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1 PSM Approximates Random Matching

In a simple simulation, we provide intuition for how relatively balanced data makes PSM,

but not MDM or CEM, highly sensitive to trivial changes in the covariates, often pro-

ducing nonsensical results that approximate random matching. In the left panel of Figure

1, we generate data with 12 observations and two covariates, with one covariate plotted

by the other. The data are well balanced between treated (black disks) and control (open

circles) units. From these initial data, we generate 10 data sets, where we add to each

of the 12 observations a small amount of random error drawn from a normal distribution

with mean zero and variance 0.001. This error is so small relative to the scale of the co-

variates that the new points are visually indistinguishable from the original points (in fact,

the graph plots all 10 sets of 12 points nearly on top of one another, but it only appears

that one set is there). Next, we run CEM and MDM; in both cases, as we would expect,

the treated units are matched to the nearest control in every one of the 10 data sets (as

portrayed by the pair of points linked by curved solid lines).
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Figure 1: Ten data sets (differing from each other by imperceptibly small amounts of random
error) with 4 treated units (black disks) and 8 control units (open circles). CEM and MDM match
the closest control units to each treated (curved black lines). The two-step procedures match
different control units for each data set, as can be seen for PSM (dashed lines, left panel) and PS-
CEM (dashed lines, right panel). (The four open circles in the middle of the right panel are never
matched; lines are passing through them on the way to show how other points are matched.)
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However, when we run PSM on each of the 10 data sets generated for Figure 1, the

four treated units are each matched to different control units (as portrayed by the maze of

dashed lines connecting the black disks to different open circles). PSM is approximating

random matching in this situation because it is unable to distinguish treated and control

units; it is blind to the space of X that is not represented in π̂.

Finally, we illustrate how the paradox results from PSM’s two-step procedure. We do

this by developing a (similarly unnecessary and ill-advised) two-step “propensity score

CEM” (PS-CEM) algorithm: to do this, we use CEM to compute a nonparametric estimate

of the propensity score (i.e., the proportion of treated units within each coarsened stratum;

see Iacus, King and Porro 2011) and, second, without running CEM as usual, we match

directly on the nonparametric estimate of the propensity score. The right panel in Figure

1 is constructed the same way as the left panel except that instead of the dashed lines

representing propensity score matches, they represent PS-CEM matches. The result is

almost as bad as PSM. The dashed lines in the right panel show how in the different (but

highly similar) data sets, the two-step PS-CEM procedure matches control units (circles)

close to and also distant from treated (closed disks) units. This suggests that ignoring X

and only matching based on the scalar propensity score generates the PSM paradox.

2 Damage Caused In Data Generated to Fit PSM Theory

We now study different types of simulations generated consistent with PSM theory, vary-

ing the number of covariates, levels of imbalance, and matching method.

2.1 Data Generation Processes

We generate data by following Gu and Rosenbaum (1993). Covariates are drawn from

a multivariate normal (meeting the data requirements of EPBR) with variances of 1 and

covariances of 0.2. Data sets with high, medium, and low levels of balance result from

setting the control group mean vector to (0,0,0) and different treated group mean vectors

to (0.1,0.1,0.1), (1,1,1), and (2,2,2), respectively. We draw 250 treated and 250 control

units, which is equivalent for our purposes to generating a larger pool of controls and
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pruning down to 250 to achieve 1-to-1 matching with the treated units. We then prune

from that point by calipering off additional units.

We draw 50 random data sets, for each of the nine combinations of 1, 2, and 3 co-

variates and low, medium, and high levels of imbalance. (Analyses with more covariates

and higher levels of imbalance predictably produce even more dramatic patterns than pre-

sented here and so we do not present them.) For each data set generated, we analyze the

same data with PSM, CEM, and MDM, following the procedures from Section 5.3. We

repeat the procedure for each level of pruning and for each of the 50 data sets, average,

and put a point on a graph we present below. All our results apply to estimating both

SATT and FSATT; for simplicity, we present results here for the latter, which is the most

commonly recommended and used approach.

For the third data generation process, we use the same simulated covariates as above,

but define the treatment assignment vector using a true propensity score equation, and

during estimation use the knowledge of the correct specification. We find nearly identical

results for all three data generation processes, and also when rerunning them with a wide

range of different parameter values; as such we only present results from the first process.

2.2 Results

Figure 2 gives the results for the methods in three rows (PSM, MDM, and CEM from top

to bottom) and different numbers of covariates in separate columns (1,2,3, from left to

right). Each of the nine graphs in the figure gives results from data generated with low

(dotted line), medium (dashed line), and high (solid line) levels of initial imbalance. For

graphical clarity, individual matching solutions do not appear and instead we average over

the 50 simulations in each graph for a given matched sample size and level of imbalance.

The PSM paradox is revealed whenever one of the lines increase from left to right (i.e.,

with imbalance increasing as the number of observations drops).

As expected, the usual curse of dimensionality reduces the performance of all three

matching methods, as can be seen by the level of imbalance increasing from graphs at

the left to the graphs at the right in any one row. Also as expected, the second and third

rows of the Figure 2 show that CEM and MDM do not suffer from the paradox in these
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Figure 2: For PSM, MDM, and CEM in rows, and 1, 2, and 3 covariates in columns, these
graphs give average values from 50 simulations with low (dotted), medium (dashed), and high
(solid) levels of initial imbalance between the treated and control groups. The paradox is revealed
for portions of lines that systematically increase. This can be seen for PSM with more than one
covariate but not for CEM and MDM.



data: for all the lines in all the graphs in these rows, imbalance never increases as more

observations are pruned, just as we would want to be the case.

However, for PSM in the first row, three important patterns emerge, all of which occur

when the propensity score paradox kicks in (where a line changes direction from heading

downward to where it starts heading upwards). First, no paradox emerges with PSM and

one covariate (top left graph) because PSM does no dimension reduction; in this case, the

propensity score is merely a rescaling of a scalar X . Second, the paradox point appears

earlier, that is with fewer observations pruned, the more covariates are included in the

propensity score regression (as we go from left to right in the top row of Figure 2). This

problem is worse for 3 than 2 covariates and, although we do not show it, the paradox

intensifies with more covariates. Third, the paradox kicks in earlier as the data become

more balanced, approximating a completely randomized experiment. This can be seen by

comparing the dotted (well balanced) and solid (least balanced) data in the two graphs at

the top right, and noting that the point where the paradox starts moves to the left for better

balanced data.

3 The Paradox With Other Methods

In the first simulation, we contrive a data set where nature is malicious. We begin by

generating 100 values of a single covariate X deterministically, in pairs along the number

line as X = 1, 2, 4, 5, 7, 8, . . . , 145, 146, 148, 149. We then assign observations with even

values of X to receive treatment and those with odd values to receive control. If we

stopped here, each treated unit would match best to the control observation 1 unit away

and T would be independent of X in sample (and where both treated and control units

of X have a mean of 75). Then to each value of X , we add a tiny amount of jitter

drawn from a uniform on the interval [−0.00001, 0.00001]. This results in some pairs

being slightly better matches than others, although solely due to random jitter. We then

introduce confounding (which can be productively fixed via matching) by taking the three

treated units with the lowest values of X and reassigning them to control, and taking the

three control units with the highest X values and assign them to treatment. For example,
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this creates a substantial difference between the mean value of X for the treated (≈83)

and control (≈67). We generate the outcome variable as Y = T + 0.01X + ε, where

ε ∼ N(0, 1).

The resulting data set has important levels of imbalance (and confounding) due to

the units at the low and high values of X . The rest of the data will have matches that

are effectively at random. The idea is that any method of matching will first prune the

extreme (imbalanced) observations first for good reason and then start pruning at random.

We measure model dependence by first estimating the regression of Y on a constant,

T , and elements of one of the subsets of {X , X2, X3, X4, X5}, and then repeat for all the

other subsets. Then our measure is the range of estimates of the coefficient on T across all

these regressions. Results appear in Figure 3, with model dependence plotted vertically

and the number of treated units pruned by MDM horizontally.
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Figure 3: The Paradox with Mahalanobis Distance Matching

Thus, MDM first prunes the six extreme values of X which causes model dependence

to drop. After that point, when all pairs differ by pure randomness, MDM continues to

prune without accomplishing anything of value. Matching in this way does not overcome

the fact that pruning itself increases imbalance, and so the overall imbalance line starts

heading upward.

For a second illustration, we create a very small data set in high dimensional space

so that points are so far spread out that few good matches are available. This is easy to
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see in MDM since Mahalanobis distances in this situation have the characteristic property

of differing by tiny, essentially random amounts, only after many digits to the right of

the decimal point. Thus, we generate a small data set, n = 200, with k covariates, for

k = 2, 3, 4, 5, 10. For each k, we generate 100 data sets with covariates drawn from

independent standard normals with means drawn from a uniform on the interval [−10, 10].

Then, for units designated as control, we add an independent draw for each covariate from

a normal with mean zero and standard deviation 5.

We then define a setM of linear regression models that includes all possible speci-

fications that include subsets of covariates, squared terms, and interactions, with squared

terms and interactions included only if the main effects are included. We draw one model

from M to define the true data generating process. We use this one true model to gen-

erate Y as a linear function of the treatment times its effect of 100, the covariates with

coefficients drawn from a uniform distribution on the interval of [0,500], a constant term

of 500, and a normal error term with mean 0 and standard deviation 500.

For each of the 100 data sets and each sample size, we run PSM and MDM, using

all main effects only. To compute model dependence for a (matched) data set, we draw

1,000 models from M, estimate the treatment effect for each as the coefficient on the

treatment variable, and then compute the variance across these estimates. In order to have

a comparable measure, the subset of 1,000 models is fixed across all runs (within a fixed

k). We then average the standardized estimates of model dependence within each run,

over the 100 runs, and plot scaled estimates.

Figure 4 gives our results, in parallel to previous figures, so that number of units

pruned is on the horizontal axis and model dependence on the vertical axis. With PSM

in red and MDM in blue, one panel appears for each k. Four patterns are apparent. First,

PSM has higher levels of model dependence than MDM throughout all five graphs. Sec-

ond, the advantage of MDM over PSM increases in all five graphs as more observations

are pruned. Third, the PSM paradox is evident in all five graphs. And finally, a paradox,

with more units pruned leading to higher levels of imbalance, also affects MDM in 10

dimensional space in the last graph (and to some small extent right at the end of the some
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of the others).
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Figure 4: Model Dependence by Number of Covariates, with PSM in red and MDM in
blue.

References
Gu, X.S. and Paul R. Rosenbaum. 1993. “Comparison of multivariate matching meth-

ods: structures, distances, and algorithms.” Journal of Computational and Graphical
Statistics 2:405–420.

Iacus, Stefano M., Gary King and Giuseppe Porro. 2011. “Multivariate Matching Methods
that are Monotonic Imbalance Bounding.” Journal of the American Statistical Associa-
tion 106:345–361. http://gking.harvard.edu/files/abs/cem-math-abs.shtml.

8


	1 PSM Approximates Random Matching
	2 Damage Caused In Data Generated to Fit PSM Theory
	2.1 Data Generation Processes
	2.2 Results

	3 The Paradox With Other Methods
	References

