: No evidence

• Treatment articles: representative of all on complexity, type
Other Supporting Analyses

• **More Results**
Other Supporting Analyses

- More Results
 - Opinion change: 2.3% change in direction of article opinion
Other Supporting Analyses

- More Results
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect
Other Supporting Analyses

• More Results
 • Opinion change: 2.3% change in direction of article opinion
 • Large news media outlets: Observational evidence, >15x effect

• Robustness checks
Other Supporting Analyses

- **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

- **Robustness checks**
 - # of unique authors: little change from effect on posts
Other Supporting Analyses

- **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

- **Robustness checks**
 - # of unique authors: little change from effect on posts
 - Removing bots, retweets: No real change
Other Supporting Analyses

• More Results
 • Opinion change: 2.3% change in direction of article opinion
 • Large news media outlets: Observational evidence, >15x effect

• Robustness checks
 • # of unique authors: little change from effect on posts
 • Removing bots, retweets: No real change
 • Week 1 to 2 spillover, noncompliance: No evidence
Other Supporting Analyses

• **More Results**
 - Opinion change: 2.3% change in direction of article opinion
 - Large news media outlets: Observational evidence, >15x effect

• **Robustness checks**
 - # of unique authors: little change from effect on posts
 - Removing bots, retweets: No real change
 - Week 1 to 2 spillover, noncompliance: No evidence
 - Treatment articles: representative of all on complexity, type
Summary and Implications

• Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change

• Larger outlets: even bigger average effects

• Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse

• Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform, & showed how others can

For more information: GaryKing.org/media
Summary and Implications

- **Summary**

 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

- **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

- **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

- **What should be next?**
 - We wrote a paper, built a platform, & showed how others can

For more information: GaryKing.org/media
Summary and Implications

- Summary

- Implications: for individual journalists
Summary and Implications

• Summary

• Implications: for individual journalists

• Implications: for ecosystem of media outlets
Summary and Implications

• Summary

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets**: very large average effects

• **Implications: for individual journalists**

• **Implications: for ecosystem of media outlets**

• **What should be next?**
Summary and Implications

• Summary
 • Small outlets: very large average effects

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews,

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy),

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets**: very large average effects on pageviews, agenda (subject & policy), opinion change

• **Implications: for individual journalists**

• **Implications: for ecosystem of media outlets**

• **What should be next?**

For more information: GaryKing.org/media
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists

• Implications: for ecosystem of media outlets

• What should be next?
Summary and Implications

- **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

- **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

- **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

- What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads

• **What should be next?**

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news

• What should be next?

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse

• **What should be next?**

For more information: GaryKing.org/media
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

• **What should be next?**
Summary and Implications

• **Summary**
 • **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 • **Larger outlets:** even bigger average effects
 • **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 • Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• **What should be next?**
 • We wrote a paper,
Summary and Implications

• **Summary**
 - **Small outlets:** very large average effects on pageviews, agenda (subject & policy), opinion change
 - **Larger outlets:** even bigger average effects
 - **Heterogeneous effects:** large, highly variable viral patterns

• **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

• **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

• **What should be next?**
 - We wrote a paper, built a platform,
Summary and Implications

- **Summary**
 - Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 - Larger outlets: even bigger average effects
 - Heterogeneous effects: large, highly variable viral patterns

- **Implications: for individual journalists**
 - Remarkable power; serious responsibility; not just another job

- **Implications: for ecosystem of media outlets**
 - Control over editorial boards and mastheads
 - Balance and diversity of outlet opinion
 - Effects of fake news
 - Impact on agendas, elections, public policy, discourse
 - Journalism jobs: 25% drop in last decade

- **What should be next?**
 - We wrote a paper, built a platform, & showed how others can
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse

• Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform, & showed how others can
 • What experiment would you (or should we) run next?

For more information: GaryKing.org/media
Summary and Implications

• Summary
 • Small outlets: very large average effects on pageviews, agenda (subject & policy), opinion change
 • Larger outlets: even bigger average effects
 • Heterogeneous effects: large, highly variable viral patterns

• Implications: for individual journalists
 • Remarkable power; serious responsibility; not just another job

• Implications: for ecosystem of media outlets
 • Control over editorial boards and mastheads
 • Balance and diversity of outlet opinion
 • Effects of fake news
 • Impact on agendas, elections, public policy, discourse
 • Journalism jobs: 25% drop in last decade

• What should be next?
 • We wrote a paper, built a platform, & showed how others can
 • What experiment would you (or should we) run next?

For more information:
GaryKing.org/media
Notation and Quantities of Interest

• Outcome Variable: y_{ped}, # social media posts in policy area $p (p = 1, \ldots, 11)$
• Experiment $e (e = 1, \ldots, E)$
• Day of and after intervention ($d = 1, \ldots, 6$)

• Treatment Variable: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager

• Treated weeks: $T_{pe1} = \ldots = T_{pe6} = 1$
• Control weeks: $T_{pe1} = \ldots = T_{pe6} = 0$

• Quantities of Interest
 • Absolute Increase: $\lambda_d = \text{mean}_{p,e}[y_{ped}(1)] - \text{mean}_{p,e}[y_{ped}(0)]$
 • Proportionate Increase: $\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[y_{ped}(0)]}$
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in

- **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager

- **Treated weeks**: $T_{pe1} = \cdots = T_{pe6} = 1$

- **Control weeks**: $T_{pe1} = \cdots = T_{pe6} = 0$

- **Quantities of Interest**
 - **Absolute Increase**: $\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)]$
 - **Proportionate Increase**: $\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[Y_{ped}(0)]}$
Notation and Quantities of Interest

• **Outcome Variable:** y_{ped}, # social media posts in
 • policy area p ($p = 1, \ldots, 11$)
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
Notation and Quantities of Interest

- **Outcome Variable**: \(y_{ped} \), # social media posts in
 - policy area \(p \) (\(p = 1, \ldots, 11 \))
 - experiment \(e \) (\(e = 1, \ldots, E_p \))
 - day \(d \) of and after intervention (\(d = 1, \ldots, 6 \))
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, \# social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
Notation and Quantities of Interest

- **Outcome Variable**: y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable**: T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \ldots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \ldots = T_{pe6} = 0$
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \cdots = T_{pe6} = 0$

- **Quantities of Interest**
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \cdots = T_{pe6} = 0$

- **Quantities of Interest**
 - Absolute Increase: $\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)]$
 - Proportionate Increase: $\phi_d = \lambda_d \times \text{mean}_{p,e}[Y_{ped}(0)]$
Notation and Quantities of Interest

- **Outcome Variable:** y_{ped}, # social media posts in
 - policy area p ($p = 1, \ldots, 11$)
 - experiment e ($e = 1, \ldots, E_p$)
 - day d of and after intervention ($d = 1, \ldots, 6$)

- **Treatment Variable:** T_{ped}, instruction to pack (of 2-5 outlets) to write, publish, and promote articles, like a project manager
 - Treated weeks: $T_{pe1} = \cdots = T_{pe6} = 1$
 - Control weeks: $T_{pe1} = \cdots = T_{pe6} = 0$

- **Quantities of Interest**
 - Absolute Increase: $\lambda_d = \text{mean}_{p,e}[Y_{ped}(1)] - \text{mean}_{p,e}[Y_{ped}(0)]$
 - Proportionate Increase: $\phi_d = \frac{\lambda_d}{\text{mean}_{p,e}[Y_{ped}(0)]}$
Estimation Approaches

• Model-Based Approach
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]

 - The Model:
 \[E(z_{ped} | T_{ped}) = \beta_0 + \beta_p T_{ped} + \eta_d + \gamma_d T_{ped} \]
 - \(\beta_0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days:
 \[\eta_d = \eta_0 + \eta_1 d \]
 \[\gamma_d = \gamma_0 + \gamma_1 d \]

 - Assume conditional independence over \(p, e, d \)

• Model-Free Approach:
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 (perhaps with policy fixed effects)
Estimation Approaches

- Model-Based Approach

 \[z_{ped} = \ln(y_{ped} + 0.5) \]

 The Model:
 \[E(z_{ped} | T_{ped}) = \beta_0 + \beta_p + \eta_d + \gamma_d T_{ped} \]

 - \(\beta_0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days:
 \[\eta_d = \eta_0 + \eta_1 d \]
 \[\gamma_d T_{ped} = \gamma_0 + \gamma_1 d \]

 - Assume conditional independence over \(p, e, d \)

- Model-Free Approach

 Drop linearity & conditional independence assumptions

 Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)

 Equivalent to difference in means for each day

 (perhaps with policy fixed effects)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \(E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \)
 - \(\beta^0 \): constant term
Estimation Approaches

• **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model:
 \[
 E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped}
 \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas

• Model-Free Approach:
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)
Estimation Approaches

• Model-Based Approach
 • Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 • The Model: \[E(z_{ped}|T_{ped}) = \beta_0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 • \(\beta_0 \): constant term
 • \(\beta_p \): fixed effects for the 11 policy areas
 • Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \(E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \)
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 - Assume *conditional* independence over \(p, e, d \)

- **Model-Free Approach**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 (perhaps with policy fixed effects)
Estimation Approaches

• **Model-Based Approach**

 • Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]

 • The Model:
 \[E(z_{ped}|T_{ped}) = \beta_0 + \beta_p + \eta_d + \gamma_d T_{ped} \]

 • \(\beta_0 \): constant term

 • \(\beta_p \): fixed effects for the 11 policy areas

 • Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)

 • Assume *conditional* independence over \(p, e, d \)

• **Model-Free Approach:**
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0\): constant term
 - \(\beta_p\): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d\) and \(\gamma_d = \gamma^0 + \gamma^1 d\)
 - Assume *conditional* independence over \(p, e, d\)

- **Model-Free Approach**:
 - Drop linearity & conditional independence assumptions
Estimation Approaches

• **Model-Based Approach**

 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_{d}T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1d \) and \(\gamma_d = \gamma^0 + \gamma^1d \)
 - Assume *conditional* independence over \(p, e, d \)

• **Model-Free Approach:**

 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model: \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 - Assume *conditional* independence over \(p, e, d \)

- **Model-Free Approach:**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
Estimation Approaches

- **Model-Based Approach**
 - Transform outcome variable for normality & homoskedasticity:
 \[z_{ped} = \ln(y_{ped} + 0.5) \]
 - The Model:
 \[E(z_{ped}|T_{ped}) = \beta^0 + \beta_p + \eta_d + \gamma_d T_{ped} \]
 - \(\beta^0 \): constant term
 - \(\beta_p \): fixed effects for the 11 policy areas
 - Assume linearity over days: \(\eta_d = \eta^0 + \eta^1 d \) and \(\gamma_d = \gamma^0 + \gamma^1 d \)
 - Assume *conditional* independence over \(p, e, d \)

- **Model-Free Approach:**
 - Drop linearity & conditional independence assumptions
 - Regress \(z_{ped} \) on \(T_{ped} \) separately for each \(d \)
 - Equivalent to difference in means for each day
 - (perhaps with policy fixed effects)