Statistically Valid Inferences from Privacy Protected Data

Gary King

Institute for Quantitative Social Science
Harvard University

University of Chicago, 11/8/2019

1Joint work with Georgina Evans, Margaret Schwenzfeier, Abhradeep Thakurta.
2GaryKing.org/dp
Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
Convincing Facebook to Make Data Available

• Gary visits Facebook to persuade them to make data available

• In my hotel room packing, email arrives: “Hey what do we do about this?”

 This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)

• 3 days later: “Could you do a study of the 2016 election?”

• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)

• We iterate, and I propose a 2-part solution
 • Outside academics: send proposals, no company veto
 • Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges

• Problem solved, without balancing agreements, announcements, funding, 30+ people assigned at Facebook

• Just one issue: Facebook’s implementation plan was illegal!

• New Problem: Sharing data without it leaving Facebook
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?”
 This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
 I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
• We iterate, and I propose a 2-part solution
 • Outside academics: send proposals, no company veto
 • Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
• Problem solved, without balancing ⇝ agreements, announcements, funding, 30+ people assigned at Facebook
• Just one issue: Facebook’s implementation plan was illegal!
• New Problem: Sharing data without it leaving Facebook
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available

In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)

3 days later: “Could you do a study of the 2016 election?”

I’d love to, but I need 2 things & you’ll only give me 1:

- Complete access to data, people, etc. (like employees)
- No pre-publication approval (like NO employees ever)

We iterate, and I propose a 2-part solution

- Outside academics: send proposals, no company veto
- Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges

Problem solved, without balancing ⇝ agreements, announcements, funding, 30+ people assigned at Facebook

New Problem: Sharing data without it leaving Facebook
Convincing Facebook to Make Data Available
Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?”
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica.
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
- 3 days later: “Could you do a study of the 2016 election?”
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
- 3 days later: “Could you do a study of the 2016 election?”
- I’d love to, but I need 2 things & you’ll only give me 1:

 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)

We iterate, and I propose a 2-part solution

- Outside academics: send proposals, no company veto
- Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges

Problem solved, without balancing ⇝ agreements, announcements, funding, 30+ people assigned at Facebook

- Facebook’s implementation plan was illegal!

- New Problem: Sharing data without it leaving Facebook
Convincing Facebook to Make Data Available
Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
Convincing Facebook to Make Data Available
Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
• We iterate, and I propose a 2-part solution
Convincing Facebook to Make Data Available
Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
- 3 days later: “Could you do a study of the 2016 election?”
- I’d love to, but I need 2 things & you’ll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)
- We iterate, and I propose a 2-part solution
 - Outside academics: send proposals, no company veto
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
• We iterate, and I propose a 2-part solution
 • Outside academics: send proposals, no company veto
 • Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • **Complete access** to data, people, etc. (like employees)
 • **No pre-publication approval** (like NO employees ever)
• We iterate, and I propose a 2-part solution
 • **Outside academics:** send proposals, no company veto
 • **Trusted 3rd party:** Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
• **Problem solved,** without balancing ↔ agreements, announcements, funding, 30+ people assigned at Facebook
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
- 3 days later: “Could you do a study of the 2016 election?”
- I’d love to, but I need 2 things & you’ll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)
- We iterate, and I propose a 2-part solution
 - Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
- Problem solved, without balancing agreements, announcements, funding, 30+ people assigned at Facebook
- Just one issue:
Convincing Facebook to Make Data Available

Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
• We iterate, and I propose a 2-part solution
 • Outside academics: send proposals, no company veto
 • Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
• Problem solved, without balancing ⇝ agreements, announcements, funding, 30+ people assigned at Facebook
• Just one issue: Facebook’s implementation plan was illegal!
Convincing Facebook to Make Data Available
Solving a Political Problem Technologically (via “constitutional design”)

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do about this?” This was Cambridge Analytica. (The worst timed lobby effort in history! Time to go home.)
• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:
 • Complete access to data, people, etc. (like employees)
 • No pre-publication approval (like NO employees ever)
• We iterate, and I propose a 2-part solution
 • Outside academics: send proposals, no company veto
 • Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
• Problem solved, without balancing agreements, announcements, funding, 30+ people assigned at Facebook
• Just one issue: Facebook’s implementation plan was illegal!
• New Problem: Sharing data without it leaving Facebook
Data Sharing Regime \leadsto Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- Data Access Regime
 - Trusted server holds data; researchers as adversaries can run any method \leadsto noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)

- New Problem: Most DP algorithms are statistically invalid!
 - Unknown statistical properties (usually biased)
 - No uncertainty estimates
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

• Data Sharing Regime: I give you data (maybe you sign DUA)
 • Venerable, but failing
 • Increasing public concern with privacy
 • Scholars discovered: de-identification doesn’t work!
 • Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 • Trusting researchers fails spectacularly at times (C.A.!!)
 • Even trusting a researcher known to be trustworthy can fail

• Data Access Regime
 • Trusted server holds data; researchers as adversaries, can run any method \Rightarrow noisy answer, a limited number of times
 • Goal: impossible to violate individual privacy; & possible to discover population level patterns
 • \approx differential privacy (seems to satisfy regulators et al.)

• New Problem: Most DP algorithms are statistically invalid!
 • Unknown statistical properties (usually biased)
 • No uncertainty estimates
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)

 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!) Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**: Trusted server holds data; researchers as adversaries, can run any method \implies noisy answer, a limited number of times

 - Goal: impossible to violate individual privacy; possible to discover population level patterns

 - \approx differential privacy (seems to satisfy regulators et al.)

- New Problem: Most DP algorithms are statistically invalid!
 - Unknown statistical properties (usually biased)
 - No uncertainty estimates
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)

- **Data Access Regime**
Data Sharing Regime \(\leadsto\) Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but *failing*

- **Data Access Regime**

\[\approx\] differential privacy (**seems to satisfy regulators et al.**)
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy

- **Data Access Regime**
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!

- **Data Access Regime**
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does

- **Data Access Regime**
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation,

- **Data Access Regime**
Data Sharing Regime ⟷ Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing,

- **Data Access Regime**
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms,

- **Data Access Regime**
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements,

- **Data Access Regime**
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but *failing*
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing,

- **Data Access Regime**
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models,

- **Data Access Regime**
Data Sharing Regime \(\rightsquigarrow\) Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime:** I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.

- **Data Access Regime**

Solving Political Problems Technologically
Data Sharing Regime \(\leadsto\) Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime:** I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)

- **Data Access Regime**
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A. !)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data;
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

• **Data Sharing Regime**: I give you data (maybe you sign DUA)
 • Venerable, but failing
 • Increasing public concern with privacy
 • Scholars discovered: de-identification doesn’t work!
 • Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 • Trusting researchers fails spectacularly at times (C.A.!
 • Even trusting a researcher known to be trustworthy can fail

• **Data Access Regime**
 • Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer,
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times

\[\text{Goal: impossible to violate individual privacy; & possible to discover population level patterns} \]

\[\approx \text{differential privacy (seems to satisfy regulators et al.)} \]

\[\text{New Problem: Most DP algorithms are statistically invalid!} \]

\[\text{unknown statistical properties (usually biased)} \]

\[\text{no uncertainty estimates} \]
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but *failing*
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times

- **Goal**:
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \leadsto noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy
Data Sharing Regime \implies Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but **failing**
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \implies noisy answer, a limited number of times
 - **Goal**: Impossible to violate individual privacy; & possible to discover population level patterns
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)
 - **New Problem:**
Data Sharing Regime \Leftrightarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

• **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

• **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \Leftrightarrow noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)
 - **New Problem**: Most DP algorithms are statistically invalid!
Data Sharing Regime \leadsto Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime**: I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \leadsto noisy answer, a limited number of times
 - **Goal**: impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)
 - **New Problem**: Most DP algorithms are statistically invalid!
 - **unknown** statistical properties (usually *biased*)
Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

- **Data Sharing Regime:** I give you data (maybe you sign DUA)
 - Venerable, but failing
 - Increasing public concern with privacy
 - Scholars discovered: de-identification doesn’t work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!
 - Even trusting a researcher known to be trustworthy can fail

- **Data Access Regime**
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times
 - **Goal:** impossible to violate individual privacy; & possible to discover population level patterns
 - \approx differential privacy (seems to satisfy regulators et al.)
 - **New Problem:** Most DP algorithms are statistically invalid!
 - unknown statistical properties (usually biased)
 - no uncertainty estimates
Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Quantity of Interest</th>
<th>Mean Income</th>
<th>Noise & Censoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrey</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgie</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gary</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meg</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abhradeep</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anya</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greg</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
</tr>
<tr>
<td>Andrey</td>
</tr>
<tr>
<td>Georgie</td>
</tr>
<tr>
<td>Gary</td>
</tr>
<tr>
<td>Meg</td>
</tr>
<tr>
<td>Abhradeep</td>
</tr>
<tr>
<td>Ella</td>
</tr>
<tr>
<td>Anya</td>
</tr>
<tr>
<td>Greg</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean income:</td>
</tr>
<tr>
<td>$48</td>
</tr>
</tbody>
</table>
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>✔</td>
</tr>
<tr>
<td>Andrey</td>
<td>✔</td>
</tr>
<tr>
<td>Georgie</td>
<td>✔</td>
</tr>
<tr>
<td>Gary</td>
<td>✔</td>
</tr>
<tr>
<td>Meg</td>
<td>✔</td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✔</td>
</tr>
<tr>
<td>Ella</td>
<td>✔</td>
</tr>
<tr>
<td>Anya</td>
<td>✔</td>
</tr>
<tr>
<td>Greg</td>
<td>✔</td>
</tr>
<tr>
<td>Max</td>
<td>✔</td>
</tr>
</tbody>
</table>

Mean income: $48
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>✓</td>
<td>76</td>
</tr>
<tr>
<td>Andrey</td>
<td>✓</td>
<td>96</td>
</tr>
<tr>
<td>Georgie</td>
<td>✓</td>
<td>145</td>
</tr>
<tr>
<td>Gary</td>
<td>✓</td>
<td>122</td>
</tr>
<tr>
<td>Meg</td>
<td>✓</td>
<td>86</td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✓</td>
<td>127</td>
</tr>
<tr>
<td>Ella</td>
<td>✓</td>
<td>72</td>
</tr>
<tr>
<td>Anya</td>
<td>✓</td>
<td>132</td>
</tr>
<tr>
<td>Greg</td>
<td>✓</td>
<td>95</td>
</tr>
<tr>
<td>Max</td>
<td>✓</td>
<td>134</td>
</tr>
</tbody>
</table>

Mean income: $48

Classical Inference $108

Quantity of Interest

Usually no direct relevance
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>✓</td>
<td>76</td>
</tr>
<tr>
<td>Andrey</td>
<td>✓</td>
<td>96</td>
</tr>
<tr>
<td>Georgie</td>
<td>✓</td>
<td>145</td>
</tr>
<tr>
<td>Gary</td>
<td>✓</td>
<td>122</td>
</tr>
<tr>
<td>Meg</td>
<td>✓</td>
<td>86</td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✓</td>
<td>127</td>
</tr>
<tr>
<td>Ella</td>
<td>✓</td>
<td>72</td>
</tr>
<tr>
<td>Anya</td>
<td>✓</td>
<td>132</td>
</tr>
<tr>
<td>Greg</td>
<td>✓</td>
<td>95</td>
</tr>
<tr>
<td>Max</td>
<td>✓</td>
<td>134</td>
</tr>
</tbody>
</table>

Mean income:
- Classical Inference: $48
- Privacy Protected Data: $108

Quantity of Interest

Usually no direct relevance
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>$</th>
<th>+Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>✓</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Andrey</td>
<td>✓</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Georgie</td>
<td>✓</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Gary</td>
<td>✓</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Meg</td>
<td>✓</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✓</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Ella</td>
<td>✓</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Anya</td>
<td>✓</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Greg</td>
<td>✓</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>✓</td>
<td>134</td>
<td></td>
</tr>
</tbody>
</table>

Mean income:

- Classical Inference: $48
- Usually no direct relevance
- $108

Noise & Censoring

- Quantity of Interest

Differential Privacy & Inferential Validity
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>Quantity of Interest</th>
<th>$ +Privacy</th>
<th>=dp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>✗</td>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Mary</td>
<td>✓</td>
<td></td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td>Andrey</td>
<td>✓</td>
<td></td>
<td>96</td>
<td>103</td>
</tr>
<tr>
<td>Georgie</td>
<td>✓</td>
<td></td>
<td>145</td>
<td>75</td>
</tr>
<tr>
<td>Gary</td>
<td>✓</td>
<td></td>
<td>122</td>
<td>113</td>
</tr>
<tr>
<td>Meg</td>
<td>✓</td>
<td></td>
<td>86</td>
<td>125</td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✓</td>
<td></td>
<td>127</td>
<td>97</td>
</tr>
<tr>
<td>Ella</td>
<td>✓</td>
<td></td>
<td>72</td>
<td>101</td>
</tr>
<tr>
<td>Anya</td>
<td>✓</td>
<td></td>
<td>132</td>
<td>128</td>
</tr>
<tr>
<td>Greg</td>
<td>✓</td>
<td></td>
<td>95</td>
<td>83</td>
</tr>
<tr>
<td>Max</td>
<td>✓</td>
<td></td>
<td>134</td>
<td>201</td>
</tr>
</tbody>
</table>

Mean income:

- Classical Inference: 48
- Query-Response: 108
- Differential Privacy: 111

Notes:
- **Population:** Usually no direct relevance
- **Sample:** Usually no direct relevance
- **Noise & Censoring:** No direct relevance

Differential Privacy & Inferential Validity
Theories of Inference: Statistics vs. CS

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample</th>
<th>$</th>
<th>+Privacy</th>
<th>=dp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>✓</td>
<td>76</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Andrey</td>
<td>✓</td>
<td>96</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Georgie</td>
<td>✓</td>
<td>145</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Gary</td>
<td>✓</td>
<td>122</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Meg</td>
<td>✓</td>
<td>86</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Abhradeep</td>
<td>✓</td>
<td>127</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>Ella</td>
<td>✓</td>
<td>72</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Anya</td>
<td>✓</td>
<td>132</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>Greg</td>
<td>✓</td>
<td>95</td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>Max</td>
<td>✓</td>
<td>134</td>
<td></td>
<td>201</td>
</tr>
</tbody>
</table>

Mean income: $48 \rightarrow \text{Classical Inference} \rightarrow \$108 \rightarrow \text{Query-Response} \rightarrow \$111

Statistically Valid Inferences from Privacy Protected Data
Differential Privacy and its Inferential Challenges

- Estimators
 - Classical Statistics: Apply statistic $s(D)$ to dataset D
 - DP Mechanism: $M(s, D)$, with noise & censoring

- Essential components of ensuring privacy
- Fundamental problems for statistical inference

- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

 $\Pr[M(s, D) = m] \in (1 \pm \epsilon)$ for all D, D', m

- Examples
 - All proven to protect the biggest possible outlier

 $M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N(0, 4\Lambda n \epsilon)$
 - Or: mess with gradients, $X'_i X_i$, data, QOIs, etc.

- Statistical properties: usually biased, no uncertainty estimates
Differential Privacy and its Inferential Challenges

• Estimators
Differential Privacy and its Inferential Challenges

- **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
Differential Privacy and its Inferential Challenges

• **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with noise & censoring
Differential Privacy and its Inferential Challenges

• **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
Differential Privacy and its Inferential Challenges

- **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference
Differential Privacy and its Inferential Challenges

- **Estimators**
 - Classical Statistics: Apply statistic s to dataset D, $s(D)$
 - DP Mechanism: $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference

- The DP Standard
Differential Privacy and its Inferential Challenges

- **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with *noise & censoring*
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference

- **The DP Standard**
 - Including (D) or excluding (D') you doesn’t change conclusions

\[
\frac{\Pr[M(s, D) = m]}{\Pr[M(s, D') = m]} \in (1 \pm \epsilon)
\]

for all D, D', m
Differential Privacy and its Inferential Challenges

• **Estimators**
 - **Classical Statistics**: Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism**: $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference

• **The DP Standard**
 - Including (D) or excluding (D') you doesn’t change conclusions
 \[
 \frac{\Pr[M(s, D) = m]}{\Pr[M(s, D') = m]} \in (1 \pm \epsilon)
 \]
 for all D, D', m
 - **Examples** all proven to protect the biggest possible outlier
Differential Privacy and its Inferential Challenges

• **Estimators**
 - Classical Statistics: Apply statistic s to dataset D, $s(D)$
 - DP Mechanism: $M(s, D)$, with noise & censoring
 • Essential components of ensuring privacy
 • Fundamental problems for statistical inference

• **The DP Standard**
 - Including (D) or excluding (D') you doesn’t change conclusions
 \[
 \frac{\Pr[M(s, D) = m]}{\Pr[M(s, D') = m]} \in (1 \pm \epsilon)
 \]
 for all D, D', m

• **Examples** all proven to protect the biggest possible outlier
 - $M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N\left(0, \frac{4\Lambda}{n\epsilon}\right)$
Differential Privacy and its Inferential Challenges

- **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference

- **The DP Standard**
 - Including (D) or excluding (D') you doesn’t change conclusions

\[
\frac{\Pr[M(s, D) = m]}{\Pr[M(s, D') = m]} \in (1 \pm \epsilon)
\]

for all D, D', m

- **Examples** all proven to protect the biggest possible outlier
 - $M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N\left(0, \frac{4\Lambda}{n\epsilon}\right)$
 - Or: mess with gradients, $X_i'X_i$, data, QOIs, etc.
Differential Privacy and its Inferential Challenges

- **Estimators**
 - **Classical Statistics:** Apply statistic s to dataset D, $s(D)$
 - **DP Mechanism:** $M(s, D)$, with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference

- **The DP Standard**
 - Including (D) or excluding (D') you doesn’t change conclusions
 \[
 \frac{\Pr[M(s, D) = m]}{\Pr[M(s, D') = m]} \in (1 \pm \epsilon)
 \]
 for all D, D', m

- **Examples** all proven to protect the biggest possible outlier
 - $M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N \left(0, \frac{4\Lambda}{n\epsilon} \right)$
 - Or: mess with gradients, $X_i'X_i$, data, QOIs, etc.

- **Statistical properties:** usually biased, no uncertainty estimates
Properties of Differential Privacy

- Post-processing: if $M(s, D)$ is DP, so is $f[M(s, D)]$.

- Useful for bias corrections.

- Average privacy loss \ll maximum privacy loss.

- Privacy risk quantified (ϵ), instead of 0/1 for re-ID.

- Risk for small groups (k) drops linearly, $k\epsilon$.

- Composition: ϵ_1-DP and ϵ_2-DP is $(\epsilon_1 + \epsilon_2)$-DP.

- Privacy Budget:
 - Can sum and limit risks across analyses & researchers.
 - When the budget is used, no new analyses can ever be run.
Properties of Differential Privacy

- **Post-processing:** if $M(s, D)$ is DP, so is $f[M(s, D)]$
Properties of Differential Privacy

- **Post-processing**: if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections

Average privacy loss \ll maximum privacy loss

Privacy risk quantified (ϵ), instead of 0/1 for re-ID

Risk for small groups (k) drops linearly, $k\epsilon$

Composition: ϵ_1-DP and ϵ_2-DP is $(\epsilon_1 + \epsilon_2)$-DP

Privacy Budget

- Can sum and limit risks across analyses & researchers
- When the budget is used, no new analyses can ever be run
Properties of Differential Privacy

- **Post-processing**: if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections
- **Average privacy loss** \ll **maximum privacy loss**
Properties of Differential Privacy

- **Post-processing:** if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections
- **Average privacy loss** \ll maximum privacy loss
- **Privacy risk quantified** (ϵ), instead of 0/1 for re-ID
Properties of Differential Privacy

- **Post-processing:** if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections
- **Average privacy loss** \ll **maximum privacy loss**
- **Privacy risk quantified** (ϵ), instead of 0/1 for re-ID
- **Risk for small groups** (k) drops linearly, $k\epsilon$
Properties of Differential Privacy

- **Post-processing**: if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections
- **Average privacy loss** \ll **maximum privacy loss**
- **Privacy risk quantified** (ϵ), instead of 0/1 for re-ID
- **Risk for small groups** (k) drops linearly, $k\epsilon$
- **Composition**: ϵ_1-DP and ϵ_2-DP is $(\epsilon_1 + \epsilon_2)$-DP
Properties of Differential Privacy

• **Post-processing:** if \(M(s, D) \) is DP, so is \(f[M(s, D)] \)
 - Useful for bias corrections

• **Average privacy loss** \(\ll \) maximum privacy loss

• **Privacy risk quantified** \((\epsilon) \), instead of 0/1 for re-ID

• **Risk for small groups** \((k) \) drops linearly, \(k\epsilon \)

• **Composition:** \(\epsilon_1\)-DP and \(\epsilon_2\)-DP is \((\epsilon_1 + \epsilon_2)\)-DP

• **Privacy Budget**
Properties of Differential Privacy

- **Post-processing**: if $M(s, D)$ is DP, so is $f[M(s, D)]$
 - Useful for bias corrections
- **Average privacy loss** \ll **maximum privacy loss**
- **Privacy risk quantified** (ϵ), instead of 0/1 for re-ID
- **Risk for small groups** (k) drops linearly, $k\epsilon$
- **Composition**: ϵ_1-DP and ϵ_2-DP is $(\epsilon_1 + \epsilon_2)$-DP
- **Privacy Budget**
 - Can sum and limit risks across analyses & researchers
Properties of Differential Privacy

- **Post-processing:** if \(M(s, D) \) is DP, so is \(f[M(s, D)] \)
 - Useful for bias corrections
- **Average privacy loss** \(\ll \) **maximum privacy loss**
- **Privacy risk quantified** (\(\epsilon \)), instead of 0/1 for re-ID
- **Risk for small groups** (\(k \)) drops linearly, \(k\epsilon \)
- **Composition:** \(\epsilon_1 \)-DP and \(\epsilon_2 \)-DP is \((\epsilon_1 + \epsilon_2) \)-DP
- **Privacy Budget**
 - Can sum and limit risks across analyses & researchers
 - When the budget is used, **no new analyses can ever be run**
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or "multiple comparison" corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • Must plan data analyses carefully!

• Risks
 • No differential privacy: no data access or privacy at risk
 • No inferential validity: incorrect scientific conclusions, medical & policy advice; society and individuals at risk

⇝ We need both DP and inferential validity
DP: Completely Changes Statistical Best Practices

- Normally we try to avoid being fooled by:
 - Data problems
 - by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 - Researcher biases
 - avoiding p-hacking via preregistration or "multiple comparison" corrections
 - With DP:
 - p-hacking avoided almost automatically
 - Little opportunity to explore data, run diagnostics, etc.
 - Lower probability of serendipitous discovery
 - Higher probability of being fooled by data
 - Must plan data analyses carefully!

Risks
- No differential privacy:
 - no data access or privacy at risk
- No inferential validity:
 - incorrect scientific conclusions, medical & policy advice; society and individuals at risk

We need both DP and inferential validity
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems
DP: Completely Changes Statistical Best Practices

- Normally we try to avoid being fooled by:
 - Data problems
 - Researcher biases

- Risks
 - No differential privacy: no data access or privacy at risk
 - No inferential validity: incorrect scientific conclusions, medical & policy advice; society and individuals at risk

⇝ We need both DP and inferential validity
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • **Researcher biases**

 • **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • **Researcher biases**
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections
• With DP: tips the scales

Differential Privacy & Inferential Validity
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • **Researcher biases** — avoiding p-hacking via preregistration or “multiple comparison” corrections

• **With DP:** tips the scales
 • p-hacking avoided almost automatically

Differential Privacy & Inferential Validity
DP: Completely Changes Statistical Best Practices

- Normally we try to avoid being fooled by:
 - **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 - **Researcher biases** — avoiding p-hacking via preregistration or “multiple comparison” corrections

- **With DP**: tips the scales
 - p-hacking avoided almost automatically
 - Little opportunity to explore data, run diagnostics, etc.
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
DP: Completely Changes Statistical Best Practices

- **Normally we try to avoid being fooled by:**
 - **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 - **Researcher biases** — avoiding p-hacking via preregistration or “multiple comparison” corrections

- **With DP:** tips the scales
 - p-hacking avoided almost automatically
 - Little opportunity to explore data, run diagnostics, etc.
 - Lower probability of serendipitous discovery
 - Higher probability of being fooled by data
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • **Data problems** — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • **Researcher biases** — avoiding p-hacking via preregistration or “multiple comparison” corrections

• **With DP:** tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • **Must plan data analyses carefully!**
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • Must plan data analyses carefully!

• Risks
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • Must plan data analyses carefully!

• Risks
 • No differential privacy: no data access or privacy at risk
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • Must plan data analyses carefully!

• Risks
 • No differential privacy: no data access or privacy at risk
 • No inferential validity: incorrect scientific conclusions, medical & policy advice; society and individuals at risk
DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
 • Data problems — by running every possible diagnostic, data exploration and visualization, and conducting numerous statistical checks
 • Researcher biases — avoiding p-hacking via preregistration or “multiple comparison” corrections

• With DP: tips the scales
 • p-hacking avoided almost automatically
 • Little opportunity to explore data, run diagnostics, etc.
 • Lower probability of serendipitous discovery
 • Higher probability of being fooled by data
 • Must plan data analyses carefully!

• Risks
 • No differential privacy: no data access or privacy at risk
 • No inferential validity: incorrect scientific conclusions, medical & policy advice; society and individuals at risk
 • \(\rightsquigarrow \) We need both DP and inferential validity
Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
A Differentially Private Estimator

Partition D_1, D_2, D_3, D_4, D_5 into disjoint sets

Bag of little bootstraps

Estimator $\hat{\theta}^p, b = s(D^p, \text{Multinom}(N, 1/n))$

Censor Average Noise $\hat{\theta}_{dp} = 1/P \sum_{p=1}^P c(\hat{\theta}^p, \Lambda) + N(0, 4\Lambda \epsilon P)$

Bias Correction & variance estimation
A Differentially Private Estimator

Private data
A Differentially Private Estimator

Private data

Partition

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps
Estimator

\[\hat{\theta}_p, b = s(D_p, \text{Multinom}(N, 1/n)) \]

Estimator

\[\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4, \hat{\theta}_5 \]

Bias Correction
(& variance estimation)

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data

Partition

Bag of little bootstraps

Estimator

Censor

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps
Estimator
Censor
Average

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps
Estimator
Censor
Average
Noise

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data

Partition

Bag of little bootstraps

Estimator

Censor

Average

Noise

Bias Correction

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps
Estimator
Censor
Average
Noise
Bias Correction (& variance estimation)

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data

Partition

Bag of little bootstraps

Estimator

Censor

Average

Noise

Bias Correction

(& variance estimation)
A Differentially Private Estimator

Private data

Partition

Bag of little bootstraps

Estimator

Censor

Average

Noise

Bias Correction (& variance estimation)

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

Private data
Partition
Bag of little bootstraps
Estimator
Censor
Average
Noise
Bias Correction (& variance estimation)

\[\hat{\theta}_{p,b} = s(D_p, \text{Multinom}(N, 1_n/n)) \]
A Differentially Private Estimator

Private data D

Partition D_1, D_2, D_3, D_4, D_5

Bag of little bootstraps

Estimator $\hat{\theta}_{p,b} = s(D_p, \text{Multinom}(N, 1_n/n))$

Censor

Average

Noise

Bias Correction (& variance estimation)

A General Purpose, Statistically Valid DP Algorithm
A Differentially Private Estimator

- **Private data**
- **Partition**
- **Bag of little bootstraps**
- **Estimator**
- **Censor**
- **Average**
- **Noise**
- **Bias Correction (& variance estimation)**

\[\hat{\theta}_{p,b} = s(D_p, \text{Multinom}(N, 1_n/n)) \]

\[\hat{\theta}_1 \quad \hat{\theta}_2 \quad \hat{\theta}_3 \quad \hat{\theta}_4 \quad \hat{\theta}_5 \]

\[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N \left(0, \frac{4\Lambda}{\epsilon P} \right) \]
Bias Correction of:

\[\hat{\theta}^\text{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N \left(0, \frac{4\Lambda}{\epsilon P} \right) \]
Bias Correction of:

\[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N(0, \frac{4\Lambda}{\epsilon P}) \]
Bias Correction of: \[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution

Uncensored distribution

\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]
Bias Correction of: \[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution

\[\int_{-\Lambda}^{\Lambda} \int_{-\infty}^{\infty} N(t | \theta, \sigma^2) dt \]

Uncensored distribution

\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\infty}^{-\Lambda} N(t | \theta, \sigma^2) dt \quad \int_{\Lambda}^{\infty} N(t | \theta, \sigma^2) dt \]
Bias Correction of: \[\hat{\theta}_{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution
\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1)\theta_T + \alpha_2 \Lambda \]

Uncensored distribution
\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\Lambda}^{\theta} N(t \mid \theta, \sigma^2) dt \]
\[\int_{-\infty}^{0} N(t \mid \theta, \sigma^2) dt \]
\[\int_{\theta}^{\Lambda} N(t \mid \theta, \sigma^2) dt \]
\[\int_{\Lambda}^{\infty} N(t \mid \theta, \sigma^2) dt \]
Bias Correction of:
\[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution
\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1) \theta_T + \alpha_2 \Lambda \]

Estimate: \(\hat{\theta}^{dp} \)

Uncensored distribution
\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\infty}^{-\Lambda} N(t \mid \theta, \sigma^2)dt \quad \int_{\Lambda}^{\infty} N(t \mid \theta, \sigma^2)dt \]
Bias Correction of: \[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution
\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1) \theta_T + \alpha_2 \Lambda \]

Estimate: \[\hat{\theta}^{dp} \]

Uncensored distribution
\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\Lambda}^{\theta} N(t \mid \theta, \sigma^2) dt \quad \int_{\Lambda}^{\infty} N(t \mid \theta, \sigma^2) dt \]

3 eqns, 4 unknowns \(\theta, \sigma^2, \alpha_1, \alpha_2 \)
Bias Correction of: \[\hat{\theta}^\text{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\varepsilon P}\right) \]

Censored distribution
\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1) \theta_T + \alpha_2 \Lambda \]

Uncensored distribution
\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

Estimate: \(\hat{\theta}^\text{dp}, \hat{\alpha}_2^\text{dp} \)

3 eqns, 4 unknowns \(\theta, \sigma^2, \alpha_1, \alpha_2 \)
Bias Correction of:
\[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution
\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1)\theta_T + \alpha_2 \Lambda \]

Estimate: \(\hat{\theta}^{dp}, \hat{\alpha}_2^{dp} \)

Uncensored distribution
\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\infty}^{-\Lambda} N(t \mid \theta, \sigma^2)dt \quad \int_{\Lambda}^{\infty} N(t \mid \theta, \sigma^2)dt \]

3 eqns, 4 unknowns \(\theta, \sigma^2, \alpha_1, \alpha_2 \)
Bias Correction of:

\[\hat{\theta}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{4\Lambda}{\epsilon P}\right) \]

Censored distribution

\[\theta_C = -\alpha_1 \Lambda + (1 - \alpha_2 - \alpha_1)\theta_T + \alpha_2 \Lambda \]

Estimate: \(\hat{\theta}^{dp}, \hat{\alpha}_2^{dp} \)

Uncensored distribution

\[\hat{\theta}_p \sim N(\theta, \sigma^2) \]

\[\int_{-\Lambda}^{-\infty} N(t \mid \theta, \sigma^2) dt \quad \int_{\Lambda}^{\infty} N(t \mid \theta, \sigma^2) dt \]

3 eqns, 4 unknowns \(\theta, \sigma^2, \alpha_1, \alpha_2 \)

Solve for \(\theta \) (and \(\sigma^2, \alpha_1 \))
Variance Estimation

• DP Variance is unhelpful:
 $V(\hat{\theta}^{dp}) \neq V(\hat{\theta}^{dp})$

• Simulate estimates via standard procedures:
 $\hat{\theta}^{dp}(i), \hat{\alpha}^{dp2}(i) \sim N([\hat{\theta}^{dp} \hat{\alpha}^{dp2}], [\hat{V}(\hat{\theta}^{dp}) \hat{Cov}(\hat{\alpha}^{dp2}, \hat{\theta}^{dp}) \hat{Cov}(\hat{\alpha}^{dp2}, \hat{\theta}^{dp}) \hat{V}(\hat{\alpha}^{dp2})])$

• Functions of disclosed params

• Bias correct simulated params:
 $\{\tilde{\theta}^{dp}(i), \hat{\alpha}^{dp1}(i), \hat{\sigma}^{dp2}(i)\} = \text{BiasCorrect}[\hat{\theta}^{dp}(i), \hat{\alpha}^{dp2}(i)]$

• Standard error, SE($\tilde{\theta}^{dp}$):
 Standard deviation of $\tilde{\theta}^{dp}(i)$ over i
Variance Estimation

- **DP Variance is unhelpful:** \(V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp}) \)
Variance Estimation

- **DP Variance is unhelpful:** $V(\hat{\theta}^{dp}) \neq V(\hat{\theta}^{dp})$
- **Simulate estimates via standard (Clarify) procedures:**

$$\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_2^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) \\ \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_2^{dp}) \end{bmatrix}\right)$$
Variance Estimation

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_2^{dp} \end{bmatrix}, \begin{bmatrix} V(\hat{\theta}^{dp}) & \widehat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) \\ \widehat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_2^{dp}) \end{bmatrix} \right)$$

Functions of disclosed params

Bias correct simulated params:

$$\{\tilde{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i)\} = \text{BiasCorrect}[\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i)]$$

- Standard error, $SE(\tilde{\theta}^{dp})$:
 - Standard deviation of $\tilde{\theta}^{dp}(i)$ over i
Variance Estimation

• DP Variance is unhelpful: \(V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp}) \)

• Simulate estimates via standard (Clarify) procedures:

\[
\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_2^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) \\ \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_2^{dp}) \end{bmatrix} \right)
\]

Functions of disclosed params

• Bias correct simulated params:

\[
\{\tilde{\theta}^{dp}(i), \tilde{\alpha}_1^{dp}(i), \tilde{\sigma}_{dp}^2(i)\} = \text{BiasCorrect}\left[\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i)\right]
\]
Variance Estimation

- **DP Variance is unhelpful:** $V(\hat{\theta}^\text{dp}) \neq V(\hat{\theta}^\text{dp})$
- **Simulate estimates** via standard (Clarify) procedures:

 $$\hat{\theta}^\text{dp}(i), \hat{\alpha}_2^\text{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^\text{dp} \\ \hat{\alpha}_2^\text{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^\text{dp}) & \hat{\text{Cov}}(\hat{\alpha}_2^\text{dp}, \hat{\theta}^\text{dp}) \\ \hat{\text{Cov}}(\hat{\alpha}_2^\text{dp}, \hat{\theta}^\text{dp}) & \hat{V}(\hat{\alpha}_2^\text{dp}) \end{bmatrix}\right)$$

- **Bias correct simulated params:**

 $$\{\tilde{\theta}^\text{dp}(i), \tilde{\alpha}_1^\text{dp}(i), \tilde{\sigma}_2^\text{dp}(i)\} = \text{BiasCorrect}\left[\hat{\theta}^\text{dp}(i), \hat{\alpha}_2^\text{dp}(i)\right]$$

- **Standard error, SE(\tilde{\theta}^\text{dp}):** Standard deviation of $\tilde{\theta}^\text{dp}(i)$ over i
Variance Estimation

- **DP Variance is unhelpful:** \(V(\hat{\theta}^{dp}) \neq V(\hat{\theta}^{dp}) \)
- **Simulate estimates** via standard (Clarify) procedures:

\[
\begin{align*}
\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i) &\sim N \left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_2^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) \\ \hat{\text{Cov}}(\hat{\alpha}_2^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_2^{dp}) \end{bmatrix} \right) \\
\end{align*}
\]

- **Bias correct simulated params:**

\[
\begin{align*}
\{\tilde{\theta}^{dp}(i), \tilde{\alpha}_1^{dp}(i), \tilde{\sigma}_2^{dp}(i)\} &\equiv \text{BiasCorrect} \left[\hat{\theta}^{dp}(i), \hat{\alpha}_2^{dp}(i) \right] \\
\end{align*}
\]

- **Standard error, SE(\(\tilde{\theta}^{dp}\)):** Standard deviation of \(\tilde{\theta}^{dp}(i)\) over \(i\)
- **Bias correction (usually) reduces bias and variance:**

\[
V(\tilde{\theta}^{dp}) < V(\hat{\theta}^{dp})
\]
Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
Simulations: Finite Sample Evaluation
Simulations: Finite Sample Evaluation

The Algorithm in Practice
Theory and Practice

- Reducing DP's Societal Risks.
 - Report: Effective reduction in \(N = 1 - \frac{\hat{\sigma}_{dp}^2}{SE(\hat{\theta}_{dp})} \)

- Choosing \(\epsilon \) (like a power calculation):
 \[\frac{SE(\hat{\theta}_{dp})^2}{\epsilon^2} < \frac{V(\hat{\theta}_{dp}) + (4\Lambda \epsilon^2)}{} \]

- Choosing \(\Lambda \):
 - Without bias correction: choose more censoring or more noise!
 - With bias correction: keep \(\max(\alpha_1, \alpha_2) < 0.6 \)

- Privacy Policies:
 - Science informs, but does not determine, policy
 - Few if any implementations exactly meet DP standards
 - Most use larger \(\epsilon \) and no budget, but with other protections
 - It's safer: de-identification + noise and censoring

The Algorithm in Practice
Theory and Practice

- **Reducing DP’s Societal Risks.** Report:

\[
\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}_{dp}^2}{P \cdot SE(\tilde{\theta}_{dp})}
\]
Theory and Practice

• Reducing DP’s Societal Risks. Report:

\[
\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}^2_{dp}/P}{\text{SE}(\tilde{\theta}_{dp})}
\]

• Choosing \(\epsilon \) (like a power calculation):

\[
\text{SE}(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
\]

Privacy Policies:

• Science informs, but does not determine, policy
• Few if any implementations exactly meet DP standards
• Most use larger \(\epsilon \) and no budget, but with other protections
• It’s safer: de-identification + noise and censoring
Theory and Practice

- **Reducing DP’s Societal Risks. Report:**

 \[
 \text{Effective reduction in } N = 1 - \frac{\hat{\sigma}^2_{dp}/P}{\text{SE}(\tilde{\theta}^dp)}
 \]

- **Choosing } \epsilon (like a power calculation):**

 \[
 \text{SE}(\tilde{\theta}^dp)^2 < V(\hat{\theta}^dp) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
 \]

- **Choosing } \Lambda
Theory and Practice

• Reducing DP’s Societal Risks. Report:

\[
effective \ reduction \ in \ N = 1 - \frac{\hat{\sigma}^2_{dp}/P}{SE(\tilde{\theta}_{dp})}
\]

• Choosing \(\epsilon \) (like a power calculation):

\[
SE(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
\]

• Choosing \(\Lambda \)
 • Without bias correction: choose more censoring or more noise!
Theory and Practice

- **Reducing DP’s Societal Risks.** Report:

 \[
 \text{Effective reduction in } N = 1 - \frac{\sigma_{dp}^2/P}{SE(\tilde{\theta}_{dp})}
 \]

- **Choosing } \epsilon (like a power calculation):

 \[
 \text{SE}(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
 \]

- **Choosing } \Lambda
 - Without bias correction: choose more censoring or more noise!
 - With bias correction: Keep max(\(\alpha_1, \alpha_2\)) < 0.6

The Algorithm in Practice
Theory and Practice

• Reducing DP’s Societal Risks. Report:

\[
\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}_{dp}^2 / P}{SE(\tilde{\theta}_{dp})}
\]

• Choosing \(\epsilon \) (like a power calculation):

\[
SE(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P} \right)^2
\]

• Choosing \(\Lambda \)
 • Without bias correction: choose more censoring or more noise!
 • With bias correction: Keep \(\max(\alpha_1, \alpha_2) < 0.6 \)

• Privacy Policies:
Theory and Practice

• Reducing DP’s Societal Risks. Report:

\[
\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}_{dp}^2}{P \cdot \text{SE}(\tilde{\theta}_{dp})}
\]

• Choosing \(\epsilon \) (like a power calculation):

\[
\text{SE}(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
\]

• Choosing \(\Lambda \)
 • Without bias correction: choose more censoring or more noise!
 • With bias correction: Keep \(\max(\alpha_1, \alpha_2) < 0.6 \)

• Privacy Policies:
 • Science informs, but does not determine, policy
Theory and Practice

- Reducing DP’s Societal Risks. Report:

 Effective reduction in $N = 1 - \frac{\hat{\sigma}_{dp}^2 / P}{SE(\tilde{\theta}_{dp})}$

- Choosing ϵ (like a power calculation):

 $SE(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2$

- Choosing Λ
 - Without bias correction: choose more censoring or more noise!
 - With bias correction: Keep $\max(\alpha_1, \alpha_2) < 0.6$

- Privacy Policies:
 - Science informs, but does not determine, policy
 - Few if any implementations exactly meet DP standards
Theory and Practice

- Reducing DP’s Societal Risks. Report:

 $$\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}_{dp}^2/P}{SE(\tilde{\theta}_{dp})}$$

- Choosing ϵ (like a power calculation):

 $$SE(\tilde{\theta}_{dp})^2 < V(\hat{\theta}_{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2$$

- Choosing Λ
 - Without bias correction: choose more censoring or more noise!
 - With bias correction: Keep $\max(\alpha_1, \alpha_2) < 0.6$

- Privacy Policies:
 - Science informs, but does not determine, policy
 - Few if any implementations exactly meet DP standards
 - Most use larger ϵ and no budget, but with other protections
Theory and Practice

• **Reducing DP’s Societal Risks.** Report:

\[
\text{Effective reduction in } N = 1 - \frac{\hat{\sigma}_{dp}^2 / P}{\text{SE}(\tilde{\theta}^{dp})}
\]

• Choosing \(\epsilon \) (like a power calculation):

\[
\text{SE}(\tilde{\theta}^{dp})^2 < V(\hat{\theta}^{dp}) + \left(\frac{4\Lambda}{\epsilon P}\right)^2
\]

• Choosing \(\Lambda \)
 • Without bias correction: choose more censoring or more noise!
 • With bias correction: Keep \(\max(\alpha_1, \alpha_2) < 0.6 \)

• **Privacy Policies:**
 • Science informs, but does not determine, policy
 • Few if any implementations exactly meet DP standards
 • Most use larger \(\epsilon \) and no budget, but with other protections
 • It’s safer: de-identification + noise and censoring
Concluding Remarks

Data sharing ⇝ data access

DP protects individual privacy

Enables inference to private database, not population

Usually biased, no uncertainty estimates

Fails to protect society from fallacious scientific conclusions

Inferential validity

A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty

Utility requires known statistical properties and valid uncertainty estimates

Proposed algorithm

Generic:

- Almost any statistical method or quantity of interest
- Statistically unbiased (if estimator is), lower variance
- Valid uncertainty estimates
- Computationally efficient

The Algorithm in Practice
Concluding Remarks

• Data sharing \(\leadsto\) data access
Concluding Remarks

• Data sharing \rightarrow data access
 • DP protects individual privacy
Concluding Remarks

- **Data sharing ⇐ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
Concluding Remarks

• **Data sharing ⇛ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
Concluding Remarks

- **Data sharing ⇛ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

The Algorithm in Practice
Concluding Remarks

• **Data sharing ↔ data access**
 • DP protects individual privacy
 • Enables inference to private database, not population
 • Usually biased, no uncertainty estimates
 • Fails to protect society from fallacious scientific conclusions

• **Inferential validity**
Concluding Remarks

- **Data sharing ⇔ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

- **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
Concluding Remarks

• **Data sharing** ⇔ **data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

• **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates
Concluding Remarks

• Data sharing \implies data access
 • DP protects individual privacy
 • Enables inference to private database, not population
 • Usually biased, no uncertainty estimates
 • Fails to protect society from fallacious scientific conclusions

• Inferential validity
 • A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 • Utility requires known statistical properties and valid uncertainty estimates

• Proposed algorithm
Concluding Remarks

- **Data sharing ⇔ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

- **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates

- **Proposed algorithm**
 - **Generic**: almost any statistical method or quantity of interest
Concluding Remarks

• **Data sharing ⇔ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

• **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates

• **Proposed algorithm**
 - **Generic:** almost any statistical method or quantity of interest
 - Statistically **unbiased** (if estimator is), **lower variance**
Concluding Remarks

- **Data sharing → data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

- **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates

- **Proposed algorithm**
 - **Generic**: almost any statistical method or quantity of interest
 - Statistically **unbiased** (if estimator is), **lower variance**
 - Valid **uncertainty estimates**
Concluding Remarks

- **Data sharing ➔ data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

- **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates

- **Proposed algorithm**
 - **Generic**: almost any statistical method or quantity of interest
 - Statistically unbiased (if estimator is), **lower variance**
 - Valid uncertainty estimates
 - Computationally efficient
Concluding Remarks

- **Data sharing → data access**
 - DP protects individual privacy
 - Enables inference to private database, not population
 - Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions

- **Inferential validity**
 - A scientific statement is not one that is correct; it is one that comes with an appropriate degree of uncertainty
 - Utility requires known statistical properties and valid uncertainty estimates

- **Proposed algorithm**
 - **Generic**: almost any statistical method or quantity of interest
 - Statistically unbiased (if estimator is), lower variance
 - Valid uncertainty estimates
 - Computationally efficient
 - Easy to implement
For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp