An Improved Method of Automated Nonparametric Content Analysis for Social Science*

Connor T. Jerzak†  Gary King‡  Anton Strezhnev§

November 5, 2019

Abstract

Some scholars build models to classify documents into chosen categories. Others, especially social scientists who tend to focus on population characteristics, instead usually estimate the proportion of documents in each category — using either parametric “classify-and-count” methods or “direct” nonparametric estimation of proportions without individual classification. Unfortunately, classify-and-count methods can be highly model dependent or generate more bias in the proportions even as the percent of documents correctly classified increases. Direct estimation avoids these problems, but can suffer when the meaning of language changes between training and test sets or is too similar across categories. We develop an improved direct estimation approach without these issues by including and optimizing continuous text features, along with a form of matching adapted from the causal inference literature. Our approach substantially improves performance in a diverse collection of 73 data sets. We also offer easy-to-use software that implements all ideas discussed herein.

---

*Easy-to-use open source software that implements all the methods described in the paper is available at [github.com/iqss-research/readme-software](https://github.com/iqss-research/readme-software). All information necessary to replicate our results is available in the Harvard dataverse at [bit.ly/CJGKAS](https://bit.ly/CJGKAS). Our thanks to Neal Beck, Aykut Firat, and Ying Lu for data and many helpful comments.

†PhD Candidate and Carl J. Friedrich Fellow, 1737 Cambridge Street, Harvard University, Cambridge MA 02138, ConnorJerzak.com, cjerzak@g.harvard.edu.

‡Albert J. Weatherhead III University Professor, Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; GaryKing.org, King@Harvard.edu, (617) 500-7570.

§PhD Candidate, 1737 Cambridge Street, Harvard University, Cambridge MA 02138, antonstrezhnev.com, astrezhnev@fas.harvard.edu.
1 Introduction

Scholars from a variety of fields have worked on improving the automatic classification of individual objects (where the unit of interest might be a web page, war, person, document, country, social media post, etc.). Social scientists use classifiers too, but they more often focus on aggregate generalizations about populations of objects, such as the percent in each category, rather than any one individual classification, a task that is sometimes called “quantification”.¹ Indeed, a plausible case can be made that one of the defining characteristics of social science is a focus on population-level generalizations. We discover an interesting puzzle about one election, but try to develop theories that apply to many more. We are interested in the politics of one country, but attempt to understand it as an example of how all countries (or all democracies, or all developing countries, etc.) operate. We survey 1,500 Americans about their political attitudes, but seek to understand how all Americans, or all people, form attitudes. Quantitative social scientists usually leave it to historians or intensive qualitative researchers to analyze particular speeches supporting a policy and focus instead on the percent of all speeches that support the idea.

Applying a simple “Classify and Count” approach yields accurate category percentages under a perfect classifier. Perfect classifiers are unrealistic in real applications (Hand, 2006), but they are unnecessary for aggregate accuracy if individual-level errors cancel. However, choosing a classifier by maximizing the percent correctly classified can sometimes increase the bias of aggregate quantities, unless the one is careful in training the classifier. For example, the decision rule “war never occurs” accurately classifies country-year dyads into war/no war categories with over 99% accuracy, but is misleading for political science research.

Similarly, the proportion of email you receive that lands in your spam folder is a biased estimate of the percent of spam you receive overall because spam filters are tuned to the

¹Estimating category percentages, as opposed to individual classifications, is also of interest in epidemiology, where it is called “prevalence estimation.” Interest in the technical area is also growing in computer science, machine learning, computational linguistics, and data mining, where it is variously called “quantification,” “class prior estimation,” “counting,” “class probability re-estimation,” and “learning of class balance.” See Buck and Gart (1966), Esuli and Sebastiani (2015), Forman (2007), Kar et al. (2016), Levy and Kass (1970), Milli et al. (2013), and Tasche (2016) and the unification in Firat (2016).
fact that people are more annoyed when they miss an important email than when some spam appears in their inbox. This is easy to fix by tuning your spam filter to avoid the bias, or correcting after the fact, but we usually do not know the classifier’s bias. For example, a method that classifies 60% of documents correctly into one of 8 categories might be judged successful and useful for classification. For example, if Google or Bing were to provide relevant results in 60% of searches (which is about the 2019 average empirically), we might be quite satisfied since the low cost of misclassification is to merely choose another search term and try again. However, because the individual category percentages can then be off by as much as 40 percentage points, the same classifier may be less useful to the social scientist interested in learning about aggregate behavior.

The tasks of estimating category percentages (quantification) or classifying individual documents (classification) both begin by analyzing a small subset of documents with (usually hand-coded) category labels. Classification methods normally require these labeled and unlabeled document sets to be drawn from the same population, so the class probabilities can be calibrated. Commonly, however, the labeled set is created in one time period and a sequence of unlabeled sets are collected during subsequent time periods, each with potentially different distributions. For example, scholars may hand-label a set of social media posts about a presidential candidate into the 10 reasons people do or do not like this person. Then, for each day after the hand coding, a researcher may try to estimate the percent of posts in each of these categories using the initial hand-labeled set, with no new coding of documents. The methods of quantification we discuss here are designed to accommodate these situations even though these are the circumstances where the assumptions behind classification methods are violated.

We build on the only nonparametric quantification method developed for estimating multi-category proportions that does not resort to individual classification as a first step. This methodology was developed in King and Lu (2008) with survey research applications in public health, and in Hopkins and King (2010) with applications to text analysis in political science; and it was extended in King, Lu, and Shibuya (2010) and King, Pan, and Roberts (2013, Appendix B), with a U.S. Patent issued for the technology (King, Hopkins,
and Lu, 2012). Over 2,000 scholarly articles in several scholarly fields have cited these works (according to Google scholar). The method has come to be known by the name “readme,” which is the widely-used open source software that implements it (Hopkins, King, Knowles, and Melendez, 2013).

We begin by developing the intuition behind readme’s nonparametric methodology, and highlight situations where it can be improved. We then outline an approach for improving performance via two techniques, both of which involve better representing the meaning of the text. First, our technique allows for changes in the meaning and use of language over time by adapting matching techniques developed from the causal inference literature. Second, we develop an algorithm that chooses a feature space to discriminate between categories with as many non-redundant or independent features as possible.²

We summarize the readme estimator and its assumptions in Section 2. Section 3 then introduces our new methodology. In Section 4, we compare our approach to readme in out-of-sample empirical evaluations in 19,710 data sets, derived from subsets of 73 corpora (and repeated with 18 different evaluation protocols). We discuss what can go wrong and how to avoid it in Section 5. Our approach will not necessarily perform better in every data set (the “ping pong theorem” applies here too; Hoadley 2001), but in unusually extensive empirical tests we find it normally outperforms other approaches in real data, under the real-world conditions we describe below. Section 6 concludes; proofs, simulations, illustrations, and other supporting information appears in the Supplementary Appendices.

2 Readme: Estimation without Classification

We now describe readme, laying the groundwork for our subsequent improvements. Figure 1 gives a schematic summary that may help guide the discussion as we introduce each component.

²Unlike principal components analysis, independent component analysis, random projections, LDA, topic modeling, t-distributed stochastic neighborhood embeddings, or others designed for exploration, visualization, or classification, our approach is the first to generate a feature space optimized for quantification. This enables us to align our data analytic procedures with our inferential goals, something that is not always straightforward with prior approaches.
Notation

Consider two sets of textual documents — $L$, which includes $N^L$ documents labeled with a category number, and $U$, which includes $N^U$ unlabeled documents — where $N = N^L + N^U$. When there is no ambiguity, we use $i$ as a generic index for a document in either set and $N$ as a generic description of either set size. Each document falls into category $c$ in a set of mutually exclusive and exhaustive categories ($c \in \{1, \ldots, C\}$), but the category label is only observed in the labeled set. We write $D_i = c$ to denote that document $i$ falls into category $c$. Denote $N^L_c = \sum_{i=1}^{N^L} 1(D_i = c)$ as the number of documents in category $c$ in the labeled set, $N^U_c$ as the (unobserved) number in $c$ in the unlabeled set, and $N_c$ generically for either set in category $c$.

The proportion of unlabeled documents in category $c$ is $\pi^U_c = \text{mean}_{i \in U}[1(D_i = c)]$ (where for set $A$ with cardinality $\#A$, the mean over $i$ of function $g(i)$ is $\text{mean}_{i \in A}[g(i)] = \frac{1}{\#A} \sum_{i=1}^{\#A} g(i)$). The vector of proportions $\pi^U \equiv \{\pi^U_1, \ldots, \pi^U_C\}$, which represents our quantity of interest, forms a simplex, i.e. $\pi^U_c \in [0, 1]$ for each $c$ and $\sum_{c=1}^{C} \pi^U_c = 1$. We also define the analogous (but observed) category proportions for the labeled set $\pi^L$.

Text to Numbers

In this first step, we map the entire labeled and unlabeled corpora, with the document as the unit of analysis, into a constructed space of textual features with
the definition of the rows (taking the place of the unit of analysis) a choice to be optimized. Many ways of performing this mapping can be created; we propose one optimized for quantification. For readme, Hopkins and King (2010) begin with a set of \( k \) unigrams, each a binary indicator for the presence (coded 1) or absence (0) of a chosen word or word stem in a document. The number of possible strings of these zeros and ones, called a \textit{word stem profile}, is \( W = 2^k \).

The readme approach then computes a \( W \times 1 \) \textit{feature vector}, denoted \( S^L \), by sorting the labeled documents into the \( W \) mutually exclusive and exhaustive word stem profiles, and computing the proportion of documents that fall in each. To make the definition of \( S^L = \{ S^L_w \} \) more precise and easier to generalize later, begin with the \( N^L \times W \) \textit{document-feature matrix} \( F = \{ F_{iw} \} \) with rows for documents, and columns for features which in this case are unique word stem profiles. Each element of this matrix, \( F_{iw} \), is a binary indicator for whether document \( i \) is characterized by word stem profile \( w \). Then elements of \( S^L \) are column means of \( F \): \( S^L_w = \text{mean}_{i \in L}(F_{iw}) \). Then the same procedure is applied, with the same word stem profiles, to the unlabeled set, which we denote \( S^U \).

We also define a \( W \times 1 \) \textit{conditional feature vector} as \( X^L_c = \{ X^L_{wc} \} \), which results from the application of the same procedure within category \( c \) in the labeled set, and \( X^U_c = \{ X^U_{wc} \} \) within category \( c \) in the unlabeled set (\( X^U_c \) is unobserved because \( c \) is unknown in the unlabeled set). These can be computed from \( F^c \), a document-feature matrix representing only documents in category \( c \). We then collect these vectors for all categories into two \( W \times C \) matricies, \( X^L = \{ X^L_1, \ldots, X^L_C \} \) and \( X^U = \{ X^U_1, \ldots, X^U_C \} \), respectively.

**Assumptions** We require two assumptions. First, because the unlabeled conditional feature matrix \( X^U \) is unobserved, Hopkins and King (2010) assume

\[
X^L = X^U. \tag{1}
\]

Although Assumption 1 is quite restrictive, we can relax it. Begin by supposing that the documents in \( L \) are drawn from the same distribution giving rise to \( U \) — which is
equivalent to the assumption necessary for individual classification. It turns out we can relax this further: in readme, we could assume that the conditional distribution of features given categories is the same, which is much less restrictive. But we go even further and avoid specifying the full probabilistic model entirely by assuming only that the conditional expectation is the same, or in other words that the labeled conditional feature matrix is an unbiased estimator of the unlabeled conditional feature matrix. That is, we replace Assumption 1 with:

\[ E(X^L) = X^U. \]  

(2)

Second, we must assume that matrix \( X^L \) is of full rank, which translates substantively into (a) feature choices with \( W > C \) and (b) the lack of perfect collinearity among the columns of \( X^L \). Assumption (a) is easy to control by generating a sufficient number of features from the text. Assumption (b) is only violated if the feature distributions in documents across different categories are identical, which is unlikely with a sufficient number of coded documents. (We prove below that high but not perfect collinearity, which can result if categories are weakly connected to the features or documents are labeled with error, can exacerbate the bias of the readme estimator.)

**Estimation** Our goal is to estimate the vector of unlabeled set category proportions \( \pi^U = \{ \pi^U_1, \ldots, \pi^U_C \} \) given \( S^L, S^U, \) and \( X^L \). Begin with an accounting identity (i.e., true by definition), \( S^U_w = \sum_{c=1}^C X^U_{wc} \pi^U_c, \forall w \), or equivalently in matrix form:

\[ S^U = X^U \pi^U, \]  

(3)

which is a linear regression, but where the linearity is a property rather than assumption. Then, readme estimates \( \pi^U \) by the least squares estimator

\[ \hat{\pi}^U = (X^{U'} X^L)^{-1} X^{U'} S^U \]  

(4)

(or a modified version that explicitly preserves the simplex constraint).

---

3. More specifically, Hand (2006) shows that classifiers assume that (a) the joint distribution of features and categories is the same in \( U \) and \( L \), (b) the measured features span the space of all predictors of \( D \), and (c) the estimated model nests the true model as a special case.

4. Readme works with any choice of \( k \) word stems and so Hopkins and King (2010) randomly select many subsets of \( k \approx 16 \) word stems, run the algorithm for each, and average the results. Averaging across word stem profiles reduces the variance of the estimator. Alternatively, we could use this estimator with all observed features (Ceron, Curini, and Iacus, 2016).
Properties In the classic errors-in-variables linear regression model, with random measurement error only in the explanatory variables, least squares is biased and inconsistent. However, in readme, the dimensions of $X^L$ remain fixed as $N^L$ grows, and so Assumption 2 also implies measurement consistency: $\lim_{N^L \to \infty} X^L = X^U$. This means that the readme estimator in Equation 4, which is also a linear regression with random measurement error in the explanatory variables, is statistically consistent: as we gather and code more documents for the labeled set (and keep $W$ fixed, or at least growing slower than $n$), its estimator converges to the truth:

$$\lim_{N^L \to \infty} \hat{\pi}^U = \lim_{N^L \to \infty} (X^L' X^L)^{-1} X^L' S^U = (X^U' X^U)^{-1} X^U' S^U = \pi^U$$

This is a useful result suggesting that, unlike classic errors-in-variables, labeling more observations can reduce bias and variance. It also suggests that, to improve readme, we should focus on reducing finite sample bias rather than consistency, which is already guaranteed.

3 Improvements

We outline issues that affect readme’s performance conceptually in Section 3.1 and analyze them mathematically, along with proposed solutions, in Section 3.2.

3.1 Issues to Address

Readme is affected by three issues that arise in practice. First is a specific type of “concept drift” (Gama et al., 2014) that we refer to as semantic change — the difference in the meaning of language between the labeled and unlabeled sets. Authors and speakers frequently morph the semantic content of their prose to be clever, get attention, be expressive, curry political favor, evade detection, persuade, or rally the masses. For these or other purposes, the content, form, style, and meaning of every symbol, object, or action in human language can always evolve.

We address two types of semantic change that impact readme: emergent discourse, where new words and phrases, or the meanings of existing words and phrases, appear in the unlabeled set but not the labeled set, and vanishing discourse, where the words,
phrases, and their meanings exist in the labeled set but not the unlabeled set. “Russian
election hacking” following the 2016 US presidential election is an example of emergent
discourse, language which did not exist a few years before, whereas “Russian Commu-
nism” is an example of vanishing discourse, a usage that has been disappearing in recent
decades. However, emergent and vanishing discourse can reverse their meanings if the
researcher swaps which set is labeled. For example, in analyzing a large historical data
set, a researcher may find it more convenient to read and label a contemporary data set
and infer to the historical data sets (e.g., as they are recovered from an archive); to label
documents at the start of the period and infer to subsequent periods; or to code a sample
spread throughout the period and to infer to the full data set. Either vanishing or emergent
discourse can bias readme, but only if such discourse is present in a specific way (we
describe below) across the categories.

Second is the lack of textual discrimination, where the language used in documents
falling in different categories or across features is not clearly distinguishable. For clarity,
we divide textual discrimination into two separate concepts that, in the readme regression,
are related to the minimal requirement in least squares that, to reduce variance and model
dependence, $X$ must be of full rank and, ideally, far from degeneracy. Since $X$ represents
categories as variables and features of the text as rows, we refer to these two variables as
category distinctiveness and feature distinctiveness, respectively.

The lack of textual discrimination may arise because the conceptual ideas underlying
the chosen categories or features are not distinct. Hand coding errors can also lead to
this problem, which is commonly revealed by low levels of intercoder reliability. The
problem can also occur because of heterogeneity in how authors express information or
a divergence between how authors of the documents express this information and how
the analyst conceptualizes the categories or codes the features. Also common is where
the analyst begins with distinct and well-defined conceptual definitions for the set of $C$
categories, with examples of documents that fall unambiguously into each one, but where
it turns out upon large-scale coding that large numbers of documents can only be described
as falling into multiple categories. Adding categories to represent these more complicated
expressions (so that the resulting set is still mutually exclusive and exhaustive) is a logical solution, but this step often leads to a more cognitively demanding hand coding problem that reduces inter-coder reliability.

A final problematic situation for readme occurs due to interactions with the other two problems. This issue is proportion divergence, when the category proportions in the labeled set ($\pi^L$) diverge from those in the unlabeled set ($\pi^U$). To understand this issue, consider a data set with massive semantic change and no textual discrimination — so the document texts are largely uninformative — but where $\pi^L \approx \pi^U$, such as when the labeled set is a random sample from the unlabeled set. In this situation, readme will return the observed proportion vector in the labeled set, $\pi^L$, which is a good estimate of $\pi^U$. This means that we can sometimes protect ourselves from semantic change and the lack of textual discrimination by selecting a labeled set with a similar set of category proportions as the unlabeled set. This protective measure is impossible to put into practice in general, as it requires a priori knowledge of category membership, but it can be useful in some cases when designing training sets, and we show below that it can be corrected for.

3.2 Analytical Solutions

We now propose improvements to readme, including (1) a dimension reduction technique for direct estimation of category proportions (analogous to techniques that have been used for improving classifier performance; e.g., Brunzell and Eriksson 2000; Vincent et al. 2010), and (2) an adaptation of matching methods for causal inference. (We also show in Appendix D how the methods developed here may have uses in the causal inference literature.) Figures 2 gives a schematic summary of step (1) and Figure 3 summarizes the whole algorithm including step (2).

**Dimension Reduction** Dimension reduction is especially important here because numerical representation of text documents can have an outsized impact on the results (see Denny and Spirling, 2016; Levy, Goldberg, and Dagan, 2015). The idea behind our dimension reduction approach is that even if large numbers of individual features perform poorly, lower dimensional linear combinations of features may do considerably better. We
begin with the $N \times W$ document-feature matrix $F$ defined in Section 2. Our goal then is to project this matrix to a lower-dimensional $N \times W'$ document-feature matrix $F = FG$ where $G$ is a $W \times W'$ matrix of transformation weights defined below and $W' \ll W$. Once we obtain $F$, we can take conditional expectations of the features given the category labels to generate the readme regression matrix as before. We denote conditional regression matrix obtained from $F$ as $X$, in parallel to notation $F$ and $X$.\(^5\)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
1. Raw text & Clinton promised to introduce a new bill. & Clinton has been diagnosed with a case of I’m an anti-war moonbat! \\
\hline
2. Process text & & \\
\hline
2a. Link with word vectors & \begin{tabular}{|l|c|c|}
\hline
clinton & 0.33 & -0.82 \\
nominal & 0.487 & 0.738 \\
introduce & 0.576 & -0.305 \\
\end{tabular} & \begin{tabular}{|l|c|c|}
\hline
clinton & 0.33 & -0.82 \\
has & 0.919 & 0.782 \\
diagnosed & 0.62 & -0.056 \\
\end{tabular} \\
\hline
2b. Summarize vector components by document & \begin{tabular}{|l|c|}
\hline
Max & 1.512 \\
Doc 1 & 0.919 \\
Doc 2 & 0.738 & 0.782 \\
\end{tabular} & \begin{tabular}{|l|c|}
\hline
Max & 0.738 \\
Vec Dim 1 & 0.782 \\
Vec Dim 2 & \\
\end{tabular} \\
\hline
2c. Transform summaries to optimize objective & \begin{tabular}{|l|c|c|}
\hline
New Dim 1 & 6.225 & -2.394 \\
Doc 1 & 11.385 & -5.599 \\
Doc 2 & \\
\end{tabular} & \begin{tabular}{|l|c|}
\end{tabular} \\
\hline
3. Document-feature matrix & & \\
\end{tabular}
\end{table}

Figure 2: Summary schematic of the quantification-targeted text processing in readme2.

The key question, then, is how to define $G$ to choose among the many possible lower dimensional $F$ matrices and thereby reduce readme’s bias? To answer this question, we develop intuition by studying readme’s bias in simplified data with only two categories. Because of the simplex constraint, the unlabeled set category proportions can be then be characterized by a single parameter, $\pi^U_1$. The accounting identity for each feature mean $w$, $\mu^U_w$, can be written as $\mu^U_w = X^U_{w1} + B^U_w \pi^U_1$, where

$$B^U_w = X^U_{w1} - X^U_{w2}$$

quantifies the systematic component of textual discrimination between the two categories.

---

\(^5\)This new transformation can be thought of as a feed-forward neural network, where the input layer $F$ feeds into a hidden layer $F$, which then produces an output $X$. 

10
The readme estimator is then the least-squares estimator of $\pi^U_1$ (see Appendix A for proofs of all propositions in this section):

**Proposition 1.** The two-category readme estimator is

$$\hat{\pi}^U_1 = \frac{\sum_{w=1}^W B^L_w (S^U_w - X^L_{w2})}{\sum_{w=1}^W (B^L_w)^2}.$$

If $X^L = X^U$, the above expression equals $\pi^U_1$ and readme is unbiased. We can relax this assumption by making Assumption 2, which we express as $X^L_{wc} = X^U_{wc} + \epsilon_{wc}$ where $\epsilon_{wc}$ is a random variable with mean zero and variance inversely proportional to $N_c$. We then write the readme estimator in terms of $X^U$, the true unlabeled set category proportion $\pi^U_1$, and the sample category size $N^L_c$, which we can use to obtain the approximate bias:

**Proposition 2.** The approximate bias of the readme estimator is

$$\text{Bias}\left(\hat{\pi}^U_1\right) \approx \frac{\sum_{w=1}^W [\text{Var}(\epsilon_{w2}) - \text{Cov}(\epsilon_{w1}, \epsilon_{w2})] (1 - \pi^U_1) - [\text{Var}(\epsilon_{w1}) - \text{Cov}(\epsilon_{w1}, \epsilon_{w2})] \pi^U_1}{\sum_{w=1}^W ((B^U_w)^2 + \text{Var}(\nu_w))},$$

with combined error variance $\nu_w = \epsilon_{w1} - \epsilon_{w2}$.

Proposition 2 suggests several factors to consider when defining $\Gamma$. As the systematic component of textual discrimination, $B^U_w$, increases relative to the variance of the error terms, $\epsilon_{w1}$ and $\epsilon_{w2}$, the bias approaches 0. In other words, readme works better with distinct language across categories. We should therefore define $\Gamma$ to maximize category distinctiveness (CD), the difference in conditional means across categories. We do this by directly generalizing to $C$ categories Equation 5:

$$\text{CD}(\Gamma) \propto \sum_{w=1}^{W'} \sum_{c < c'} \left| X^L_{wc} - X^L_{wc'} \right|,$$

where the inequalities in the summations prevent double-counting. This expression is simply the sum of all the absolute value of all the $B^U_w$ terms.

Proposition 2 also suggests defining $\Gamma$ to increase feature distinctiveness (FD), which involves making the rows of our regression matrix $X$ closer to independent. To see why, consider how the numerator of the approximate bias contains the sum across all the features of the difference in the differences between the error variance of the categories and
the covariance between the error variances (we can call this latter difference “excess variance”). If the features all were to capture the same latent quality, we would encounter a situation where the differences in excess variance would tend to go in the same direction (either all positive or all negative) across the features. Dependencies between one feature and another would drive the bias far from 0. However, when the features capture distinctive latent qualities of the text, the differences in excess variance between the categories will sometimes be positive and sometimes negative—so their sum will be closer to 0. We define this criterion in parallel to CD, as:

\[
\text{FD}(\Gamma) \propto \sum_{c < c'} \sum_{w < w'} \left| \bar{X}_L^{wc} - \bar{X}_L^{w'c'} \right| - \left| \bar{X}_L^{w'c} - \bar{X}_L^{wc'} \right|.
\]

where again the inequalities in the summations prevent double-counting.

We then choose \( \Gamma \) by optimizing both CD and FD:

\[
\Gamma^* = \operatorname{arg~max}_{\Gamma \in \mathbb{R}^{W \times W'}} \text{CD}(\Gamma) + \text{FD}(\Gamma).
\]

As Appendix B demonstrates, using only one of the these two criteria alone does not optimize as desired. Thus, although we can apply readme in any feature space summary of the documents, using the lower dimensional feature space defined by \( \Gamma \) should reduce bias in readme.

**Adapting Matching Methods for Text Analysis** Finally, we add one last insight by considering the special case of independence of measurement errors across categories (i.e. \( \text{Cov}(\epsilon_{w1}, \epsilon_{w2}) = 0 \)). In this situation, readme bias is minimized when the following relationship holds between the labeled and unlabeled set category proportions:

**Proposition 3.** When measurement errors are independent across categories, the bias of readme is minimized at

\[
\frac{\pi_1^L}{\pi_1^U} = \frac{\pi_1^U \sum_{w=1}^{W} \sigma_{w1}^2}{\pi_1^U \sum_{w=1}^{W} \sigma_{w1}^2 + (1 - \pi_1^U) \sum_{w=1}^{W} \sigma_{w2}^2}.
\]

Thus, when the measurement error variances are roughly equivalent across categories, the bias of readme is minimized when proportion divergence is smallest.
We use this result to simultaneously reduce the biasing effect of vanishing discourse and to reduce proportion divergence. We do this borrowing the idea of matching from the causal inference literature (Ho, Imai, King, and Stuart, 2007; Iacus, King, and Porro, 2012). In causal inference, matching “prunes” control observations from the data that have covariate values far from treated observations. In our case, we fix the unlabeled set and selectively prune the labeled set to remove documents with covariate profiles far from those in the unlabeled set.

To implement this idea, we search the labeled set \( L \) for a matched subset, \( M \), that more closely resembles the unlabeled set. We do this without any information from the category labels (since they are unobserved in the unlabeled set). The goal is to remove observations from the labeled set that are so far in their content from the observations in the unlabeled set that they likely come from an entirely different data generating process. If the text of the documents are meaningful, exact one-to-one matching of documents in this way will eliminate all error since it will mean that we have a hand code for each unlabeled document. In practice, approximate matching is usually needed, and any labeled unmatched documents are pruned and not used further. Our matching is in a space (of

---

1. **Raw text**
   
   Doc 1: Clinton promised to introduce a new bill.  
   Doc 2: Clinton has been diagnosed with a case of I’m an anti-war moonbat!

2. **Process text**
   
   (See separate figure)

3. **Document-feature matrix**
   
   \[
   \begin{array}{cc}
   \text{New Dim 1} & \text{New Dim 2} \\
   \text{Doc 1} & 2.988 & -1.564 \\
   \text{Doc 2} & 2.483 & -1.186 \\
   \end{array}
   \]

4. **Calculate \( X^L \)**
   
   Mean New Dim 1 by Cat  
   Cat 1: 3.097  
   Cat 2: 2.674  
   Cat 3: ...

   Mean New Dim 2 by Cat  
   Cat 1: -1.581  
   Cat 2: -1.082  
   Cat 3: ...

5. **Calculate \( S^U \)**
   
   Mean New Dim 1, Unlabeled Set 2.736  
   Mean New Dim 2, Unlabeled Set -1.375

6. **Estimate \( \pi^U \)**
   
   \[
   \pi^U = (X^L X^L)^{-1} X^L S^U
   \]

   Est. Cat 1 Prop. 0.22  
   Est. Cat 2 Prop. 0.28  
   Est. Cat 3 Prop. ...

---

Figure 3: Summary schematic of readme2. See Figure 3 for details of step 2. The matching step is done prior to the formation of \( X^L \).
the transformed word vector summaries) designed for our specific problem; aligning the space of matching and the goals of the analysis are of course also key in matching for causal inference (King and Nielsen, 2017). Finally, we recompute $F$ and the matched $X^L$, which we denote $X^{L,M}$, and apply the readme regression.

As a result, the assumption in Equation 2 now needs only to hold in the matched subset of the labeled set rather than for the entire labeled set:

$$E[X^{L,M}] = X^U$$

(6)

Matching thus considerably weakens the assumptions necessary for readme estimation and predictably reduces its bias.

4 Evaluation

Design We performed 18 large-scale evaluations of our methodology, each following a different design protocol for allocating documents to membership in the labeled and unlabeled sets. Prior approaches in the literature have almost always used a single evaluation design, as compared to our 18, and only a few data sets, compared to our 73. The resulting 19,710 empirical evaluations in our replication data and code thus increases the rigor which future scholars can bring to bear on new methods developed to improve on those proposed here.

For each design protocol, we estimate readme2 and 32 alternative statistical methods that can be used to estimate category proportions (including readme). Each method is analyzed on 19,710 (= 73 × 15 × 18) data sets because we have 73 corpora, 15 iterations per corpora per design, and 18 designs. The total number of method-design observations is therefore 630,720 (= 19,710 × 32).

The 32 alternative methods of estimating category proportions are of five types. The first four types comprise six classifiers each run within each of the four possible combinations of (a) a discrete or continuous feature space and (b) a classification of whole documents and counting or averaging continuous probability estimates to yield estimates of the category proportions. The six classifiers include support vector machines, random forests, Naive Bayes, and L1- and L2-regularized multinomial regression (using standard
settings and described in James, Witten, Hastie, and Tibshirani, 2013), and an ensemble of these classifiers based on an average of classifiers within each of the two cells of (b). The fifth type of alternative method includes 8 methods tuned for quantification. Among these, only readme is designed for more than two categories. We adapt the remaining 7 — Friedman, Adjusted Counts, HDX, Median Sweep, Mixture HPMF, Mixture L1, and Mixture L2 (each detailed in Firat 2016) — to multiple categories via estimation of repeated dichotomizations of the set of categories. When a method has adjustable parameters, we either optimized over them or used the software default.

Each of the 19,710 data sets we analyze, constructed as a subset of one of 73 corpora, has a labeled out-of-sample test set that plays the role of the unlabeled set, except that we are able to use its labels after estimation to evaluate performance. The 73 corpora include three used in Hopkins and King (2010): (1) 1,426 emails drawn from the broader Enron Corporation corpus made public during the Federal Energy Regulatory Commission’s investigation of the firm’s bankruptcy and hand coded by researchers into five categories; (2) a set of 462 newspaper editorials about immigration (with 3,618 word stems and 5 categories); and (3) a set with 1,938 blog posts about candidate Hillary Clinton from the 2008 presidential election (with 3,623 word stems and 7 categories). We also include 11,855 sentences (with 5 categories and 3,618 word stems) from the Stanford Sentiment Treebank (Socher et al., 2013). Finally, we include 69 separate social media data sets (most from Twitter and a few from diverse blogs and Facebook posts), each created by a different political candidate, private company, nonprofit, or government agency for their own purposes, covering different time frames and categorization schemes (see Firat, 2016); these data cover 150–4,200 word stems, 3–12 categories, and 700–4,000 tweets. (All data are in our replication data set, except that for privacy reasons the raw text of the last set has been coded as numbers.)

Nearly all documents in the 73 corpora are labeled with a time stamp. For the empirical design, we randomly select a time point and pick the previous 300 documents as the labeled set and the next 300 documents as the out-of-sample evaluation set (wrapping in time if necessary). For each corpora, we repeat this process 50 times. This procedure
keeps the evaluation highly realistic while also ensuring that we have many types of data sets with variation in proportion divergence, textual discrimination, and semantic change. The joint distribution of these quantities is crucial in determining the overall error dynamics, so accurately simulating this distribution is of the utmost importance in this exercise.

Although the empirical design emphasizes realism about what we see in practice, we replicate this analysis across the 18 designs described in Table 1 which make different assumptions about the joint distribution. Each of the 18 evaluation designs offers a different way of generating 19,710 data sets as subsets of the 73 corpora described in Section 4. Each data set is divided into a labeled set as well as a test set that serves the purpose of the unlabeled set during estimation, but can also be used for evaluation since all its document labels are observed.

Table 1: Alternative Evaluation Designs

<table>
<thead>
<tr>
<th>Design Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical</td>
<td>Sample consecutive chronological slices of the data to form labeled and unlabeled sets, wrapping when necessary (detailed in Section 4).</td>
</tr>
<tr>
<td>Empirical, Varied Labeled Set Size</td>
<td>Sample consecutive chronological slices of the data to form labeled and unlabeled sets, wrapping when necessary. Randomly sample the labeled set size from {100, 300, 500, 1000}.</td>
</tr>
<tr>
<td>Empirical, Maximum Labeled Set Size</td>
<td>Sample a consecutive chronological slice of the data to form the labeled set. Use the remainder of the documents to form the unlabeled set.</td>
</tr>
<tr>
<td>Empirical, Maximum Unlabeled Set Size</td>
<td>Sample a consecutive chronological slice of the data to form the labeled set. Use the remaining 300 documents to form the unlabeled set.</td>
</tr>
<tr>
<td>Sequential</td>
<td>Sample a time point randomly. From the 300 documents preceding this date, form the labeled set. From the 300 documents following to this date, form the unlabeled set. Wrap when necessary.</td>
</tr>
<tr>
<td>Random Subsets</td>
<td>Sample documents randomly without replacement for labeled and unlabeled sets.</td>
</tr>
<tr>
<td>Min. Proportion Divergence</td>
<td>Sample documents randomly without replacement to form 10,000 candidate labeled and unlabeled sets. Select the pair which minimizes (</td>
</tr>
<tr>
<td>Uniform Random Proportion Divergence</td>
<td>Draw random uniform on the interval ([0, 0.75]), the target (</td>
</tr>
<tr>
<td>Design Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Random Labeled Set, Uniformly Random Pr(D) in Unlabeled Set</td>
<td>Draw 300 labeled set documents at random from the set of candidates. Draw a target Pr(D)\textsuperscript{L} uniformly from the simplex and select candidate documents to achieve this target.</td>
</tr>
<tr>
<td>Max. Proportion Divergence</td>
<td>Sample documents randomly without replacement to form 10,000 candidate labeled and unlabeled sets. Select pair that maximizes</td>
</tr>
<tr>
<td>Min. Semantic Change</td>
<td>Sample documents randomly without replacement to form 10,000 candidate labeled and unlabeled sets. Select the pair that minimizes semantic change.</td>
</tr>
<tr>
<td>Uniform Random Semantic Change</td>
<td>Sample documents randomly without replacement to form 10,000 candidate labeled and unlabeled sets. Select a uniform random target amount of semantic change. Select the pair closest to the target.</td>
</tr>
<tr>
<td>Max. Semantic Change</td>
<td>Sample documents randomly without replacement to form 10,000 candidate labeled and unlabeled sets. Select the pair which maximizes semantic change.</td>
</tr>
<tr>
<td>Random Walk</td>
<td>Draw π\textsuperscript{L} from a uniform density on the simplex. For iteration i, draw π\textsuperscript{U} from a Dirichlet with parameter α ∝ 1_{C×1} for the first iteration and α ∝ (π\textsuperscript{U})\textsubscript{i−1} for subsequent iterations.</td>
</tr>
<tr>
<td>Chronological π\textsuperscript{L}, Uniform Random π\textsuperscript{U}</td>
<td>Draw the labeled set chronologically. Then, draw π\textsuperscript{U} by selecting a random point on the simplex.</td>
</tr>
<tr>
<td>Extreme Proportion Shift</td>
<td>Select division that best approximates one of the categories having &lt; 5% of the labeled set, but &gt; 25% of the unlabeled set.</td>
</tr>
<tr>
<td>Uniform Random Proportions</td>
<td>Draw π\textsuperscript{L} and π\textsuperscript{U} from independent uniform distributions on the simplex.</td>
</tr>
<tr>
<td>Extreme Features in Labeled Set</td>
<td>Calculate document-level word vector features. Form the labeled set from documents falling furthest from the average document. Form the unlabeled set from a random selection of the remaining documents.</td>
</tr>
</tbody>
</table>

**Implementation Details** For word embeddings, we use the 200-dimensional global word vector (“GloVe”) model, estimated from about 2 billion Twitter posts with a vocabulary of about 1.2 million terms. We follow standard approaches by summarizing the vectors, in our case with the 10\textsuperscript{th}, 50\textsuperscript{th}, and 90\textsuperscript{th} quantiles of each dimension (Templeton and Kalita, 2018), resulting, for any given corpus, in F with W = 200 × 3 = 600 unique features observed for each document. Because we are optimizing over these factors, we
do not require the preprocessing steps for textual data (removing stop words, punctuation, etc.); instead, we are only constrained by the choice of the preprocessing for the original word embedding training, which in the case of GloVe means making the text all lower case. For optimization, we use stochastic gradient descent with momentum, minimizing overfitting with “dropout,” “gradient clipping,” normalizing $F$ to mean zero and variance 1, and using a standard confidence penalty (King, Gebbie, and Melosh, 2019; Kingma and Ba, 2014; Pereyra et al., 2017; Srivastava et al., 2014). We set the number of final features, $W'$, to 20, although performance does not greatly depend on this parameter as long as it is much smaller than the number of input features $W$.

**Results** We present results across our numerous evaluations in three ways.

First, Figure 4 compares the performance of readme2 to the 32 alternative methods across all 18 designs. For each method, we compute the proportion of data sets with higher error than readme2 vertically by the proportion divergence in quantiles horizontally. Our new approach outperforms the best classifier (in these data, a support vector machine (SVM) model run in the continuous feature space) in 94.5% of corpora. Many of the 32 methods are outperformed by readme2 in 100% of the cases, as indicated by appearing at the top of the graph. Relative performance remains excellent across the different levels of category proportion divergence between labeled and unlabeled sets. The new method’s relative performance improves when proportion divergence is high (at the right, with more substantial changes between labeled and unlabeled sets), which makes sense since ours is the only approach to directly address semantic change. The different types of methods (represented as lines) follow three basic patterns in relative performance: (a) classifiers with averaged probabilities (in black and green) have higher SAE relative to readme2 as divergence increases, due to their assumption that test and training sets are drawn from the same distribution; (b) quantification methods (in light blue) approach readme2’s performance only with high levels of divergence, since they are designed for this situation; and (c) the remaining methods perform relatively poorly overall regardless
of proportion divergence.

Figure 4: The proportion of corpora with higher error than our approach (vertically) by quantile in proportion divergence (horizontally), with 32 different methods color coded by type (described in the text, with feature space “D” for discrete and “C” for continuous).

Second, we provide a more detailed comparison of the performance of readme to readme2, the primary goal of this paper. In the empirical design, which we argue is particularly important in practice, we find an 35.3% average corpus-wide improvement over readme, which in terms of SAE is a substantial 9.4 percentage points. Figure 5 plots estimation error (vertically) for readme compared to our new approach (ordered horizontally by size of the improvement). The length of each arrow represents the average improvement over subsets of each of the 73 corpora, with one arrow for each. In all cases, the arrows face downward, meaning that in every corpus our new method outperforms readme on average. Our new approach performs better in all three of the data sets used in Hopkins and King (2010), and also the Stanford Sentiment data set (the colored arrows).

Next, we show that our results are robust across our 18 diverse simulation designs
Figure 5: Average Error Reduction: readme to readme2, in analyses of 50 subsets of each of the 73 data sets. The length of each arrow indicates the change in performance, with downward arrows indicating how SAE is reduced by our new methodology. Colored arrows refer to the four publicly available data sets, three of which were used in Hopkins and King (2010).

(described in Table 1). The left panel of Figure 6 compares average performance over simulations and reveals that and readme2 outperforms readme for every simulation design one (as indicated by being above the dotted horizontal line). The empirical analysis, noted in red, is the substantively most meaningful design described above. Then, the right panel of Figure 6 illustrates how, across the 18 simulation designs, readme2 outperforms not only readme, but all 32 alternative methods in a large fraction of cases. Readme2’s average rank is 3.89, whereas the next best algorithm’s average rank is 6.50. Median performance (indicated by the horizontal gray bar for each design) is always improved.

We performed a final check to assess the sensitivity of our analysis to the vector representation of the words. We re-analyzed the Clinton blogs data using a labeled/unlabeled split from our “Empirical” design. We generated the quantification-tuned features us-
Figure 6: Average Error Reduction by Simulation Design, relative to readme (left panel) and for 32 alternative methods (right panel). The simulation marked *Empirical* in both is the one described above in the text; the others are described in Table 1. Items above the dotted horizontal line in both panels indicate that readme2 reduced SAE compared to a competing method. The gray horizontal line for each set of simulations in the right panel is the median. ("P.D." stands for “Proportion Divergence”; “S.C.” stands for “Semantic Change”; “L.” stands for “Labeled”; “U” stands for “Unlabeled.”)

...ing the 200-dimensional GloVe embeddings from Twitter (used in our main simulation results). We then generated features using 25- and 100-dimensional GloVe embeddings from Twitter, as well as the 50-dimensional embeddings trained on a 2014 Wikipedia corpus. We find that each of the 20 synthetic features from the 200-dimensional GloVe embeddings have close counterparts in each of the other cases. The maximum absolute correlation for each feature is above 0.60 and most are above 0.80. These results, illustrated in Figure 7, show that the readme2 algorithm described here is quite robust to the choice of vector representation for the words. The “random” line in blue indicates the density of maximum absolute correlations we would see if there were no relationship between the transformed 200-dimension Twitter vector summaries and the transformed summaries from other vector sources.

In sum, our new methodology would seem to be preferably to readme and other existing methods across a wide array of corpora, data sets, and evaluation protocols. It is also worth noting that readme2 is computationally fast due to its use of batch sampling.
Figure 7: Comparison of readme2 results from different word embeddings. For comparison, “Random” displays the maximum absolute correlations we would obtain with 20 randomly generated features.

and efficient symbolic math libraries. Estimation on a dataset with a labeled set size of 1,000 and an unlabeled set size of 500, with 5 categories and 600 raw features, takes about 11.5 seconds on a CPU with a 2.7 GHz processor and 8 GB of memory (while estimation via SVM, for example, takes 10.5 seconds and via lasso-regularized regression takes 7.3 seconds).

5 Current Issues and Future Research

The methods introduced here appear to be clear improvements over readme and other approaches in a wide variety of circumstances, category types, and datasets. We focus in this section on the three situations where our approach may not help and further research
may be productive. In addition, increasing computational power and data availability may open up the possibility of other improvements, such as by optimizing over fixed choices we have made or, for example, simultaneously training word embeddings with our approach.

First, when we use matching in continuous space, we generally reduce proportion divergence and the effects of vanishing discourse. However, emerging discourse not only can cause bias in any method, but this bias can sometimes be induced by the analyst in the process of dealing with vanishing discourse. In addition, although readme2 is the only method that has been proposed to reduce the effects of vanishing discourse, it is of no help if all the relevant discourse vanishes within a category. This is akin to a violation of the common support assumption in causal inference and so must rely on risky extrapolations. Unlike with classifiers, our methodology does not need to assume that the labeled and unlabeled sets are drawn from the same distribution, but we do require that the conditional distributions have some overlap. If one suspects that meaning or language is changing dramatically, the easiest fix is to code additional observations from later points in time.

Second, if the original feature space is highly sparse (as in a regression with a large number of irrelevant covariates), then our optimization algorithm may have difficulty arriving at a stable solution for $\Gamma$. This can happen with highly uninformative text, categories with labels that may be more meaningful to investigators than the authors of the text, or error-ridden hand coding. If the word vectors used to generate the raw features were trained on an inappropriate corpus, performance would also be expected to deteriorate, as the relationship between the text and numbers would be more tenuous. Our word vectors are from Twitter and so we recommend swapping these out with another set if the text being analyzed differs substantially from tweets. Fortunately, many types of pre-trained word vectors are now available, including in many languages.

Finally, our approach relies on meaningful text in each document, conceptually coherent and mutually exclusive and exhaustive categories, and a labeling effort that validly
and reliably codes documents into the right categories. These may seem like obvious criteria, but they always constitute the most important steps in any automated text analysis method, including ours. In our experience most of the effort in getting an analysis right involves, or should involve, these preliminary steps.

6 Concluding Remarks

We improve on readme, a popular method of estimating category proportions which is a task of central interest to social scientists and others. We do this without having to tune or even use the often model dependent methods of individual classification developed for different quantities of interest. We prove properties and provide intuition about readme and then build our alternative approach. We have tested our analysis in 73 separate data sets, 19,710 data subsets, and 18 evaluation protocols, with encouraging results. Overall, our approach weakens the key assumptions of readme while creating new, more meaningful numerical representations of each of the documents specifically tuned to reduce the mean square error of multi-category, nonparametric quantification.

We can identify several ways of building on our work to further improve performance. These include methods for optimizing the raw continuous textual representations used in readme. In this analysis, we use document-level summaries of word vectors for the raw features, but there is no quantitative principle implying that this choice is optimal and so could be improved. Indeed, our results suggest that the quantitative features used in readme greatly improve performance. It is natural, then, to consider continuous document-level representations directly from the labeled (and unlabeled) sets, or possibly using category-wise information from the labeled set or with smoothing toward word vectors created from giant corpora such as that we use from Twitter. With these additions, the estimation process could be more fully optimized for quantification. Finally, further work could explore more systematically the application of these ideas to other non-parametric methods.
References


Esuli, Andrea and Fabrizio Sebastiani (2015): “Optimizing text quantifiers for multivariate loss functions”. In: *ACM Transactions on Knowledge Discovery from Data (TKDD)*, no. 4, vol. 9, p. 27.


Gama, João et al. (2014): “A survey on concept drift adaptation”. In: *ACM computing surveys (CSUR)*, no. 4, vol. 46, p. 44.


Milli, Letizia et al. (2013): “Quantification trees”. In: 2013 IEEE 13th International Conference on Data Mining, pp. 528–536.


