Why Propensity Scores Should Not Be Used For Matching

Gary King1 \hspace{1cm} Richard Nielsen2

Institute for Quantitative Social Science
Harvard University \hspace{1cm} MIT

(Talk at Harvard’s Applied Statistics Workshop, 9/16/2015)

1GaryKing.org
2www.mit.edu/\sim rnielsen
The Scholarly Influence of Propensity Score Matching

The most commonly used matching method
• In 49,600 articles! (according to Google Scholar)
• Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)

This paper is about: propensity score matching, as used in practice.
Not implicated by our results:
• Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, pscores used in other methods
• The mathematical theorems about propensity scores
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method

According to Google Scholar, propensity score matching has been used in 49,600 articles. It is possibly even the most developed and popular strategy for causal analysis in observational studies (Pearl, 2010). This paper is about propensity score matching, as used in practice. Not implicated by our results are other uses of propensity scores, such as regression adjustment, inverse weighting, stratification, and pscores used in other methods. The mathematical theorems about propensity scores are also not covered in this presentation.
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching,
The Scholarly Influence of Propensity Score Matching

• The most commonly used matching method
• In 49,600 articles! (according to Google Scholar)
• Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
• This paper is about: propensity score matching, as used in practice.
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g.,
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g., regression adjustment,
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g., regression adjustment, inverse weighting,
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification,
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)

⇝ This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, pscores used in other methods
The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 49,600 articles! (according to Google Scholar)
- Maybe even “the most developed and popular strategy for causal analysis in observational studies” (Pearl, 2010)
- This paper is about: propensity score matching, as used in practice. Not implicated by our results:
 - Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, p scores used in other methods
 - The mathematical theorems about propensity scores
Matching to Reduce Model Dependence
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

![Graph showing the relationship between education (years) and outcome](image-url)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

![Graph showing the relationship between education and outcome](image)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)

![Graph showing the relationship between education (years) and outcome.](image-url)
Matching to Reduce Model Dependence
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)
The Problems Matching Solves

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on "plausibility" is probably worse
- Conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)
The Problems Matching Solves

Without Matching:

• Qualitative choice from unbiased estimates = biased estimator

 e.g., Choosing from results of 50 randomized experiments

• Choosing based on “plausibility” is probably worse

 conscientious effort doesn’t avoid biases (Banaji 2013)

• People do not have easy access to their own mental processes
 or feedback to avoid the problem (Wilson and Brekke 1994)

• Experts overestimate their ability to control personal biases
 more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)

• “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance
The Problems Matching Solves

Without Matching:

Imbalance \xrightarrow{\sim} Model Dependence
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \rightarrow Model Dependence \rightarrow Researcher discretion \rightarrow Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates \neq biased estimator
 - e.g., Choosing from results of 50 randomized experiments

“Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse
The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse\[eff\]
- conscientious effort doesn’t avoid biases (Banaji 2013)\[acc\]
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse [eff]
- conscientious effort doesn’t avoid biases (Banaji 2013) [acc]
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994) [exprt]
The Problems Matching Solves

Without Matching:

Imbalance \implies Model Dependence \implies Researcher discretion \implies Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse
- Conscientious effort doesn’t avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
The Problems Matching Solves

Without Matching:

Imbalance \mapsto Model Dependence \mapsto Researcher discretion \mapsto Bias

- Qualitative choice from unbiased estimates $=$ biased estimator
 - e.g., Choosing from results of 50 randomized experiments
 - Choosing based on “plausibility” is probably worse

- Conscientious effort doesn’t avoid biases (Banaji 2013)

- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)

- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)

- “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance ⇝ Model Dependence ⇝ Researcher discretion ⇝ Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse
- $\text{conscientious effort doesn't avoid biases (Banaji 2013)}$
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- “Teaching psychology is mostly a waste of time” (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \leadsto Model Dependence \leadsto Researcher discretion \leadsto Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse
- Conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994)
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)
The Problems Matching Solves

Without Matching:

Imbalance \(\leadsto\) Model Dependence \(\leadsto\) Researcher discretion \(\leadsto\) Bias

A central project of statistics: Automating away human discretion
What’s Matching?

- Y_i, dep var, T_i (1 = treated, 0 = control), X_i, confounders

Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}$$

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control

Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:
 $$SATT = \text{Mean}_{i \in \{T_i = 1\}}(TE_i)$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching

- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}$$
What’s Matching?

• Y_i dep var, T_i (1=treated, 0=control), X_i confounders
• Treatment Effect for treated observation i:

$$TE_i = Y_i(1) - Y_i(0)$$
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

\[
\text{TE}_i = Y_i(1) - Y_i(0)
\]

= observed – unobserved
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$

= observed $-$ unobserved
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

 $\text{TE}_i = Y_i - Y_i(0)$

 $= \text{observed} - \text{unobserved}$

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}$$

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

 \[\text{TE}_i = Y_i - Y_i(0) \]

 = observed – unobserved

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:

 \[\text{SATT} = \text{Mean} \left(\text{TE}_i \right) \]

 \[i \in \{ T_i = 1 \} \]
What’s Matching?

- \(Y_i \) dep var, \(T_i \) (1=treated, 0=control), \(X_i \) confounders
- Treatment Effect for treated observation \(i \):
 \[
 \text{TE}_i = Y_i - Y_i(0)
 \]
 \(= \) observed – unobserved

- Estimate \(Y_i(0) \) with \(Y_j \) with a matched \((X_i \approx X_j) \) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[
 \text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (\text{TE}_i)
 \]
 2. FSATT: Feasible SATT (prune badly matched treateds too)
What’s Matching?

- Y_i dep var, T_i (1=treated, 0=control), X_i confounders
- Treatment Effect for treated observation i:

$$TE_i = Y_i - Y_i(0)$$
$$= \text{observed} - \text{unobserved}$$

- Estimate $Y_i(0)$ with Y_j with a matched ($X_i \approx X_j$) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:

$$\text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (TE_i)$$

 2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching
What’s Matching?

- \(Y_i\) dep var, \(T_i\) (1=treated, 0=control), \(X_i\) confounders
- Treatment Effect for treated observation \(i\):
 \[
 \text{TE}_i = Y_i - Y_i(0) = \text{observed} - \text{unobserved}
 \]
- Estimate \(Y_i(0)\) with \(Y_j\) with a matched \((X_i \approx X_j)\) control
- Quantities of Interest:
 1. SATT: Sample Average Treatment effect on the Treated:
 \[
 \text{SATT} = \text{Mean}_{i \in \{T_i=1\}} (\text{TE}_i)
 \]
 2. FSATT: Feasible SATT (prune badly matched treateds too)
- Big convenience: Follow preprocessing with whatever statistical method you’d have used without matching
- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, & bias
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- **Balance**
 - **Covariates:**
 - Complete Randomization
 - Fully Blocked
 - Observed
 - On average
 - Unobserved
 - On average
 - On average

\[\Rightarrow \text{Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.} \]

- **Goal of Each Matching Method (in Observational Data)**
 - **PSM:** complete randomization
 - Other methods: fully blocked
 - Other matching methods dominate PSM

(wait, it gets worse)
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- Balance
- Covariates:
 - Complete Randomization
 - Fully Blocked
 - Observed
- Unobserved

⇝ Fully blocked dominates complete randomization for:
 - imbalance,
 - model dependence,
 - power,
 - efficiency,
 - bias,
 - research costs,
 - robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- Balance
- Covariates:
 - Complete Randomization
 - Fully Blocked
 - Observed
 - Unobserved

\Rightarrow Fully blocked dominates complete randomization for:
- imbalance,
- model dependence,
- power,
- efficiency,
- bias,
- research costs,
- robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

- Complete Randomization
- Fully Blocked
- Observed
- On average
- Exact
- Unobserved
- On average

\Rightarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
</table>

⇝ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!
Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On average, fully blocked randomization dominates complete randomization for:
- imbalance,
- model dependence,
- power,
- efficiency,
- bias,
- research costs,
- robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)
- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM (wait, it gets worse)
Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>On average</td>
</tr>
<tr>
<td>Unobserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\sim **Fully blocked dominates complete randomization**
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ Fully blocked dominates complete randomization for:
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\[\Rightarrow \text{Fully blocked dominates complete randomization for:}\]

imbalance,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ Fully blocked dominates complete randomization for: imbalance, model dependence,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\[\Rightarrow\text{ Fully blocked dominates complete randomization for: imbalance, model dependence, power,} \]
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\leadsto Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

→ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias,
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\[\Rightarrow\text{Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs,}\]
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\leadsto Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇝ **Fully blocked** dominates **complete randomization** for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>On average</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

⇒ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td></td>
</tr>
</tbody>
</table>

⇝ *Fully blocked* dominates *complete randomization* for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: *complete randomization*
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance Covariates:</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

~~ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete Randomization</th>
<th>Fully Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

→ Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM
Matching: Finding Hidden Randomized Experiments

Types of Experiments

<table>
<thead>
<tr>
<th>Balance</th>
<th>Complete</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates:</td>
<td>Randomization</td>
<td>Blocked</td>
</tr>
<tr>
<td>Observed</td>
<td>On average</td>
<td>Exact</td>
</tr>
<tr>
<td>Unobserved</td>
<td>On average</td>
<td>On average</td>
</tr>
</tbody>
</table>

\Rightarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM (wait, it gets worse)
Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)
 - \[\text{Distance}(X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)} \]
 - Mahalanobis is for methodologists; in applications, use Euclidean!
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if \(\text{Distance} > \text{caliper} \)
 - (Many adjustments available to this basic method)

2. Estimation
 - Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - **Distance**(X_c, X_t) = \(\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)} \)

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
 - Distance(X_c, X_t) = $\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}$
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Distance \(X_c, X_t\) = \(\sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}\)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Distance\((X_c, X_t) = \sqrt{(X_c - X_t)^\prime S^{-1}(X_c - X_t)}\)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper

2. **Estimation** Difference in means or a model
Method 1: Mahalanobis Distance Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Distance\((X_c, X_t) = \sqrt{(X_c - X_t)'S^{-1}(X_c - X_t)}\)
 - (Mahalanobis is for methodologists; in applications, use Euclidean!)
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper
 - (Many adjustments available to this basic method)

2. **Estimation** Difference in means or a model
Mahalanobis Distance Matching

![Graph showing data points on a scatter plot with Education (years) on the x-axis and Age on the y-axis. The data points are marked with 'T'.]
Mahalanobis Distance Matching

Education (years)

Age

12 14 16 18 20 22 24 26 28

20

30

40

50

60

70

80

C

C

CC

C

C

C

C

C

CC

C

CC

C

CC

C

C

C

C

CC

C

C

C

C

CC

CC

C

C

T TTT T

T

T

T

T

T

T

T

TT

T

T

T

T

T
Best Case: Mahalanobis Distance Matching
Best Case: Mahalanobis Distance Matching

Age
12 14 16 18 20 22 24 26 28

Education (years)
20 30 40 50 60 70 80

T TTTT T T TTT TT T T TT TTTT T T TTT TT T

C CC C CC CC C CC CCC CC C CCC CCCC C CC CC C CC CCC CCC CC CCC CC CCCC C CCC CC CCC
Best Case: Mahalanobis Distance Matching

![Graph showing age vs. education in years with data points labeled 'T' and 'C'.]
Method 2: Coarsened Exact Matching

1. Preprocess (Matching)
 • Temporarily coarsen X as much as you're willing
 e.g., Education (grade school, high school, college, graduate)
 • Apply exact matching to the coarsened X, $C(X)$
 • Sort observations into strata, each with unique values of $C(X)$
 • Prune any stratum with 0 treated or 0 control units
 • Pass on original (uncoarsened) units except those pruned

2. Estimation
 • Difference in means or a model
 • Weight controls in each stratum to equal treateds
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Temporarily coarsen X as much as you’re willing

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily **coarsen** X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply **exact matching** to the coarsened $X, C(X)$
 - Sort observations into strata, each with unique values of $C(X)$

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply **exact matching** to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess** (Matching)
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. **Estimation** Difference in means or a model
Method 2: Coarsened Exact Matching
(Approximates Fully Blocked Experiment)

1. **Preprocess (Matching)**
 - Temporarily coarsen X as much as you’re willing
 - e.g., Education (grade school, high school, college, graduate)
 - Apply exact matching to the coarsened X, $C(X)$
 - Sort observations into strata, each with unique values of $C(X)$
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned

2. **Estimation** Difference in means or a model
 - Weight controls in each stratum to equal treateds
Coarsened Exact Matching
Coarsened Exact Matching

Education

Old
Retirement
Senior Discounts
The Big 40
Don't trust anyone over 30
Drinking age

HS BA MA PhD 2nd PhD

Senior Discounts

Don't trust anyone over 30

Educations
Best Case: Coarsened Exact Matching
Best Case: Coarsened Exact Matching

Education
Age
12 14 16 18 20 22 24 26 28
20
30
40
50
60
70
80
CC CCC CCC CC CC CCCC CCC CC C C CCCCC CCC CC CC ... C CC C CC CCC CCC CC CCC CC CCCC C CCC CC CCC
T TTTT T T TTT TT T T TT TTTT T T TTT TT T TT TTTT TTT TT TTT TT
TT TT TT

12/23
Best Case: Coarsened Exact Matching

Education vs. Age:

- Education in the range of 12 to 28
- Age in the range of 12 to 80

- Symbols represent data points
- Grid lines indicate intervals
Best Case: Coarsened Exact Matching

[Graph showing data points on a scatter plot with Age on the y-axis and Education on the x-axis. The data points are marked with 'C' and 'T' symbols.]
Method 3: Propensity Score Matching

1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance $> \text{caliper}$

(Many adjustments available to this basic method)
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess** (Matching)
 - Reduce k elements of X to scalar
 $$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-x_i\beta}}$$

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i \beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. **Preprocess (Matching)**
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i \beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused

2. **Estimation** Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i \beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance $>$ caliper

2. Estimation Difference in means or a model
Method 3: Propensity Score Matching
(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
 - Reduce k elements of X to scalar
 \[\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i\beta}} \]
 - Distance(X_c, X_t) = $|\pi_c - \pi_t|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance > caliper
 - (Many adjustments available to this basic method)

2. Estimation Difference in means or a model
Propensity Score Matching

Education (years)

Age

12 16 20 24 28

20

30

40

50

60

70

80

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

T

T
Propensity Score Matching

![Propensity Score Matching Graph]

- **Age** is represented on the y-axis.
- **Education (years)** is represented on the x-axis.
- The graph shows a scatter plot with blue and red lines indicating matching pairs.

The diagram illustrates the matching process for different educational levels and ages, with lines connecting matching pairs. The y-axis represents age, ranging from 10 to 80, while the x-axis represents education (years), ranging from 12 to 29. The plot suggests a method to match subjects based on their propensity scores, aiming to reduce selection bias in observational studies.
Propensity Score Matching

Age

Education (years)

Propensity Score
Propensity Score Matching

Education (years)

Age

12 16 20 24 28
20
30
40
50
60
70
80
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
Best Case: Propensity Score Matching
Best Case: Propensity Score Matching

Education (years)

Age

12 16 20 24 28

Propensity Score

0 1
Best Case: Propensity Score Matching

Education (years)
Age
12 16 20 24 28
20
30
40
50
60
70
80
Score
1
0
Propensity Score
15/23
Best Case: Propensity Score Matching

![Graph showing education vs age with labeled axes]

- Education (years)
- Age

Anne: 12 16 20 24 28
20
30
40
50
60
70
80
C
C
C C
C
C
C
C
C ... TT
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
TT
T
T
T
TT
TT
Best Case: Propensity Score Matching is Suboptimal
Random Pruning Increases Imbalance

- Random pruning: pruning process is independent of X

- Discrete example
 - Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets: 2 balanced $\{M_t, M_c\}$, $\{F_t, F_c\}$, 2 imbalanced $\{M_t, F_c\}$, $\{F_t, M_c\}$
 - \Rightarrow random pruning increases imbalance

- Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 - Random pruning $\Rightarrow n$ declines $\Rightarrow E(d^2)$ increases
 - \Rightarrow random pruning increases imbalance
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- "Random pruning": pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets:
 - 2 balanced: $\{M_t, M_c\}$, $\{F_t, F_c\}$
 - 2 imbalanced: $\{M_t, F_c\}$, $\{F_t, M_c\}$
 - \Rightarrow random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 - Random pruning $\Rightarrow n$ declines $\Rightarrow E(d^2)$ increases
 - \Rightarrow random pruning increases imbalance
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of \(X\)

\[d^2 = \bar{X}_t - \bar{X}_c\]

\[E(d^2) = V(d) \propto 1/n\] (note: \(E(d) = 0\))

\[\text{Random pruning } \Rightarrow n \text{ declines } \Rightarrow E(d^2) \text{ increases}\]

\[\Rightarrow \text{random pruning increases imbalance}\]
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example

Sex-balanced dataset: treated m_t, female f_t, controls m_c, female f_c

Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets: 2 balanced $\{m_t, m_c\}, \{f_t, f_c\}$, 2 imbalanced $\{m_t, f_c\}, \{f_t, m_c\}$

$= \Rightarrow$ random pruning increases imbalance

Continuous example

Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units

Measure of imbalance: squared difference in means d^2, where $d = \bar{x}_t - \bar{x}_c$

$E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)

Random pruning $\Rightarrow n$ declines $\Rightarrow E(d^2)$ increases

$= \Rightarrow$ random pruning increases imbalance
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• **Discrete example**
 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of \(X \)
- **Discrete example**
 - Sex-balanced dataset: treateds \(M_t, F_t \), controls \(M_c, F_c \)
 - Randomly prune 1 treated & 1 control \(\leadsto \) 4 possible datasets:
 - 2 balanced \(\{M_t, M_c\}, \{F_t, F_c\} \)
 - 2 imbalanced \(\{M_t, F_c\}, \{F_t, M_c\} \)
 - \(\leadsto \) random pruning increases imbalance
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X
• Discrete example
 • Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 • Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 • \Rightarrow random pruning increases imbalance

• Continuous example
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- **Discrete example**
 - Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \Rightarrow 4 possible datasets:
 - 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 - 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 - \Rightarrow random pruning increases imbalance
- **Continuous example**
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units

$\Rightarrow E(d^2) = \frac{1}{n}$ (note: $E(d) = 0$)
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- Discrete example
 - Sex-balanced dataset: treated M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control $\xrightarrow{\sim} 4$ possible datasets:
 - 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 - 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 - \Rightarrow random pruning increases imbalance
- Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
Random Pruning Increases Imbalance

Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• **Discrete example**

 • Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c

 • Randomly prune 1 treated & 1 control \rightsquigarrow 4 possible datasets:

 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$

 \implies random pruning increases imbalance

• **Continuous example**

 • Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units

 • Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$

 • $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

• “Random pruning”: pruning process is independent of X

• Discrete example
 - Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control $\sim\mapsto$ 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 - \mapsto random pruning increases imbalance

• Continuous example
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 - Random pruning $\sim\mapsto n$ declines $\sim\mapsto E(d^2)$ increases
Random Pruning Increases Imbalance
Deleting data only helps if you’re careful!

- “Random pruning”: pruning process is independent of X
- **Discrete example**
 - Sex-balanced dataset: treateds M_t, F_t, controls M_c, F_c
 - Randomly prune 1 treated & 1 control \leadsto 4 possible datasets:
 2 balanced $\{M_t, M_c\}, \{F_t, F_c\}$
 2 imbalanced $\{M_t, F_c\}, \{F_t, M_c\}$
 - \implies random pruning increases imbalance
- **Continuous example**
 - Dataset: $T \in \{0, 1\}$ randomly assigned; X any fixed variable; with n units
 - Measure of imbalance: squared difference in means d^2, where $d = \bar{X}_t - \bar{X}_c$
 - $E(d^2) = V(d) \propto 1/n$ (note: $E(d) = 0$)
 - Random pruning $\leadsto n$ declines $\leadsto E(d^2)$ increases
 - \implies random pruning increases imbalance
PSM’s Statistical Properties

1. Low Standards:
 - Sometimes helps, never optimizes
 - Efficient relative to complete randomization, but
 - Inefficient relative to (the more powerful) full blocking
 - Other methods dominate:

\[x_c = x_t \Rightarrow \pi_c = \pi_t \]

but
\[\pi_c = \pi_t \neq \Rightarrow x_c = x_t \]

2. The PSM Paradox:
 - When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning)
 \[\Rightarrow \hat{\pi} \approx 0 \text{ (or constant within strata)} \]
 - \(\Rightarrow \) pruning at random
 - \(\Rightarrow \) imbalance
 - \(\Rightarrow \) inefficency
 - \(\Rightarrow \) model dependence
 - \(\Rightarrow \) bias

- If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
- Doesn’t PSM solve the curse of dimensionality problem?
 - Nope.

The PSM Paradox gets worse with more covariates
- What if I match on a few important covariates and then use PSM?
 - The low standards will be raised some, but the PSM Paradox will kick in earlier
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but

\[
x_c = x_t \Rightarrow \pi_c = \pi_t \neq \pi_t \Rightarrow x_c = x_t
\]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:

\[
x_c = x_t \Rightarrow \pi_c = \pi_t
\]

2. The PSM Paradox:
 - When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning)
 \[
 \Rightarrow \text{all } \hat{\pi} \approx 0.5 \text{ (or constant within strata)}
 \Rightarrow \text{pruning at random}
 \Rightarrow \text{Imbalance}
 \Rightarrow \text{Inefficency}
 \Rightarrow \text{Model dependence}
 \Rightarrow \text{Bias}
 \]
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem?
 Nope.
 - The PSM Paradox gets worse with more covariates
 - What if I match on a few important covariates and then use PSM?
 The low standards will be raised some, but the PSM Paradox will kick in earlier
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \] but
 \[\pi_c = \pi_t \nRightarrow X_c = X_t \]
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[
 X_c = X_t \implies \pi_c = \pi_t \text{ but } \\
 \pi_c = \pi_t \not\implies X_c = X_t
 \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning)
PSM’s Statistical Properties

1. **Low Standards**: Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \]
 \[\pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox**: When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning)
 \[\sim \] all \(\hat{\pi} \approx 0.5 \) (or constant within strata)
PSM’s Statistical Properties

1. **Low Standards**: Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox**: When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \nRightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\rightsquigarrow \text{all } \hat{\pi} \approx 0.5 \) (or constant within strata) \(\rightsquigarrow \text{pruning at random } \rightsquigarrow \text{Imbalance } \rightsquigarrow \text{Inefficiency} \)
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:

 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\sim \) pruning at random \(\sim \) Imbalance \(\sim \) Inefficency \(\sim \) Model dependence
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance \(\leadsto \) Inefficiency \(\leadsto \) Model dependence \(\leadsto \) Bias
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \]
 \[\pi_c = \pi_t \not\implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\sim \) pruning at random \(\sim \) Imbalance \(\sim \) Inefficiency \(\sim \) Model dependence \(\sim \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \nRightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\leadsto \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\leadsto \) pruning at random \(\leadsto \) Imbalance \(\leadsto \) Inefficiency \(\leadsto \) Model dependence \(\leadsto \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem?
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \nleftrightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\implies \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\implies \) pruning at random \(\implies \) Imbalance \(\implies \) Inefficency \(\implies \) Model dependence \(\implies \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope.
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but } \pi_c = \pi_t \implies X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\sim \) pruning at random \(\sim \) Imbalance \(\sim \) Inefficency \(\sim \) Model dependence \(\sim \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[
 X_c = X_t \quad \implies \quad \pi_c = \pi_t \quad \text{but} \\
 \pi_c = \pi_t \quad \not\implies \quad X_c = X_t
 \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\rightsquigarrow \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\rightsquigarrow \) pruning at random \(\rightsquigarrow \) Imbalance \(\rightsquigarrow \) Inefficency \(\rightsquigarrow \) Model dependence \(\rightsquigarrow \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
 - What if I match on a few important covariates and then use PSM?
PSM’s Statistical Properties

1. **Low Standards:** Sometimes helps, never optimizes
 - *Efficient* relative to complete randomization, but
 - *Inefficient* relative to (the more powerful) full blocking
 - Other methods dominate:
 \[X_c = X_t \implies \pi_c = \pi_t \text{ but} \]
 \[\pi_c = \pi_t \nRightarrow X_c = X_t \]

2. **The PSM Paradox:** When you do “better,” you do worse
 - When PSM approximates complete randomization (to begin with or, after some pruning) \(\sim \) all \(\hat{\pi} \approx 0.5 \) (or constant within strata) \(\sim \) pruning at random \(\sim \) Imbalance \(\sim \) Inefficiency \(\sim \) Model dependence \(\sim \) Bias
 - If the data have no good matches, the paradox won’t be a problem but you’re cooked anyway.
 - Doesn’t PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
 - What if I match on a few important covariates and then use PSM? The low standards will be raised some, but the PSM Paradox will kick in earlier
PSM is Blind Where Other Methods Can See
PSM is Blind Where Other Methods Can See
PSM is Blind Where Other Methods Can See

![Graph showing Mahalanobis and Propensity Score distributions with number of dropped obs.]

- The left graph plots X_1 vs X_2 with different symbols representing different conditions.
- The right graphs show histograms of Mahalanobis and Propensity Score, with simulation numbers on the x-axis and number of dropped obs. on the y-axis.
What Does PSM Match?

MDM Matches

PSM Matches

Controls: \(X_1, X_2 \sim \text{Uniform}(0,5) \)
Treateds: \(X_1, X_2 \sim \text{Uniform}(1,6) \)
PSM Increases Model Dependence & Bias

Model Dependence

Bias

\[Y_i = 2T_i + X_{1i} + X_{2i} + \epsilon_i \]

\[\epsilon_i \sim N(0, 1) \]
The Propensity Score Paradox in Real Data
The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

Similar pattern for >20 other real data sets we checked
The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

Similar pattern for > 20 other real data sets we checked
Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do “better,” you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; adjusting experimental data; reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; not switching to other methods.

- A warning for any matching method:
 - Pruning discards information; you must overcome this.
 - Other methods can generate a “paradox” if you prune after approximating full blocking (rare, but possible)
 - If you’re not doing positive good, you may be hurting yourself

- Matching methods still highly recommended; choose one with higher standards
Conclusions

- Why propensity scores should not be used for matching
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
 • The PSM Paradox: When you do “better,” you do worse
Conclusions

- Why propensity scores should not be used for matching
 - Low Standards: sometimes helps, never optimizes
 - The PSM Paradox: When you do “better,” you do worse
 - Some mistakes with PSM:

A warning for any matching method:
- Pruning discards information; you must overcome this.
- Other methods can generate a “paradox” if you prune after approximating full blocking (rare, but possible)
- If you’re not doing positive good, you may be hurting yourself

Matching methods still highly recommended; choose one with higher standards
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
 • The PSM Paradox: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates;
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
 • The PSM Paradox: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data;
Conclusions

- Why propensity scores should not be used for matching
 - Low Standards: sometimes helps, never optimizes
 - The PSM Paradox: When you do “better,” you do worse
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support;
Conclusions

- Why propensity scores should not be used for matching
 - Low Standards: sometimes helps, never optimizes
 - The PSM Paradox: When you do “better,” you do worse
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score;
Conclusions

• Why propensity scores should not be used for matching
 • **Low Standards**: sometimes helps, never optimizes
 • **The PSM Paradox**: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
 • The PSM Paradox: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A warning for any matching method:
Conclusions

• Why propensity scores should not be used for matching
 • **Low Standards**: sometimes helps, never optimizes
 • **The PSM Paradox**: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A warning for any matching method:
 • Pruning discards information; you must overcome this.
Conclusions

• Why propensity scores should not be used for matching
 • **Low Standards**: sometimes helps, never optimizes
 • **The PSM Paradox**: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A warning for any matching method:
 • Pruning discards information; you must overcome this.
 • Other methods can generate a “paradox” if you prune after approximating full blocking (rare, but possible)
Conclusions

- Why propensity scores should not be used for matching
 - **Low Standards**: sometimes helps, never optimizes
 - **The PSM Paradox**: When you do “better,” you do worse
 - Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

- A warning for any matching method:
 - Pruning discards information; you must overcome this.
 - Other methods can generate a “paradox” if you prune after approximating full blocking (rare, but possible)
 - If you’re not doing positive good, you may be hurting yourself
Conclusions

• Why propensity scores should not be used for matching
 • Low Standards: sometimes helps, never optimizes
 • The PSM Paradox: When you do “better,” you do worse
 • Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; 1/4 caliper on propensity score; Not switching to other methods.

• A warning for any matching method:
 • Pruning discards information; you must overcome this.
 • Other methods can generate a “paradox” if you prune after approximating full blocking (rare, but possible)
 • If you’re not doing positive good, you may be hurting yourself

• Matching methods still highly recommended; choose one with higher standards
For more information, papers, & software

GaryKing.org
www.mit.edu/~rnielsen