Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model

Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model
Gary King. 1988. “Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for The Exponential Poisson Regression Model.” American Journal of Political Science, 32, Pp. 838-863.Abstract
This paper presents analytical, Monte Carlo, and empirical evidence on models for event count data. Event counts are dependent variables that measure the number of times some event occurs. Counts of international events are probably the most common, but numerous examples exist in every empirical field of the discipline. The results of the analysis below strongly suggest that the way event counts have been analyzed in hundreds of important political science studies have produced statistically and substantively unreliable results. Misspecification, inefficiency, bias, inconsistency, insufficiency, and other problems result from the unknowing application of two common methods that are without theoretical justification or empirical unity in this type of data. I show that the exponential Poisson regression (EPR) model provides analytically, in large samples, and empirically, in small, finite samples, a far superior model and optimal estimator. I also demonstrate the advantage of this methodology in an application to nineteenth-century party switching in the U.S. Congress. Its use by political scientists is strongly encouraged.
Read more

Event Count Models for International Relations: Generalizations and Applications

Event Count Models for International Relations: Generalizations and Applications
Gary King. 1989. “Event Count Models for International Relations: Generalizations and Applications.” International Studies Quarterly, 33, Pp. 123–147.Abstract
International relations theorists tend to think in terms of continuous processes. Yet we observe only discrete events, such as wars or alliances, and summarize them in terms of the frequency of occurrence. As such, most empirical analyses in international relations are based on event count variables. Unfortunately, analysts have generally relied on statistical techniques that were designed for continuous data. This mismatch between theory and method has caused bias, inefficiency, and numerous inconsistencies in both theoretical arguments and empirical findings throughout the literature. This article develops a much more powerful approach to modeling and statistical analysis based explicity on estimating continuous processes from observed event counts. To demonstrate this class of models, I present several new statistical techniques developed for and applied to different areas of international relations. These include the influence of international alliances on the outbreak of war, the contagious process of multilateral economic sanctions, and reciprocity in superpower conflict. I also show how one can extract considerably more information from existing data and relate substantive theory to empirical analyses more explicitly with this approach.
Read more

Representation Through Legislative Redistricting: A Stochastic Model

Representation Through Legislative Redistricting: A Stochastic Model
Gary King. 1989. “Representation Through Legislative Redistricting: A Stochastic Model.” American Journal of Political Science, 33, Pp. 787–824.Abstract
This paper builds a stochastic model of the processes that give rise to observed patterns of representation and bias in congressional and state legislative elections. The analysis demonstrates that partisan swing and incumbency voting, concepts from the congressional elections literature, have determinate effects on representation and bias, concepts from the redistricting literature. The model shows precisely how incumbency and increased variability of partisan swing reduce the responsiveness of the electoral system and how partisan swing affects whether the system is biased toward one party or the other. Incumbency, and other causes of unresponsive representation, also reduce the effect of partisan swing on current levels of partisan bias. By relaxing the restrictive portions of the widely applied "uniform partisan swing" assumption, the theoretical analysis leads directly to an empirical model enabling one more reliably to estimate responsiveness and bias from a single year of electoral data. Applying this to data from seven elections in each of six states, the paper demonstrates that redistricting has effects in predicted directions in the short run: partisan gerrymandering biases the system in favor of the party in control and, by freeing up seats held by opposition party incumbents, increases the system’s responsiveness. Bipartisan-controlled redistricting appears to reduce bias somewhat and dramatically to reduce responsiveness. Nonpartisan redistricting processes substantially increase responsiveness but do not have as clear an effect on bias. However, after only two elections, prima facie evidence for redistricting effects evaporate in most states. Finally, across every state and type of redistricting process, responsiveness declined significantly over the course of the decade. This is clear evidence that the phenomenon of "vanishing marginals," recognized first in the U.S. Congress literature, also applies to these different types of state legislative assemblies. It also strongly suggests that redistricting could not account for this pattern.
Read more
All writings


Introduction to Perusall, at Webinar, Tuesday, April 5, 2016:

Perusall is a new collaborative e­book platform that keeps students on track before class. Perusall ensures students learn more, get instant answers to their questions, come to class prepared (with >90% having done the reading), and enjoy the experience. It enables instructors to teach more effectively, understand student misconceptions, structure class discussion, and save time. Perusall is free. For publishers and authors, it is the ultimate solution to IP piracy, resales, and sell-through. Perusall is based on extensive patent-­...

Read more about Introduction to Perusall
Simplifying Matching Methods for Causal Inference, at University of Pennsylvania, APPC, Friday, April 1, 2016:

In this talk, Gary King introduces methods of matching for causal inference that are simpler, more powerful, and easier to understand than prior approaches. Software is available to implement everything discussed. Copies of some of his papers on the subject are available at his web site

Discovering and Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts, at University of Florida, Department of Political Science, Friday, March 18, 2016:

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals put forward by both political parties or anyone else. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has...

Read more about Discovering and Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Big Data is Not About the Data!, at University of Florida, Informatics Symposium, Thursday, March 17, 2016:

In this talk, Gary King explains that the spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often just makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical methods of extracting insights from the data. He will illustrate these points...

Read more about Big Data is Not About the Data!
All presentations

Gary King on Twitter