Letters to the Editor

THE FUTURE OF ECOLOGICAL INFERENCE
RESEARCH: A COMMENT ON FREEDMAN ET AL.

I appreciate the editor’s invitation to reply to the review by Freedman,
Klein, Ostland, and Roberts (1998) of A Solution to the Ecological Infer-
ence Problem: Reconstructing Individual Behavior From Aggregate Data
(King 1997). 1 welcome this scholarly critique and JASA’s decision to
publish in this field. Ecological inference is a large and very important
area for applications that is especially rich with open statistical questions.
I hope that this discussion stimulates much new scholarship. Freedman et
al. (1998) raise several interesting issues, but also misrepresent or misun-
derstand the prior literature, my approach, and their own empirical analy-
ses, and have compounded the problem by refusing requests from me and
the editor to make their data and software available for this note. Some
clarification is thus in order.

I believe that the excitement surrounding the publication of my book
resulted from its unifying in a single statistical approach the insights of
two literatures that had been in open warfare since the 1950s. Unlike
Freedman et al’s (1998) implication, I never claimed that all problems
were resolved in my book (which is why the title referred to “a solution,”
rather than “the solution”). Numerous important issues remain, and much
research is needed. With an area as uncertain and important as ecolog-
ical inference, making available many solutions, formalized as statistical
models, is critical for applied researchers.

Freedman et al. (1998) are right about one point: if one can avoid
making inferences about individuals from aggregate data, then one should
do so. And of course, valid survey data make ecological inferences super-
fluous. Unfortunately, Freedman et al. (1998) do not consider the many
researchers who must make ecological inferences, even when risky. This
position is consistent with the low value that Freedman generally seems
to put on model-based inference, such as in regression analysis for causal
inference (Freedman 1998) or sampling adjustments for the U.S. Census
(Brown et al. 1998), and may explain why Freedman et al. sometimes ap-
pear ambivalent about making ecological inferences even with their own
model (Freedman, Klein, Sacks, Smyth, and Everett 1991, pp. 682, 806).
As statisticians, if they feel uncomfortable with the assumptions, they can
work on other problems or conclude that “surveys offer a better approach”
(p. 701), but many applied researchers have no such options. For example,
implementing the U.S. Voting Rights Act, and thus court decisions about
how to hold democratic elections, requires ecological inferences, because
surveys on race are known to be misleading. Surveys are not available for
most historical questions, such as who voted for the Nazi Party in Weimar
Germany. Ecological inferences are required for preliminary studies in
fields like epidemiology for use in deciding which expensive individual-
level data to collect. They are also essential for such fields as marketing,
education, sociology, political science, and others due to confidentiality or
data limitations. Even when limited survey data are available, ecological
or combined inferences are necessary for studying small geographic areas.

Freedman et al’s (1998) review is primarily concerned with comparing
the method proposed by Freedman et al. (1991) to that in my book (now
known in the literature as EI) and Goodman’s (1953, 1959) regression.
Predictably, Freedman et al. (1991) think that their own approach outper-
forms both competitors. Because some information is lost to aggregation,
it is no surprise that they were able to find examples for which one of the
EI models gives inaccurate answers. Indeed, my book includes a 35-page
section (titled “What Can Go Wrong?”) with far more egregious examples
that they seem to have missed. The question is not whether one can find
data for which a statistical model will perform poorly, as this would be
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easy in almost any area of statistics. The questions instead are how much
information a model uses, how often one can recognize when the model
is inappropriate, and whether the approach suggests other models in these
instances. I show here that EI offers progress in each area.

This is Freedman et al.’s (1998) third attempt at promoting their “neigh-
borhood model,” either in its own right or as a foil to stop others from
making ecological inferences. They introduced it in expert witness tes-
timony, but it was dismissed out of hand [“As such, it is not a reliable
method of inferring group voting behavior,” (Garza et al. v. County of
Los Angeles, 1990, p. 35)], primarily because its key assumption, de-
scribed later, is both unreasonable and untestable. It was offered in the
social sciences but was rejected as “politically naive” (Grofman 1991) and
painting “a picture of America that no one would recognize—because it
does not exist” (Lichtman 1991).

In 1991, both Grofman and Lichtman discovered that Freedman et al.
(1991) presented a biased sample of estimates and datasets that supported
their approach and suppressed the remaining evidence that was contra-
dictory. Freedman et al. did the same in 1998 by reporting estimates of
(minority) Hispanic behavior but suppressing estimates for non-Hispanic
behavior, about which there is typically more information of the type EI
might have extracted. However, their selective presentation cannot be cor-
rected or completed without access to their data. Although we cannot
know how often EI diagnostics could have detected problems with either
their reported or unreported estimates, I show here with simulated data
that match their requirements how EI can help in similar situations.

From 1953 to 1997, the methods of Goodman (1953) and Duncan and
Davis (1953) were the only practical, useful, and thus widely used meth-
ods, despite an active methodological literature. In 1991 Freedman et al.
proposed the neighborhood model as part of an attack on Goodman. But
to my knowledge, this model has never been used in applied research,
and applications of Goodman’s regression did not decline. In contrast, be-
cause it uses more information, allows more palatable assumptions, offers
a range of specifications, and combines existing approaches, EI has seen
use since 1997 in a number of academic disciplines and in industry and
public policy.

BACKGROUND

Following the running example in my book, the ecological inference
problem uses the fraction of persons of voting age who are black (X;)
and who vote (T}; and the total number, N;) to estimate the fraction of
blacks (8?) and whites (3%) who vote in precinct i. A precinct is a voting
booth and its associated geography; p precincts compose a legislative dis-
trict. The secret ballot prevents computing the cross-tabulation directly.
Because precincts have known identities (unlike, say, anonymous survey
respondents), real applications come with considerable qualitative infor-
mation (largely ignored by Freedman et al. 1991).

Since 1953, two hotly contested approaches have dominated the liter-
ature: those following the monumental contributions of Goodman (1953,
1959) and Duncan and Davis (1953). Goodman showed that the ac-
counting identity T; = X;8° + (1 — X;)B¥ holds and gave the as-
sumptions necessary to generate valid estimates of the district-wide frac-
tions of blacks (B® = »_ N;X;8°/> " | N;X;)and whites [B* =

le N;(1 — Xi)ﬂg”/Zle N;(1 — X;)] who vote by a regression
of T; on X; and (1 — X;) with no constant. Its key assumption is
cov(B, X;) = cov(B¥, X;) = 0. Freedman et al’s caricature of Good-
man’s assumption as “constancy” of ﬂf and B} over i is thus wrong (and
easily rejected by the presence of any scatter around a regression line). As
Goodman made clear, his approach reveals no information about whether
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this assumption holds. For example, letting the coefficients B® and BY
each be linear functions of X; produces a quadratic regression (of T; on a
constant, X;, and X;t"), but the resulting three coefficients do not uniquely
identify the four necessary parameters (the intercepts and slopes for B®
and BY). If its assumption is wrong, then estimates from Goodman’s
regression can be wrong and even outside [0,1].

Duncan and Davis’s (1953) approach provides deterministic bounds on
B° and BY narrower than [0,1]: 8¢ € [max(0, {[T; — (1 — X;)]/X:i}),
min(1, (T;/X;))] and similarly for 8}". How much information this pro-
vides depends on the application, but it can be substantial. For example,
if precincts in a scatterplot of X; by T; are uniformly spread over the unit
square, then the average width of the bounds on ﬁf is reduced from [0,1]
to less than one-half that range, hence eliminating 50% of the ecological
inference problem with certainty. The information also varies over 4, so
that we might have 8% € [.1, 4], 8% = .8, 8% € [.5,.6], 8% € [0, 1], and so
on. Each line in what I called a tomography plot [because of the equiva-
lence between ecological inference and certain medical imaging problems;
see Fig. 1(a)] portrays this information in terms of all values of 82 and
B}¥ consistent with X; and T; for precinct i. Ecological inference may
have more uncertainty than other inferences, due to the information lost
to aggregation, but it also offers remarkable certainty for some quantities
of interest.

Freedman et al’s (1991) neighborhood model assumes that ﬂf’ = B
that is, black and white turnouts are equal. This assumption narrows es-
timates of each to T; with a O standard error. (Thus, applying their “Z
score” evaluation to their own model, as they did to El in table 1, indicates
worse performance than all other approaches.) The model could be for-
mulated as approximate with meaningful standard errors, but this has not
been done. Researchers have found this model useless, as it assumes the
answer to the question, for example, of whether black and white turnouts
are equal.

Freedman et al.’s (1991) model is a clever way to restate the indeter-
minacy of the problem: Because T; always falls within the bounds, the
assumption cannot be rejected from the data alone. Precinct estimates
are given by where the corresponding tomography line crosses the 45-
degree diagonal. Among the many other possible untestable assumptions
is Flanigan and Zingale’s earlier (1985) proposal to use the midpoint of
the bounds. The fully general result has been given by King (1997, p.
191): an assumption about the joint density of ,85’ and 3} cannot be re-
jected from the data as long as it has mass over any curve that connects
the bottom left and top right points of a tomography plot. This funda-
mental indeterminacy is one way of expressing the information lost due
to aggregation. (Chap. 3 gives the others.)

THE EI APPROACH

The key feature of EI is that it uses information from statistical, deter-
ministic, diagnostic, and qualitative sources, whereas previous approaches
use only one of the first two. Although supporters of Goodman (1953,
1959) and of Duncan and Davis (1953) have been at each other’s throats
for years, I showed that the two approaches can be combined in a way
that improves on each—first extracting the (often substantial) unit-level
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deterministic information and then statistically borrowing strength to nar-
row in probabilistically within these bounds. This formalizes what the
best applied analysts do informally by applying the unit-level bounds as
post hoc checks on Goodman'’s regression (a key point that Freedman et
al. missed in both 1991 and 1998). The basic EI model has three assump-
tions given X;: (a) ,Bi? and B} are truncated bivariate normal on the unit
square; (b) T; and T/ are independent for all 4 not equal to ¢’; and (c) the
dependence of ,Bf and G} on X; must be assumed or estimated in some
way. The accounting identity and these assumptions imply a likelihood
for T;. Conditioning on T; after estimation yields a joint posterior for 37
and 8 on its tomography line, which can be used to compute posteri-
ors for B® and BV, if desired. [Freedman et al’s (1998) “fiducial twist”
comment misrepresents how these are computed and misunderstands how
they should be computed; they would condition on uncertain point esti-
mates of intermediate parameters, rather than correctly including the full
uncertainty of all quantities.]

Including the Duncan-Davis bounds in a statistical model makes EI
more efficient than Goodman’s method. That it can also make EI more
robust can be shown in several ways, all ignored by Freedman et al. (1998)
but essential in real applications.

1. My Monte Carlo experiments show that many violations of (a) are
unimportant for BY and BY and that violations of (b) are innocuous even
for fairly high levels of spatial correlation. Freedman et al.’s (1998) claim
that EI cannot recover the right parameter values from data simulated from
EI’s model is wrong. The book includes examples to the contrary; I and
others have run numerous other tests; and EI code is free, open, and on
the Web. Clearly, Freedman et al.’s home-grown simulation routines are
in error, but what mistake they have made is a mystery, because, along
with their data, their code is also not available.

2. Suppose that in (c) X; is assumed independent of 8 and 3. Then
as cov(X, Bf) or cov(X;,By) increases from 0, the absolute bias of
Goodman’s regression increases linearly without limit, but for EI it in-
creases linearly at the start, then slows, and finally reaches a maximum
and stops (King 1997, p. 180). How fast the maximum is reached depends
on how informative are the bounds—which is known from the aggregate
data. Thus the risks are knowable ex ante if, unlike Freedman et al. (1998)
one looks before running an analysis. This specification uncertainty should
be added to the computed model uncertainty before drawing conclusions.

3. Because the bounds are used, ﬁf and B} can be functions of X;
without Goodman’s identification problem.

EI also offers several diagnostics. Freedman et al. (1998) are concerned
that I provide no examples that fit their model but not the basic EI model,
and where EI diagnostics reveal the problem with EI. Indeed, the book
does not include such an example, but it is easy to provide one. Lack-
ing their data, I simulated some that meet their requirements. In these
data B, B® is .23, .13, which is estimated by the neighborhood model as
.23, .14 and by the basic EI model [with independence for (c)] as .26, .02
(with standard errors .01, .02). What can be detected without knowing the
true values? Figure 1 provides three diagnostics; by projecting lines onto
the corresponding axis, the tomography plot (a) shows that most precincts
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Figure 1. Some E| Diagnostics. (a) A tomography plot with lines B} = T; / (1-X;) —ﬁ[b X; / (1 —X;) (b) E(T;|X;) with 80% confidence intervals
that do not fit the X;, T; points; and (c) a plot showing evidence that cov(ﬁf.’, Xj) > 0 from the bounds alone.
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provide narrow bounds on ﬁf but wide bounds on most of the 3’s, with
some (in the lower-left corner) providing narrow bounds on both. Mea-
surement error aside, these bounds are assumption-free 100% confidence
intervals (rare in any statistical field); although ignored by Freedman et
al. (1998), precincts with sufficiently narrow bounds can be an immensely
valuable resource for real problems. The district-wide bounds also reflect
a similar pattern, with B € [.14,.26] and B* € [0,.55], and so infer-
ences about B must be more model-dependent than those about BY.
Figure 1(b) shows that E(T;|X;) with 80% confidence intervals do not fit
the X; and T; points, and so something is wrong. Figure 1(c) plots X;
by the (vertical) bounds on ﬁé’, demonstrating that wherever the ﬁf’s fall,
cov(ﬁf, X;) > 0, and so the basic EI model assumption of independence
is rejected. Although no guarantee given the loss of information, a formal
test (ignored by Freedman et al. 1998; see King 1997, p. 178) for whether
X; should be a covariate to control for this correlation is easily passed.
(The coefficient on the covariate is more than five standard errors from
0.) This EI specification gives accurate estimates of .26, .13 with standard
errors .02, .07, and nominal confidence interval coverage of ﬁf, By (for
all 4) at least as wide as the actual coverage.

Because EI keeps the posterior density within the bounds, Figure 1(c)
shows how estimates of ,8;’ and B can be correlated with X; even if
they are a priori independent, an important component of robustness and
model checking. This plot also shows how adding the information from
the Duncan-Davis (1953) bounds can greatly improve the Goodman (1953,
1959) approach, which yields estimates of .41, —.61 and is not even iden-
tified with X; as a covariate.

The diagnostics will not always detect problems, but this example shows
that they are helpful in some data. Whether they would help in Freedman
et al.’s (1998) data is impossible to tell, because Freedman et al. fail to
present most diagnostics, misinterpret warning messages that they gener-
ated by choosing incorrect specifications, use irrelevant tests like whether
the regression of 7; on X is significant, and consider the effects of het-
eroscedasticity where it does not matter much (Bb and BY) but ignore
where it often does matter (ﬂgJ and ,81.“’).

The final source of information that EI uses is qualitative, a critical
source that Freedman et al. (1998) ignore. Because information is lost to
aggregation, the only way to improve inferences after using deterministic
information in X;, 73, and NN; is through external sources. Qualitative in-
formation may include ethnographies, participant observations, intensive
interviews, partial survey data, journalistic accounts, historical studies,
prior quantitative research, detailed information on a few precincts, and
the like—the full range of data collection schemes used in the social sci-
ences. If one is unsure of the answers of a survey respondent, then one
is out of luck. If one is unsure of the results from the precinct or of an
assumption in an ecological inference model, then qualitative information
can be essential. At worst, one can go to the precinct and look around!
The importance of qualitative information has been undervalued in the
statistical literature on this problem, and perhaps even more generally ex-
cept in some discussions of Bayesian analysis. However, it has been a
long-standing concern among social science methodologists and applied
researchers (e.g., King, Keohane, and Verba 1994). The EI approach in-
cludes this information as an integral part of the process of inference, and
the software facilitates this process by allowing priors and many other
specification options. This enables the researcher to add external informa-
tion at numerous points in an analysis. Even if qualitative information led
one to believe that ﬁf = (B} was approximately right, using EI with this
prior would better represent the available information than a degenerate
posterior for each spiked at T; = ,Bf = f;", as Freedman et al. (1998)
recommend.

Letting qualitative information guide model specification is a major de-
viation from Goodman’s (1953, 1959) approach, which for all practical
purposes offers only one option. Unlike the impression left by Freedman
et al. (1998), EI results are not what come spinning out of the software
with all 50+ options set at their defaults. If one is unsure of some assump-
tions, one should evaluate the sensitivity of conclusions to these options.
Valid ecological inferences require considerable thought and evaluation
of the many types of evidence that are available as part of real applica-
tions. Freedman et al. (1998, p. 1521) consider qualitative information
only in their discussion of what covariates to use, but instead of doing the
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hard qualitative research themselves, they try only a sample of variables
listed in one passage in my book (King 1997, p. 171). However, they
neglect to mention that these variables were not uncovered by my qual-
itative research; indeed, I was merely quoting from their 1991 work, in
which they offered qualitative justification for why unit-level parameters
should vary over ¢ as in their neighborhood model. Apparently, their 1998
analyses demonstrate that their 1991 justifications were wrong. Quali-
tative information is essential in ecological inferences, but it is valuable
only if, as for quantitative data, substantial care and thought goes into its
collection.

El AND CHALLENGES FOR
STATISTICAL RESEARCH

Goodman’s regression works when its assumptions hold but not oth-
erwise. No information exists within this framework to tell whether its
assumptions are right or wrong. In contrast, under EI we now have five
scenarios, only the last of which is a problem:

1. If the assumptions are correct, then one gets the right answer (e.g.,
King 1997, chaps. 9 and 10).

2. If the assumptions are wrong, then EI still does “well” (in the sense
of mean squared error or absolute bias) when the bounds are sufficiently
informative; the degree to which the bounds are informative can easily be
assessed from the aggregate data, and so the risks are known ex ante (e.g.,
King 1997, chap. 11). Informative bounds improve inferences whether or
not Goodman’s model would have given estimates outside [0, 1].

3. If the assumptions are wrong, and the bounds are not sufficiently
informative but the diagnostics are, then the assumptions can be changed
and EI will do well (e.g., Fig. 1 herein and King 1997, pp. 176-180, 187,
195, 238). )

4. If the basic assumptions are wrong and the bounds and diagnostics
are not sufficiently informative, but the researcher has additional qualita-
tive knowledge, then more appropriate assumptions can be chosen. Then
either EI will do well, or the formal measures of uncertainty produced
by EI (which are conditional on the model) can be supplemented and ex-
panded accordingly.

5. If the assumptions are wrong and the bounds and diagnostics are not
sufficiently informative, and the researcher has no time to collect qualita-
tive information, then EI will perform poorly (e.g., King 1997, fig. 9.2).
Even in this worst-case scenario, EI will be more robust than the Goodman
approach, because the maximum bias from EI is fixed and knowable.

The odds of Scenarios 1-4 occurring relative to 5 (as compared to the
odds of the assumptions applying versus not applying under Goodman’s
approach) summarize the advantages of EI. Thus EI chips pieces off of
Goodman’s worst case (the assumptions not applying). The benefits of EI
are thus application dependent, but known ex ante.

I believe that EI is popular among researchers making ecological in-
ferences because it uses more information—building on the fundamental
approaches of both Goodman (1953, 1958) and Duncan—Davis (1953), in-
cluding diagnostics that can often detect when assumptions are wrong, and
adding a large range of models to the researcher’s toolkit so that quali-
tative information can be included and sensitivity to assumptions can be
assessed. In a word, more information is better. The neighborhood model
is a useful reminder about indeterminacies and uncertainties in ecological
inference, but it is untestable, and its assumption is unacceptable to applied
researchers. Although methodologists have begun to build on the EI ap-
proach with hierarchical modeling (King, Rosen, and Tanner 1999), faster
method of moment estimators (Lewis 1998), extensions to panel infer-
ence from independent cross-sectional surveys (Schuessler and Penubarti
1997), and nonparametric models (Rivers 1998), applied researchers in
many fields could benefit from other developments. Some open issues in-
clude quantitative diagnostics, model selection, flexible distributional and
functional form specifications, tractable extensions to multiple category
and continuous individual-level variables, models for survey and ecologi-
cal data, spatial autocorrelation, and the types of nonrandom measurement
error common in ecological data. For statisticians willing to help the nu-
merous researchers working on a diverse array of important problems with
ecological data, many opportunities remain.

Gary KING
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RESPONSE TO KING'S COMMENT

King (1999) has replied to our review of his book. After summarizing
the issues, we will respond to the main points and a few of the minor
ones. The book proposes a method for ecological inference (EI) and makes
claims about its validity. According to King, his model provides realistic
estimates of uncertainty, with diagnostics capable of detecting failures
in assumptions. He also claims that the model is robust even when the
assumptions are wrong.

In our review (Freedman, Klein, Ostland, and Roberts 1998) we showed
by example that claims are seriously exaggerated. King’s method works
if its assumptions hold; if assumptions fail, estimates are unreliable, as are
internally generated estimates of uncertainty. Diagnostics cannot distin-
guish between cases where his model works and where it fails.

MODEL COMPARISONS

Our review compared King’s method to ecological regression and the
neighborhood model. In our test data, the neighborhood model was the
most accurate, whereas King’s method was no better than the ecological
regression. To implement King’s method, we used his software package
EZIDOS, which we downloaded from his web site. For a brief description
of the EI and EZIDOS software packages, see King (1997 p. xix).
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King (1999, p. 352) contends that we (1) used a biased sample of
datasets and (2) suppressed “estimates for non-Hispanic behavior, about
which there is typically more information of the type EI [King’s method]
would have extracted.” Grofman (1991) and Lichtman (1991) are cited to
support claim (1). Our answer is simple: we used the data that we had. Of
course, Grofman and Lichtman made other arguments, too; our response
is in Freedman et al. (1991).

We turn to point (2). It is not clear what sort of additional information
would be available to King for non-Hispanics. Moreover, the neighbor-
hood model and King’s method get totals right for each geographical unit;
thus any error on the Hispanic side must be balanced by an error of the
same size but the opposite sign on the non-Hispanic side. (It is errors in
the counts that balance; for ecological regression with unit weights, the
balance is only approximate.) In short, King’s method is unlikely to do
better on non-Hispanics than it does on Hispanics.

Empirical proof will be found in Tables 1 and 2, which show results
on non-Hispanics for the real datasets considered in our review. (Arti-
ficial data will be discussed later.) These tables and similar ones in our
review show King’s method to be inferior to the neighborhood model, for
non-Hispanics as well as for Hispanics. Surprisingly, in the Los Angeles
data, the results in Table 1 show that his method is inferior to ecological
regression. .

King (1997) tried his model on five datasets. These are not readily
available, but we were able to get one of them—poverty status by sex in
South Carolina block groups—directly from the U.S. Census Bureau. We
ran the three ecological inference procedures on this dataset (Tables 1 and
2). King’s method succeeds only in the sense that the estimate is within
1.1 standard errors of truth; the neighborhood model comes much closer
to the mark, both for men and women. Where comparisons are feasible,
the neighborhood model was more accurate than King’s method on the
real datasets, even in his own South Carolina example.

King (1999, p. 352) states that the neighborhood model is not a reliable
method of inferring the behavior of subgroups from aggregate data; it is
unreasonable, politically naive, and paints “a picture of America that no
one would recognize” We would make two points in response: (1) the
neighborhood model demonstrates that ecological inferences are driven
largely by assumptions and not by data, a point that King almost concedes
(1999, p. 354), and (2) the neighborhood model outperforms the compe-
tition, including King’s method. If King’s method does not perform as
well as the neighborhood model, then his model cannot be described as
reasonable, reliable, or politically savvy.

Diagnostics

King contends (1999, p. 352) that we (1) “misinterpret warning mes-
sages ... generated by choosing incorrect specifications,” and (2) “use
irrelevant tests like whether the regression of 7; on X; is significant ...”
(In the South Carolina example, T; would be the fraction of persons in
block group 7 who are below the poverty line, and X; would be the frac-
tion of persons in that block group who are male.) Both points simply
misread what we wrote. With respect to (1), we interpreted the warning
messages as evidence of specification error. With respect to (2), consider
for instance Figure 1(b) in our review. The vertical axis shows p; not T3,
an estimated propensity for a group rather than an observed fraction. This
figure is one of King’s “bias plots” (King 1997, p. 183). The issue is the
regression of p; on X, not the regression of 7; on X;. The bottom line is
that King’s diagnostics raise warning flags even when his standard errors
are reasonable, as in the Stockton results; equally, diagnostics are passed
when the method fails, as in the Los Angeles results.

We now consider diagnostics for King’s South Carolina data. Figure
1, (a) and (b), plots for each block group the estimated fractions of men
and women in poverty against the fraction of men. (Every tenth block
group is shown; estimates are computed by using King’s software pack-
age EZIDOS.) The regression line for men has a shallow but statistically
significant slope; the line for women falls quite steeply. King’s assumption
of independent and identically distributed propensities is strongly rejected
by the data. Likewise, the warning messages point to specification error:

Warning: Some bounds are very far from distri-
bution mean. Forcing 2163 simulations to their
closest bound.





