Advanced Quantitative Research Methodology, Lecture Notes: Model Dependence in Counterfactual Inference

Gary King

GaryKing.org

March 31, 2013

\footnote{\copyright Copyright 2013 Gary King, All Rights Reserved.}
References

- Related Software: WhatIf, MatchIt, Zelig, CEM

Counterfactuals

- Three types:
 1. **Forecasts** Will the U.S. be in Afghanistan in 2016?
 2. **Whatif Questions** What would have happened if the U.S. had not invaded Iraq?
 3. **Causal Effects** What is the causal effect of the Iraq war on U.S. Supreme Court decision making? (a factual minus a counterfactual)

- Counterfactuals are part of almost all research questions.
Model Dependence in Practice

- How do you conduct empirical analyses?
 - collect the data over many months or years.
 - finish recording and merging.
 - sit in front of your computer with nobody to bother you.
 - run one regression.
 - run another regression with different control variables.
 - run another regression with different functional forms.
 - run another regression with different measures.
 - run yet another regression with a subset of the data.
 - end up with 100 or 1000 different estimates.
 - put 1 or maybe 5 regression results in the paper.

- What’s the problem?
 - Some specification is designated as the “correct” one, only after looking at the estimates.
 - Is this a true test of an ex ante hypothesis or merely a demonstration that it is possible to find results consistent with your favorite hypothesis?
Which model would you choose? (Both fit the data well.)

- Compare prediction at $x = 1.5$ to prediction at $x = 5$
- The bottom line: answers to some questions don’t exist in the data.
- Same for what if questions, predictions, and causal inferences
Model Dependence Proof

Model Free Inference
To estimate $E(Y|X = x)$ at x, average many observed Y with value x

Assumptions (Model-Based Inference)
1. Definition: model dependence at x is the difference between predicted outcomes for any two models that fit about equally well.
2. The functional form follows strong continuity (think smoothness, although it is less restrictive)

Result
The maximum degree of model dependence: solely a function of the distance from the counterfactual to the data
Randomly select a large number of infants
Randomly assign them to 0, 6, 8, 10, 12, 16 years of education
Assume 100% compliance, and no measurement error, omitted variables, or missing data
Regress cumulative salary in year 17 on education
We find a coefficient of $\hat{\beta} = \$1,000$, big t-statistics, narrow confidence intervals, and pass every test for auto-correlation, fit, normality, linearity, homoskedasticity, etc.
A Factual Question: How much salary would someone receive with 12 years of education (a high school degree)?

The model-free estimate: mean(Y) among those with $X = 12$.

The model-based linear estimate: $\hat{Y} = X\hat{\beta} = 12 \times \$1,000 = \$12,000$
How much salary would someone receive with 14 years of education (an Associates Degree)?

Model free estimates impossible.

\[\hat{Y} = X\hat{\beta} = 14 \times $1,000 = $14,000 \]
How much salary would someone receive with 24 years of education (a Ph.D.)?

\[\hat{Y} = X\hat{\beta} = 24 \times \$1,000 = \$24,000 \]
How much salary would someone receive with 53 years of education?

\[\hat{Y} = X \hat{\beta} = 53 \times \$1,000 = \$53,000 \]

Recall: the regression passed every test and met every assumption; identical calculations worked for the other questions.

What’s changed? How would we recognize it when the example is less extreme or multidimensional?
Suppose Y is starting salary; X is education in 10 categories.

To estimate $E(Y|X)$: we need 10 parameters, $E(Y|X = x_j)$, $j = 1, \ldots, 10$.

Model-free method: average 50 observations on Y for each value of X

Model-based method: regress Y on X, summarizing 10 parameters with 2 (intercept and slope).

The difference between the 10 we need and the 2 we estimate with regression is pure assumption.

If X were continuous, we would be reducing ∞ to 2, also by assumption.
How many parameters do we now need to estimate? 20? Nope. It's $10 \times 10 = 100$. This is the curse of dimensionality: the number of parameters goes up geometrically, not additively.

If we run a regression, we are summarizing 100 parameters with 3 (an intercept and two slopes).

But what about including an interaction? Right, so now we're summarizing 100 parameters with 4.

The difference is still one enormous assumption based on convenience, and neither evidence nor theory.
Suppose: 15 explanatory variables, with 10 categories each.
- need to estimate 10^{15} (a quadrillion) parameters with how many observations?
- Regression reduces this to 16 parameters, by assumption.

Suppose: 80 explanatory variables.
- 10^{80} is more than the number of atoms in the universe.
- Yet, with a few simple assumptions, we can still run a regression and estimate only 81 parameters.

The curse of dimensionality introduces huge assumptions, often recognized.
We Ask: How Factual is your Counterfactual?

- Readers have the right to know: is your counterfactual close enough to data so that statistical methods provide empirical answers?
- If not, the same calculations will be based on indefensible model assumptions. With the curse of dimensionality, it's too easy to fall into this trap.
- A good existing approach: Sensitivity testing, but this requires the user to specify a class of models and then to estimate them all and check how much inferences change.
- Our alternative approach:
 - Specify your explanatory variables, X.
 - Assume $E(Y|X)$ is (minimally) smooth in X.
 - No need to specify models (or a class of models), estimators, or dependent variables.
 - Results of one run apply to the class of all models, all estimators, and all dependent variables.
Interpolation vs Extrapolation in one Dimension

\[\text{yhat} = \text{X} \times \text{beta} + (\text{X}^2) \times \text{beta2} \]

\[E(\text{$\$|Education}) \]

\[\text{yhat} = \text{X} \times \text{beta} \]

Years of Education

\[0 \quad 6 \quad 8 \quad 10 \quad 12 \quad 16 \]
Interpolation or Extrapolation in One and Two Dimensions

Figure: The Convex Hull

- **Interpolation**: Inside the convex hull
- **Extrapolation**: Outside the convex hull
- Works mathematically for any number of X variables
- Software to determine whether a point is in the hull (which is all we need) without calculating the hull (which would take forever), so it's fast; see http://GKing.harvard.edu/whatif
Data: 124 Post-World War II civil wars
Dependent variable: peacebuilding success
Treatment variable: multilateral UN peacekeeping intervention (0/1)
Control variables: war type, severity, and duration; development status; etc...
Counterfactuals: UN intervention switched (0/1 to 1/0) for each observation
Percent of counterfactuals in the convex hull: 0%
Thus, without estimating any models, we know inferences will be model dependent; for illustration, let’s find an example...
<table>
<thead>
<tr>
<th>Variables</th>
<th>Original Model</th>
<th>Modified Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff</td>
<td>SE</td>
</tr>
<tr>
<td>Wartype</td>
<td>-1.742</td>
<td>.609</td>
</tr>
<tr>
<td>Logdead</td>
<td>-.445</td>
<td>.126</td>
</tr>
<tr>
<td>Wardur</td>
<td>.006</td>
<td>.006</td>
</tr>
<tr>
<td>Factnum</td>
<td>-1.259</td>
<td>.703</td>
</tr>
<tr>
<td>Factnum2</td>
<td>.062</td>
<td>.065</td>
</tr>
<tr>
<td>Trnsfcap</td>
<td>.004</td>
<td>.002</td>
</tr>
<tr>
<td>Develop</td>
<td>.001</td>
<td>.000</td>
</tr>
<tr>
<td>Exp</td>
<td>-6.016</td>
<td>3.071</td>
</tr>
<tr>
<td>Decade</td>
<td>-.299</td>
<td>.169</td>
</tr>
<tr>
<td>Treaty</td>
<td>2.124</td>
<td>.821</td>
</tr>
<tr>
<td>UNOP4</td>
<td>3.135</td>
<td>1.091</td>
</tr>
<tr>
<td>Wardur*UNOP4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Constant</td>
<td>8.609</td>
<td>2.157</td>
</tr>
</tbody>
</table>

N | 122 |
Log-likelihood | -45.649|
Pseudo R^2 | .423 |

Gary King (Harvard, IQSS) Advanced Quantitative Research Methodology March 31, 2013 19 / 23
Doyle and Sambanis: Model Dependence

In Sample Fit

Counterfactual Prediction

Probabilities from original model vs. Probabilities from modified model
Biases in Causal Inference: A New Decomposition

\[d = \text{mean}(Y|D = 1) - \text{mean}(Y|D = 0) \]

bias \equiv E(d) - \theta = \Delta_o + \Delta_p + \Delta_i + \Delta_e

- \Delta_o \text{ Omitted variable bias}
- \Delta_p \text{ Post-treatment bias}
- \Delta_i \text{ Interpolation bias}
- \Delta_e \text{ Extrapolation bias}
Interpolation vs Extrapolation Bias

Dashed: quadratic
Solid: linear (dotted: 95% CI)

Treatment group data
Control group data
Causal Effect of Multidimensional UN Peacekeeping Operations

![Graph showing marginal effects of UN peacekeeping operations over the duration of wars in months. The graph compares the original model with an interaction term.](image)

- **Dotted:** Original model
- **Model with interaction term**