Development and Implementation of Reference Models

Roberto A. Rocha, MD, PhD, FACMI
Managing Director
Semedy, Inc.
Assistant Professor of Medicine
Division of General Internal Medicine and Primary Care
Brigham and Women’s Hospital, Harvard Medical School
Overview

• Background
 – Reference models

• Clinical documentation
 – Efforts, challenges, lessons learned

• Knowledge management
 – Assets, lifecycle, tools

• Conclusions
BACKGROUND
Reference models

• Detailed **clinical models** that guide the implementation of robust and consistent **clinical documentation templates** within Electronic Health Record (EHR) systems

• Promote **standardization** of structured clinical data captured at the point-of-care – e.g. forms, flowsheets

• Compatible with different **EHR tools, clinical settings**, and **clinical professionals**
<table>
<thead>
<tr>
<th>Data Element</th>
<th>Data Type</th>
<th>Value Set List</th>
</tr>
</thead>
<tbody>
<tr>
<td>SET: Pain Assessment (ALWAYS INCLUDE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain Episode Duration</td>
<td>Numeric</td>
<td>NA</td>
</tr>
<tr>
<td>Pain Location</td>
<td>Category</td>
<td>abdomen</td>
</tr>
<tr>
<td>Pain Location Qualifier</td>
<td>Category</td>
<td>Right</td>
</tr>
<tr>
<td>Pain Quality</td>
<td>Category</td>
<td>Ache</td>
</tr>
<tr>
<td>Relative Temporal Context</td>
<td>Category</td>
<td>Post-operativeprocedure</td>
</tr>
<tr>
<td>Pain Assessment Severity Scale Selection for Cascade</td>
<td>Category</td>
<td>List of validated scales:</td>
</tr>
<tr>
<td>Pain Severity Score [using validated scale]</td>
<td>Category</td>
<td>Use Numeric 0-10 Scale Scores:</td>
</tr>
<tr>
<td>Is Pain Relief Acceptable?</td>
<td>Boolean</td>
<td>Yes</td>
</tr>
</tbody>
</table>
CLINICAL DOCUMENTATION
Acute Care Documentation (1/3)

• **Publication:**

• **Context:**
 – Large strategic initiative back in 2007 to develop **standardized acute care documentation** across two major academic medical centers: Brigham and Women’s Hospital and Massachusetts General Hospital
Acute Care Documentation (2/3)

• **Goals:**
 – **Highly structured documentation** to fulfill clinical needs, regulatory reporting, and data reuse
 – All **clinical disciplines** (e.g. nursing, medicine, social work, physical therapy, nutrition, occupational therapy)
 – Proactive **data standardization** in an effort to avoid ambiguity and duplication – e.g. naming convention for data elements, reuse of value sets, etc.

• **Results:**
 – Over **11,000 data elements** defined, used in over **1,000 documentation templates** – e.g. initial patient assessments, progress notes, procedure and perioperative notes, event notes, transfer notes, discharge notes, assessment scales, flowsheets, etc.
 – Bedside documentation system was **not** implemented
• **Challenges:**
 – **Clinical** requirements *well understood* by stakeholder groups - easily gained traction when cited as a rationale for content development requirements
 – **Knowledge management** and **informatics** requirements *not well understood* – formal processes to garner support and adherence
 – Limited resources, **expertise**, and competing priorities

• **Lessons learned:**
 – Assess **knowledge needs** and set **expectations** at the start of the project
 – Define an accountable **decision-making process**
 – Increase team **meeting moderation** skills
 – Ensure adequate **resources** and **competency training** with online collaborative tools
 – Develop **goal-oriented** teams and consultative **service-based** teams
Large-scale EHR implementation (1/4)

• **Publications:**

Large-scale EHR implementation (2/4)

• **Context:**
 – **System-wide** vendor EHR implementation (2012-2017) – replace existing clinical systems

• **Goals:**
 – Minimize *(resolve)* **inconsistent data definitions** across EHR applications and clinical settings, enabling and promoting **data reuse** and **interoperability**
 – **Practical** *(pragmatic)* approach to **governance** and **implementation** of structured data elements and reference models
 - Factors: resource allocation, implementation timeline, content refactoring, vendor best-practices, EHR limitations, etc.
Large-scale EHR implementation (3/4)

• **Process:**
 1. Identify clinical topics – align with strategic goals of the organization
 2. Create **draft** reference model(s) – find/consolidate/reuse models
 3. Quantify downstream data needs – reporting, regulatory requirements, clinical decision support, accurate billing, etc.
 4. Prioritize clinical topics – focus on high-value topics
 5. Validate reference model(s) – clinically accurate and complete
 6. Quantify gap with EHR content – prioritize revision/refactoring
 7. Disseminate **validated** model(s) – guide new content or revisions
 8. Request revisions to EHR content – change management process
 9. Assess reference model utilization – implementation and compliance
 10. Monitor for new evidence - revisions to reference model (**evergreen**)
Large-scale EHR implementation (4/4)

- **Results:**
 - Data elements: +15,000 (forms) and +45,000 (flowsheets)
 - Dedicated workgroup: +5 reference models (*discontinued*)
 - Pain Assessment: 47 data elements organized into 9 data groups
 - EHR system successfully implemented at all sites

- **Challenges:**
 - Implementation timeline **incompatible** with the development of detailed reference models
 - EHR **processes** and **tools** not designed to promote detailed, consistent, and reusable data definitions **across** applications and modules
 - EHR content & data refactoring is an **iterative** process that requires expertise and motivated individuals
KNOWLEDGE MANAGEMENT
Clinical Knowledge Management (CKM)

- Systematic and sustainable acquisition, adaptation (localization), and management of knowledge assets
 - Assets → data capture, clinical decision support (CDS), population management, analytics, etc.

- Includes the adaptation of reference knowledge sources to reflect local requirements, resources, and priorities

- Follows a well-defined lifecycle, including specific stages for documentation, testing, and monitoring – supported by skilled resources and integrated tools

Scope of CKM activities

- CDS
- Data Templates
- Data Definitions
- Terminology & Ontology Management
- Software Infrastructure

- alerts, reminders, medication warnings, duplication warnings, therapeutic alternatives, infobuttons, etc.
- forms, flowsheets, documentation templates, data fields, calculators, etc.
- value sets and classification rules for problems, medications, procedures, etc.
- master files, dictionaries, translation tables, and reference ontologies (e.g. SNOMED CT, ICD-10-CM, LOINC)
- editors, portals, repositories, virtual collaboration tools, knowledge retrieval services, rule execution engines
Focus on relevant clinical topics

Figure 1. Criteria to Prioritize Clinical Topic Refinement

KM lifecycle → Reference Models

- Request (new or update)
- Authorize & Prioritize
- Design
- Test & Deploy
- Implement
- Evaluate
- Monitor
Conclusions: implementation

• Early engagement of clinical leaders to set expectations of technical process, dependencies, and requirements

• Provision of formal training about informatics standards and governance processes

• Establish a KM (Informatics) team with proper authority and robust toolset – guide implementation and ensure compliance with processes and standards
Conclusions: models & assets

• Establish **governance** for essential asset types
• Define and optimize curation **processes** *(lifecycle)*
• Implement software **platform** integrated with knowledge **sources** and **consumers**
• **Monitor & evaluate** processes and interventions
• Seek alignment with **standards**, maximizing interoperability and external collaborations
• **Collaborate** with other institutions to help amortize operational **costs** and promote **innovation**
Thank you!

Roberto A. Rocha, MD, PhD
r.rocha@computer.org
http://scholar.harvard.edu/rarocha

This work by Roberto A. Rocha is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License