An Introduction to Perusall

Gary King

Institute for Quantitative Social Science
Harvard University
What’s **Perusall**?
What’s Perusall?

- A new type of collaborative e-book reader
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending)
What's **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics,
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science,
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

Students:
- Complete readings; learn more
- Stay engaged and motivated; enjoy the experience

Instructors:
- No extra work; save considerable time
- Improve classroom teaching

No cost:
- Perusall itself is free
- Readings you have rights to: drag and drop to perusall.com
- Books or articles for purchase: Perusall obtains content & permissions from publishers. Students usually pay less than for print version.
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller
- Students

Students

Complete readings; learn more
Stay engaged and motivated; enjoy the experience

Instructors:
- No extra work; save considerable time
- Improve classroom teaching
- No cost: Perusall itself is free
- Readings you have rights to: drag and drop to perusall.com
- Books or articles for purchase: Perusall obtains content & permissions from publishers. Students usually pay less than for print version.
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings;
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
What’s Perusall?

- **A new type of collaborative e-book reader**
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated;
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- Instructors:

[2/10]
What’s **Perusall**?

- **A new type of collaborative e-book reader**
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- **Instructors:**
 - No extra work;
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- Instructors:
 - No extra work; save considerable time
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- Instructors:
 - No extra work; save considerable time
 - Improve classroom teaching
What’s Perusall?

- **A new type of collaborative e-book reader**
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- **Instructors:**
 - No extra work; save considerable time
 - Improve classroom teaching

- **No cost:**
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

Students
- Complete readings; learn more
- Stay engaged and motivated; enjoy the experience

Instructors:
- No extra work; save considerable time
- Improve classroom teaching

No cost:
- Perusall itself is free
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller
- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience
- **Instructors:**
 - No extra work; save considerable time
 - Improve classroom teaching
- **No cost:**
 - Perusall itself is free
 - Readings you have rights to: drag and drop to perusall.com
What’s Perusall?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- Students
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- Instructors:
 - No extra work; save considerable time
 - Improve classroom teaching

- No cost:
 - Perusall itself is free
 - Readings you have rights to: drag and drop to perusall.com
 - Books or articles for purchase:
What’s **Perusall**?

- **A new type of collaborative e-book reader**
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- **Instructors**:
 - No extra work; save considerable time
 - Improve classroom teaching

- **No cost**:
 - Perusall itself is free
 - Readings you have rights to: drag and drop to perusall.com
 - Books or articles for purchase: Perusall obtains content & permissions from publishers.
What’s **Perusall**?

- A new type of collaborative e-book reader
 - Based on extensive (patent-pending) data analytics, behavioral science, and educational research
 - Developed at Harvard by Gary King, Brian Lukoff, Eric Mazur, Kelly Miller

- **Students**
 - Complete readings; learn more
 - Stay engaged and motivated; enjoy the experience

- **Instructors:**
 - No extra work; save considerable time
 - Improve classroom teaching

- **No cost:**
 - Perusall itself is free
 - Readings you have rights to: drag and drop to perusall.com
 - Books or articles for purchase: Perusall obtains content & permissions from publishers. Students usually pay less than for print version.
What Happens When You’re Assigned Reading?

Students

They triage — let some courses die to save others

How many comply with reading assignments:

20-30%

How many buy the book:

< 50%

How to get them to read:

Frequent quizzes, extra homework
Make grades depend on them
Test very specific points from the readings
Spend huge amounts of your time!

Faculty

When motivated (preparing for class, or to learn):
we do all the reading
When unmotivated, forced, or assigned readings?
We’re the same as the students!

Want proof?

Do you do human subjects research?
Did you take the CITI training?
Did you do the reading before trying the test?

Perusall

Perusall: students do > 90% of the reading
What Happens When You’re Assigned Reading?

- Students

How many comply with reading assignments: 20-30%
How many buy the book: < 50%
How to get them to read:
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty

When motivated (preparing for class, or to learn):
we do all the reading
When unmotivated, forced, or assigned readings?
We're the same as the students!

Want proof?

- Do you do human subjects research?
- Did you take the CITI training?
- Did you do the reading before trying the test?
- Did you look at the readings after getting some answers wrong?

Perusall:
students do > 90% of the reading

3/10
What Happens When You’re Assigned Reading?

- **Students**
 - They triage

How many comply with reading assignments:
- 20-30%

How many buy the book:
- <50%

How to get them to read:
- Frequent quizzes, extra homework
- Make grades depend on them
- Test very specific points from the readings

Faculty
- When motivated (preparing for class, or to learn):
 - We do all the reading
- When unmotivated, forced, or assigned readings?
 - We're the same as the students!

Want proof?
- Do you do human subjects research?
- Did you take the CITI training?
- Did you do the reading before trying the test?
- Did you look at the readings after getting some answers wrong?

Perusall:
- Students do >90% of the reading

3/10
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings? We're the same as the students!
 - Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?
 - Did you look at the readings after getting some answers wrong?

Perusall:
- Students do >90% of the reading
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments:

- 20-30%
- <50%

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings? We’re the same as the students!
- Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?

Perusall: students do >90% of the reading
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
 - When unmotivated, forced, or assigned readings? We're the same as the students!
 -Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?

Perusall

- Students do > 90% of the reading
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: **20-30%**
 - How many buy the book?
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
 - When unmotivated, forced, or assigned readings? We’re the same as the students!

Want proof?
- Do you do human subjects research?
- Did you take the CITI training?
- Did you do the reading before trying the test?
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
 - When unmotivated, forced, or assigned readings? We’re the same as the students!

Want proof?
- Do you do human subjects research?
- Did you take the CITI training?
- Did you do the reading before trying the test?
- Perusall: students do >90% of the reading
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
 - When motivated (preparing for class, or to learn):
 - We do all the reading
 - When unmotivated, forced, or assigned readings?
 - We’re the same as the students!
 - Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?

Perusall
- Students do >90% of the reading
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? ≤50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
 - When motivated (preparing for class, or to learn):
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
 - When unmotivated, forced, or assigned readings?
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students!
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
What Happens When You’reAssigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
What Happens When You’re Assigned Reading?

- **Students**
 - They triage — let some courses die to save others
 - How many comply with reading assignments: 20-30%
 - How many buy the book? <50%
 - How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

- **Faculty**
 - When motivated (preparing for class, or to learn): we do all the reading
 - When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?
 - Did you look at the readings after getting some answers wrong?
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?
 - Did you look at the readings after getting some answers wrong?

Perusall
What Happens When You’re Assigned Reading?

Students
- They triage — let some courses die to save others
- How many comply with reading assignments: 20-30%
- How many buy the book? <50%
- How to get them to read?
 - Frequent quizzes, extra homework
 - Make grades depend on them
 - Test very specific points from the readings
 - Spend huge amounts of your time!

Faculty
- When motivated (preparing for class, or to learn): we do all the reading
- When unmotivated, forced, or assigned readings?
 - We’re the same as the students! Want proof?
 - Do you do human subjects research?
 - Did you take the CITI training?
 - Did you do the reading before trying the test?
 - Did you look at the readings after getting some answers wrong?

Perusall: students do >90% of the reading
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards: Humans value collective experiences (e.g., why the concert costs more than the iTunes download). Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective \Rightarrow Solitary).

Extrinsic motivators (grades) are weak, unless: Faculty waste time preparing quizzes, students waste time taking them, everyone wastes class or prep time.

So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

Humans value collective experiences (e.g., why the concert costs more than the iTunes download)

Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective ⇝ Solitary)

Extrinsic motivators (grades) are weak, unless:

- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The Perusall Solution

Transform the reading experience:

Solitary ⇝ Collective

Extrinsic motivation (no instructor effort): Automated grading
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value **collective** experiences
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value **collective** experiences
 (e.g., why the concert costs more than the iTunes download)
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value collective experiences (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience

Extrinsic motivators (grades) are weak, unless:

- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The Perusall Solution

Transform the reading experience: Solitary \rightarrow Collective

Extrinsic motivation (no instructor effort): Automated grading
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value **collective** experiences
 (e.g., why the concert costs more than the iTunes download)
- Reading is a **solitary** experience
 (e.g., the stalling MOOC revolution:
 Perusall Solution

Transform the reading experience:

- Extrinsic motivation (no instructor effort): Automated grading
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value collective experiences
 (e.g., why the concert costs more than the iTunes download)

- Reading is a solitary experience
 (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value collective experiences
 (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience
 (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)

Extrinsic motivators (grades) are weak, unless:
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value **collective** experiences
 (e.g., why the concert costs more than the iTunes download)
- Reading is a **solitary** experience
 (e.g., the stalling MOOC revolution: Collective ~→ Solitary)

Extrinsic motivators (grades) are weak, unless:

- Faculty waste time preparing quizzes
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:
- Humans value *collective* experiences
 (e.g., why the concert costs more than the iTunes download)
- Reading is a *solitary* experience
 (e.g., the stalling MOOC revolution: Collective \leadsto Solitary)

Extrinsic motivators (grades) are weak, unless:
- Faculty waste time preparing quizzes
- Students waste time taking them
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value collective experiences (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective \leadsto Solitary)

Extrinsic motivators (grades) are weak, unless:

- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The Perusall Solution

Transform the reading experience: Solitary \leadsto Collective

Extrinsic motivation (no instructor effort): Automated grading
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:

- Humans value collective experiences (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)

Extrinsic motivators (grades) are weak, unless:

- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The Perusall Solution
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:
- Humans value collective experiences (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)

Extrinsic motivators (grades) are weak, unless:
- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The Perusall Solution
- Transform the reading experience:
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:
- Humans value collective experiences
 (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience
 (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)

Extrinsic motivators (grades) are weak, unless:
- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The **Perusall** Solution
- Transform the reading experience: Solitary \rightsquigarrow Collective
So what’s wrong? Why don’t they read?

Intrinsic motivators are backwards:
- Humans value collective experiences (e.g., why the concert costs more than the iTunes download)
- Reading is a solitary experience (e.g., the stalling MOOC revolution: Collective \rightsquigarrow Solitary)

Extrinsic motivators (grades) are weak, unless:
- Faculty waste time preparing quizzes
- Students waste time taking them
- Everyone wastes class or prep time

The **Perusall** Solution
- Transform the reading experience: Solitary \rightsquigarrow Collective
- Extrinsic motivation (no instructor effort): Automated grading
How does it work?

Assign readings & annotations

Students share questions, answers, perspectives, external knowledge in threads

Can annotate text, images, or equations

Classmates motivate

Perusall grades engagement (better than TAs can)

Non-adversarial grading; Perusall nudges students not keeping up
Dominguez and McCann in the first place: the electoral outcome itself. In particular, if every voter thought the PRI was weakening, which candidate would have won the presidency? To answer this question, we coded each voter as thinking that the PRI was weakening and let other characteristics of the voter take on their true values. Then we used the predicted value algorithm to simulate the vote for each person in the sample and used the votes to run a mock election. We repeated this exercise 100 times to generate 100 simulated election outcomes. For comparison, we also coded each voter as thinking the PRI was strengthening and simulated 100 election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a “ternary plot” (see Miller 1977; Katz and King 1999), and coordinates in the figure represent predicted fractions of the vote received by each candidate under a different simulated election outcome. Roughly speaking, the closer a point appears to one of the vertices, the larger the fraction of the vote going to the candidate whose name appears on the vertex. A point near the middle indicates that the simulated election was a dead heat. We also added “win lines” to the figure that divide the ternary diagram into areas that indicate which candidate receives a plurality and thus wins the simulated election (e.g., points that appear in the top third of the triangle are simulated election outcomes where Cardenas receives a plurality).

In this figure, the o’s (all near the bottom left) are simulated outcomes in which everyone thought the PRI was strengthening, while the dots (all near the center) correspond to beliefs that the PRI was weakening. The figure shows that when the country believes the PRI is strengthening, Salinas wins hands down; in fact, he wins every one of the simulated elections. If voters believe the PRI is weakening, however, the 1988 election is a toss-up, with each candidate having an equal chance of victory.

The general idea is that the model is estimated by the regression a censored Weibull regression (a form of duration model) on a dataset in which the dependent variable, Y_t, measures the number of years that leader i remains in office following the onset of war. For fully observed cases (the leader had left office at the time of the study), the model is

$$Y_t \sim \text{Weibull}(\mu, \sigma)$$

$$\mu_t = E(Y_t | X_t) = (e^{X_t \beta})^{-\sigma} \Gamma(1 + \sigma)$$

where σ is an ancillary shape parameter and Γ is the gamma function, an interpolated factorial that works for continuous values of its argument. The model includes four explanatory variables: the leader’s pre-war tenure in years, an interaction between pre-war tenure and demographic of battles per 10,000 inhabitants, a variable indicating whether the leader won the authors find that leaders who waged forced to lose their grip on power at home, but leaders with a long pre-war tenure were in office longer than others.

As it notes, the Weibull is a time to event model (a duration model), so it’s a natural fit for looking at the years someone remains in office following a war. More broadly, it’s related to the Exponential distribution, which is typical what you think of when you’re trying to model time. But unlike the Exponential, the Weibull has a shape and scale parameter (whereas in the Exponential the shape is always presumed to be 1).
How does it work?

Assign readings & annotations

Dominguez and McCann in the first place: the electoral outcome itself. In particular, if every voter thought the PRI was weakening, which candidate would have won the presidency? To answer this question, we coded each voter as thinking that the PRI was weakening and let other characteristics of the voter take on their true values. Then we used the predicted value algorithm to simulate the vote for each person in the sample and used the votes to run a mock election. We repeated this exercise 100 times to generate 100 simulated election outcomes. For comparison, we also coded each voter as thinking the PRI was strengthening and simulated 100 election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a "ternary plot" (see Miller 1977; Katz and King 1999), and coordinates in the figure represent predicted fractions of the vote received by each candidate under a different simulated election outcome. Roughly speaking, the closer a point appears to one of the vertices, the larger the fraction of the vote going to the candidate whose name appears on the vertex. A point near the middle indicates that the simulated election was a dead heat. We also added "win lines" to the figure that divide the ternary diagram into areas that indicate which candidate receives a plurality and thus wins the simulated election (e.g., points that appear in the top third of the triangle are simulated election outcomes where Cardenas receives a plurality).

In this figure, the o's (all near the bottom left) are simulated outcomes in which everyone thought the PRI was strengthening, while the dots (all near the center) correspond to beliefs that the PRI was weakening. The figure shows that when the country believes the PRI is strengthening, Salinas wins hands down; in fact, he wins every one of the simulated elections. If voters believe the PRI is weakening, however, the 1988 election is a toss-up, with each candidate having an equal chance of victory.

The question by estimating a censored Weibull regression (a form of duration model) on a dataset in which the dependent variable, Y_i, measures the number of years that leader i remains in office following the onset of war. For fully observed cases (the leader had left office at the time of the study), the model is

$$Y_i \sim \text{Weibull}(\mu, \sigma)$$

$$\mu_i = E(Y_i | X_i) = (e^{X_i})^{\sigma} \Gamma(1 + \sigma) \tag{6}$$

where σ is an ancillary shape parameter and Γ is the gamma function, an interpolated factorial that works for continuous values of its argument. The model includes four explanatory variables: the leader's pre-war tenure in years, an interaction between pre-war tenure and demography of battle deaths per 10,000 inhabitants, a variable indicating whether the leader won the election, and a variable associating each variable. Hazard (2013) method of interpretation in the text understanding them requires considerable knowledge. Simulation can help us calculate
Assign readings & annotations

Students share questions, answers, perspectives, external knowledge in threads
How does it work?

- Assign readings & annotations
- Students share questions, answers, perspectives, external knowledge in threads
- Can annotate text, images, or equations

Dominguez and McCann in the first place: the electoral outcome itself. In particular, if every voter thought the PRI was weakening, which candidate would have won the presidency? To answer this question, we coded each voter as thinking that the PRI was weakening and let other characteristics of the voter take on their true values. Then we used the predicted value algorithm to simulate the vote for each person in the sample and used the votes to run a mock election. We repeated this exercise 100 times to generate 100 simulated election outcomes. For comparison, we also coded each voter as thinking the PRI was strengthening and simulated 100 election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a "ternary plot" (see Miller 1977; Katz and King 1999), and coordinates in the figure represent predicted fractions of the vote received by each candidate under a different simulated election outcome. Roughly speaking, the closer a point appears to one of the vertices, the larger the fraction of the vote going to the candidate whose name appears on the vertex. A point near the middle indicates that the simulated election was a dead heat. We also added "win lines" to the figure that divide the ternary diagram into areas that indicate which candidate receives a plurality and thus wins the simulated election (e.g., points that appear in the top third of the triangle are simulated election outcomes where Cardenas receives a plurality).

In this figure, the o's (all near the bottom left) are simulated outcomes in which everyone thought the PRI was strengthening, while the dots (all near the center) correspond to beliefs that the PRI was weakening. The figure shows that when the country believes the PRI is strengthening, Salinas wins hands down; in fact, he wins every one of the simulated elections. If voters believe the PRI is weakening, however, the 1988 election is a toss-up, with each candidate having an equal chance of victory.

What are the advantages of using a Weibull model as opposed to kinds we have discussed in class (like Poisson, Normal, etc)?

As it notes, the Weibull is a time to event model (a duration model), so it's a natural fit for looking at the years someone remains in office following a war. More broadly, it's related to the Exponential distribution, which is typically what you think of when you're trying to model time. But unlike the Exponential, the Weibull has a shape and scale parameter (whereas in the Exponential the shape is always presumed to be 1).

Assignment

Perusall is an application that assigns readings and annotations to students. Students can share questions, answers, perspectives, and external knowledge in threads. They can also annotate text, images, or equations. Non-adversarial grading is another feature, where Perusall nudges students not keeping up. The grading system is better than that of teaching assistants. The Perusall system motivates classmates to engage more effectively in the learning process.
How does it work?

Assign readings & annotations

Students share questions, answers, perspectives, external knowledge in threads

Can annotate text, images, or equations

Classmates motivate

Dominguez and McCann in the first place: the electoral outcome itself. In particular, if every voter thought the PRI was weakening, which candidate would have won the presidency? To answer this question, we coded each voter as thinking that the PRI was weakening and let other characteristics of the voter take on their true values. Then we used the predicted value algorithm to simulate the vote for each person in the sample and used the votes to run a mock election. We repeated this exercise 100 times to generate 100 simulated election outcomes. For comparison, we also coded each voter as thinking the PRI was strengthening and simulated 100 election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a “ternary plot” (see Miller 1977; Katz and King 1999), and coordinates in the figure represent predicted fractions of the vote received by each candidate under a different simulated election outcome. Roughly speaking, the closer a point appears to one of the vertices, the larger the fraction of the vote going to the candidate whose name appears on the vertex. A point near the middle indicates that the simulated election was a dead heat. We also added “win lines” to the figure that divide the ternary diagram into areas that indicate which candidate receives a plurality and thus wins the simulated election (e.g., points that appear in the top third of the triangle are simulated election outcomes where Cardenas receives a plurality).

In this figure, the o’s (all near the bottom left) are simulated outcomes in which everyone thought the PRI was strengthening, while the dots (all near the center) correspond to beliefs that the PRI was weakening. The figure shows that when the country believes the PRI is strengthening, Salinas wins hands down; in fact, he wins every one of the simulated elections. If voters believe the PRI is weakening, however, the 1988 election is a toss-up, with each candidate having an equal chance of victory.

Figure 3 Simulated Electoral Outcomes

Coordinates in this ternary diagram are predicted fractions of the vote received by each of the three candidates. Each point is an election outcome drawn randomly from a world in which all voters believe Salinas’ PRI party is strengthening (for the “o”s in the bottom left) or weakening (for the “+”s in the middle), with other variables held constant at their means.

question by estimating a censored Weibull regression (a form of duration model) on a dataset in which the dependent variable, \(Y \), measures the number of years that leader \(i \) remains in office following the onset of war. For fully observed cases (the leader had left office at the time of the study), the model is

\[
Y_i \sim \text{Weibull}(\mu, \sigma)
\]

\[
\mu_i = E(Y_i | X_i) = (e^{X_i})^{-\sigma} \Gamma(1 + \sigma)
\]

where \(\sigma \) is an ancillary shape parameter and \(\Gamma \) is the gamma function, an interpolated factorial that works for continuous values of its argument. The model includes four explanatory variables: the leader’s pre-war tenure in years, an interaction between pre-war tenure and demobilization of battle deaths per 10,000 inhabitants, a variable indicating whether the leader won the war, and the authors find that leaders who waged for long periods of time to stabilize their power at home, but leaders with a long pre-war tenure were in office longer than others.

Pease, Mesquita and Siverson discuss the manner of their explanatory variables by computing “hazard” associated with each variable. Hazard interpretation of the hazard function in the understanding them requires considerable knowledge. Simulation can help us calculate
How does it work?

- Assign readings & annotations
- Students share questions, answers, perspectives, external knowledge in threads
- Can annotate text, images, or equations
- Classmates motivate
- Perusall grades engagement (better than TAs can)

Dominguez and McCann in the first place: the electoral outcome itself. In particular, if every voter thought the PRI was weakening, which candidate would have won the presidency? To answer this question, we coded each voter as thinking that the PRI was weakening and let other characteristics of the voter take on their true values. Then we used the predicted value algorithm to simulate the vote for each person in the sample and used the votes to run a mock election. We repeated this exercise 100 times to generate 100 simulated election outcomes. For comparison, we also coded each voter as thinking the PRI was strengthening and simulated 100 election outcomes conditional on those beliefs.

Figure 3 displays our results. The figure is called a "ternary plot" (see Miller 1977; Katz and King 1999), and coordinates in the figure represent predicted fractions of the vote received by each candidate under a different simulated election outcome. Roughly speaking, the closer a point appears to one of the vertices, the larger the fraction of the vote going to the candidate whose name appears on the vertex. A point near the middle indicates that the simulated election was a dead heat. We also added "win lines" to the figure that divide the ternary diagram into areas that indicate which candidate receives a plurality and thus wins the simulated election (e.g., points that appear in the top third of the triangle are simulated election outcomes where Cardenas receives a plurality).

In this figure, the o's (all near the bottom left) are simulated outcomes in which everyone thought the PRI was strengthening, while the dots (all near the center) correspond to beliefs that the PRI was weakening. The figure shows that when the country believes the PRI is strengthening, Salinas wins hands down; in fact, he wins every one of the simulated elections. If voters believe the PRI is weakening, however, the 1988 election is a toss-up, with each candidate having an equal chance of victory.

As it notes, the Weibull is a time to event model (a duration model), so it's a natural fit for looking at the years someone remains in office following a war. More broadly, it's related to the Exponential distribution, which is typically what you think of when you're trying to model time. But unlike the Exponential, the Weibull has a shape and scale parameter (whereas in the Exponential the shape is always presumed to be 1).
How does it work?

Assign readings & annotations
Students share questions, answers, perspectives, external knowledge in threads
Can annotate text, images, or equations
Classmates motivate
Perusall grades engagement (better than TAs can)
Non-adversarial grading; Perusall nudges students not keeping up

Assign readings & annotations
Students share questions, answers, perspectives, external knowledge in threads
Can annotate text, images, or equations
Classmates motivate
Perusall grades engagement (better than TAs can)
Non-adversarial grading; Perusall nudges students not keeping up
What happens when motivated students get stuck?

Presently: Eyes off the page
- Stop reading, hope you get it in class
- Make believe you understand it and keep reading
- Wait until office hours
- Find another student
- Ask a question via email or a forum

Perusall: Eyes on the page
- Annotate the readings: ask questions in context
- Out-of-class experience centered on the readings
- Get response immediately from other students
- If you've left, expect email with an answer (can respond within email)

When students figure it out together: Learning is deeper and remembered longer
What happens when motivated students get stuck?

- Presently: Eyes off the page
What happens when motivated students get stuck?

- Presently: Eyes off the page
 - Stop reading, hope you get it in class

Perusall: Eyes on the page
- Annotate the readings: ask questions in context
- Out-of-class experience centered on the readings
- Get response immediately from other students
- If you've left, expect email with an answer (can respond within email)

When students figure it out together: Learning is deeper and remembered longer
What happens when motivated students get stuck?

Presently: Eyes off the page
- Stop reading, hope you get it in class
- Make believe you understand it and keep reading
What happens when motivated students get stuck?

- Presently: Eyes off the page
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours

- Eyes on the page
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
 - If you've left, expect email with an answer (can respond within email)

When students figure it out together: Learning is deeper and remembered longer
What happens when motivated students get stuck?

- **Presently: Eyes off the page**
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student

- **Perusall**
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
 - If you've left, expect email with an answer (can respond within email)

When students figure it out together: Learning is deeper and remembered longer.
What happens when motivated students get stuck?

- Presently: Eyes off the page
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum
What happens when motivated students get stuck?

- Presently: Eyes off the page
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- Perusall: Eyes on the page
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
 - If you've left, expect email with an answer (can respond within email)
 - When students figure it out together: Learning is deeper and remembered longer
What happens when motivated students get stuck?

- **Presently**: Eyes off the page
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- **Perusall**: Eyes on the page
 - Annotate the readings: ask questions in context
What happens when motivated students get stuck?

- **Presently: Eyes off the page**
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- **Perusall**: Eyes on the page
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
What happens when motivated students get stuck?

- **Presently: Eyes off the page**
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- **Perusall: Eyes on the page**
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
What happens when motivated students get stuck?

- **Presently: Eyes off the page**
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- **Perusall: Eyes on the page**
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
 - If you’ve left, expect email with an answer (can respond within email)
What happens when motivated students get stuck?

- **Presently: Eyes off the page**
 - Stop reading, hope you get it in class
 - Make believe you understand it and keep reading
 - Wait until office hours
 - Find another student
 - Ask a question via email or a forum

- **Perusall: Eyes on the page**
 - Annotate the readings: ask questions in context
 - Out-of-class experience centered on the readings
 - Get response immediately from other students
 - If you’ve left, expect email with an answer (can respond within email)
 - When students figure it out together: Learning is deeper and remembered longer
At the start of class, “Any Questions?”

Presently:

Hearing questions and confusions: hugely important in learning

They have lots of questions, but no one moves

They’ve just trouped across campus, thinking about their last class,
plopped their backpacks and coats down, expecting to be entertained.

A big missed opportunity

Perusall

Perusall

Walk into class; skip the “any questions” game

Go through the topics, recognizing students with good questions or
comments

7/10
At the start of class, “Any Questions?”

Presently:
At the start of class, “Any Questions?”

Presently:

- Hearing questions and confusions: hugely important in learning
Presently:
- Hearing questions and confusions: hugely important in learning
- They have lots of questions, but no one moves
At the start of class, “Any Questions?”

Presently:
- Hearing questions and confusions: hugely important in learning
- They have lots of questions, but no one moves
- They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
At the start of class, “Any Questions?”

Presently:

- Hearing questions and confusions: hugely important in learning
- They have lots of questions, but no one moves
- They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
- A big missed opportunity
At the start of class, “Any Questions?”

- **Presently:**
 - Hearing questions and confusions: hugely important in learning
 - They have lots of questions, but no one moves
 - They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
 - A big missed opportunity

- **Perusall**:
At the start of class, “Any Questions?”

Presently:
- Hearing questions and confusions: hugely important in learning
- They have lots of questions, but no one moves
- They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
- A big missed opportunity

Perusall:
- Just before class, print a Student Confusion Report with the top 3–4 topics of confusion or engagement, and the best student annotations
At the start of class, “Any Questions?”

- **Presently:**
 - Hearing questions and confusions: hugely important in learning
 - They have lots of questions, but no one moves
 - They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
 - A big missed opportunity

- **Perusall**:
 - Just before class, print a *Student Confusion Report* with the top 3–4 topics of confusion or engagement, and the best student annotations
 - Walk into class; skip the “any questions” game
At the start of class, “Any Questions?”

- **Presently:**
 - Hearing questions and confusions: hugely important in learning
 - They have lots of questions, but no one moves
 - They’ve just trouped across campus, thinking about their last class, plopped their backpacks and coats down, expecting to be entertained.
 - A big missed opportunity

- **Perusall:**
 - Just before class, print a Student Confusion Report with the top 3–4 topics of confusion or engagement, and the best student annotations
 - Walk into class; skip the “any questions” game
 - Go through the topics, recognizing students with good questions or comments
Example Student Confusion Report
Example Student Confusion Report

Confusion 1

Making the Most of Statistical Analyses: Improving Interpretation and Presentation

Gary King | Harvard University
Michael Tomz | Harvard University
Jason Wittenberg | Harvard University

Social scientists often do not take full advantage of the information available in their statistical results. In a consequence, these miss opportunities to present quantitatively testable substantive inferences from their data. This article offers some possible methods to improve this situation.

Confusion 2

What does a logit model look like and what makes it particularly useful in this case of binary data? Why would we know a logit model is better to use here than a normal distribution, for instance? Would we have to have some prior understanding of the nature of the data we are looking at to determine a logit model is optimal?

Intuitively, I have trouble understanding exactly how simulation helps us. Are we using parameters from the data to simulate potential outcomes that give us probabilities? More generally, how does the simulation relate to the actual data?
One page, easy to digest before class
Example Student Confusion Report

One page, easy to digest before class

See confusions or engagements in context
One page, easy to digest before class

See confusions or engagements in context

Annotations remain live
Example Student Confusion Report

- One page, easy to digest before class
- See confusions or engagements in context
- Annotations remain live
- Highlights best student annotations
Automated Engagement

Classes of any size

"Annotation groups" (of about 20) constructed from your class automatically to optimize engagement

Perusall can seed your class with annotations from another predicted to generate engagement

If a student skips pp.61-67

Perusall checks for important concepts missed

Student gets a private nudge about the point on p.63

As class nears, Perusall monitors continuously

Who hasn't done the reading or isn't engaged

Who isn't going to get 100% on the annotation assignment

Carefully timed, unobtrusive private notes with help and direction

Instructor gets: a window on student learning

A dashboard with grading suggestions

Info about individual student engagement & performance

Alerts for students with serious problems
Automated Engagement

- Classes of any size
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement

- Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67, Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction

- Instructor gets: a window on student learning
 - A dashboard with grading suggestions
 - Info about individual student engagement & performance
 - Alerts for students with serious problems
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement

- If a student skips pp. 61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p. 63

- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction

- Instructor gets: a window on student learning
 - A dashboard with grading suggestions
 - Info about individual student engagement & performance
 - Alerts for students with serious problems

9/10
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
Automated Engagement

- **Classes of any size**
 - "Annotation groups" (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement

- **If a student skips pp.61-67**
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63

- **As class nears, Perusall monitors continuously**
Automated Engagement

- **Classes of any size**
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- **If a student skips pp.61-67**
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- **As class nears, Perusall monitors continuously**
 - Who hasn’t done the reading or isn’t engaged
Automated Engagement

- **Classes of any size**
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement

- **If a student skips pp.61-67**
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63

- **As class nears, Perusall monitors continuously**
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction
- Instructor gets: a window on student learning
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction
- Instructor gets: a window on student learning
 - A dashboard with grading suggestions
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction
- Instructor gets: a window on student learning
 - A dashboard with grading suggestions
 - Info about individual student engagement & performance
Automated Engagement

- Classes of any size
 - “Annotation groups” (of about 20) constructed from your class automatically to optimize engagement
 - Perusall can seed your class with annotations from another predicted to generate engagement
- If a student skips pp.61-67
 - Perusall checks for important concepts missed
 - Student gets a private nudge about the point on p.63
- As class nears, Perusall monitors continuously
 - Who hasn’t done the reading or isn’t engaged
 - Who isn’t going to get 100% on the annotation assignment
 - Carefully timed, unobtrusive private notes with help and direction
- Instructor gets: a window on student learning
 - A dashboard with grading suggestions
 - Info about individual student engagement & performance
 - Alerts for students with serious problems
Administrative
Administrative

- Works differently across fields:
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles

Student identities not shared with corporate recruiters or anyone outside of class

Students buy content through Perusall (online or via a code from your bookstore); usually pay less

Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)

Many other features; under active development; suggestions welcome

Sign up at Perusall.com
Works differently across fields:
- In technical fields, students use Perusall to understand what the text explains, to get past hurdles
- In the humanities, Perusall engages students with the meaning of the text itself

Integrates with your university's LMS for single sign-on
FERPA compliant; university administration friendly; no advertising.
Student identities not shared with corporate recruiters or anyone outside of class
Students buy content through Perusall (online or via a code from your bookstore); usually pay less
Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
Many other features; under active development; suggestions welcome

Sign up at Perusall.com
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on

Sign up at Perusall.com

10/10
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class

Sign up at Perusall.com
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class
- Students buy content through Perusall (online or via a code from your bookstore); usually pay less
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class
- Students buy content through Perusall (online or via a code from your bookstore); usually pay less
- Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class
- Students buy content through Perusall (online or via a code from your bookstore); usually pay less
- Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
- Many other features;
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class
- Students buy content through Perusall (online or via a code from your bookstore); usually pay less
- Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
- Many other features; under active development;
Administrative

- Works differently across fields:
 - In technical fields, students use Perusall to understand what the text explains, to get past hurdles
 - In the humanities, Perusall engages students with the meaning of the text itself
- Integrates with your university’s LMS for single sign-on
- FERPA compliant; university administration friendly; no advertising.
- Student identities not shared with corporate recruiters or anyone outside of class
- Students buy content through Perusall (online or via a code from your bookstore); usually pay less
- Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
- Many other features; under active development; suggestions welcome
Works differently across fields:
- In technical fields, students use Perusall to understand what the text explains, to get past hurdles
- In the humanities, Perusall engages students with the meaning of the text itself

Integrates with your university’s LMS for single sign-on
FERPA compliant; university administration friendly; no advertising.
Student identities not shared with corporate recruiters or anyone outside of class
Students buy content through Perusall (online or via a code from your bookstore); usually pay less
Publishers love it (keeps their content central; 100% sell-through, no resales, the ultimate solution to IP piracy)
Many other features; under active development; suggestions welcome

Sign up at Perusall.com