Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

How the news media activate public expression and influence national agendas

How the news media activate public expression and influence national agendas
Gary King, Benjamin Schneer, and Ariel White. 11/10/2017. “How the news media activate public expression and influence national agendas.” Science, 358, Pp. 776-780. Publisher's VersionAbstract

We demonstrate that exposure to the news media causes Americans to take public stands on specific issues, join national policy conversations, and express themselves publicly—all key components of democratic politics—more often than they would otherwise. After recruiting 48 mostly small media outlets, we chose groups of these outlets to write and publish articles on subjects we approved, on dates we randomly assigned. We estimated the causal effect on proximal measures, such as website pageviews and Twitter discussion of the articles’ specific subjects, and distal ones, such as national Twitter conversation in broad policy areas. Our intervention increased discussion in each broad policy area by approximately \(\approx 62.7\%\) (relative to a day’s volume), accounting for 13,166 additional posts over the treatment week, with similar effects across population subgroups. 

On the Science website: AbstractReprintFull text, and a comment (by Matthew Gentzkow) "Small media, big impact".

 

 

Read more

How to Measure Legislative District Compactness If You Only Know it When You See It

How to Measure Legislative District Compactness If You Only Know it When You See It
Aaron Kaufman, Gary King, and Mayya Komisarchik. Working Paper. “How to Measure Legislative District Compactness If You Only Know it When You See It”.Abstract
To prevent gerrymandering, and to impose a specific form of democratic representation, many state constitutions and judicial opinions require US legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that the concept has multiple theoretical dimensions and have generated large numbers of conflicting empirical measures. This has proved extremely challenging for courts tasked with adjudicating compactness. We hypothesize that both are correct --- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey design to elicit this understanding, without bias in favor of one's own political views, and with high levels of reliability (in data where the standard paired comparisons approach fails). We then create a statistical model that predicts, with high accuracy and solely from the geometric features of the district, compactness evaluations by 96 judges, justices, and public officials responsible for redistricting (and 102 redistricting consultants, expert witnesses, law professors, law students, graduate students, undergraduates, and Mechanical Turk workers). We also offer data on compactness from our validated measure for 18,215 state legislative and congressional districts, as well as software to compute this measure from any district. We then discuss what may be the wider applicability of our general methodological approach to measuring important concepts that you only know when you see.
Read more

Urban observatories: City data can inform decision theory

Aristides A. N. Patrinos, Hannah Bayer, Paul W. Glimcher, Steven Koonin, Miyoung Chun, and Gary King. 3/19/2015. “Urban observatories: City data can inform decision theory.” Nature, 519, Pp. 291. Publisher's VersionAbstract

Data are being collected on human behaviour in cities such as London, New York, Singapore and Shanghai, with a view to meeting city dwellers' needs more effectively. Incorporating decision-making theory into analyses of the data from these 'urban observatories' would yield further valuable information.

Read more

Effectiveness of the WHO Safe Childbirth Checklist Program in Reducing Severe Maternal, Fetal, and Newborn Harm: Study Protocol for a Matched-Pair, Cluster Randomized Controlled Trial in Uttar Pradesh, India

Effectiveness of the WHO Safe Childbirth Checklist Program in Reducing Severe Maternal, Fetal, and Newborn Harm: Study Protocol for a Matched-Pair, Cluster Randomized Controlled Trial in Uttar Pradesh, India
Katherine Semrau, Lisa R. Hirschhorn, Bhala Kodkany, Jonathan Spector, Danielle E. Tuller, Gary King, Stuart Lisptiz, Narender Sharma, Vinay P. Singh, Bharath Kumar, Neelam Dhingra-Kumar, Rebecca Firestone, Vishwajeet Kumar, and Atul Gawande. 2016. “Effectiveness of the WHO Safe Childbirth Checklist Program in Reducing Severe Maternal, Fetal, and Newborn Harm: Study Protocol for a Matched-Pair, Cluster Randomized Controlled Trial in Uttar Pradesh, India.” Trials, 576, 17, Pp. 1-10. Publisher's VersionAbstract

Background: Effective, scalable strategies to improve maternal, fetal, and newborn health and reduce preventable morbidity and mortality are urgently needed in low- and middle-income countries. Building on the successes of previous checklist-based programs, the World Health Organization (WHO) and partners led the development of the Safe Childbirth Checklist (SCC), a 28-item list of evidence-based practices linked with improved maternal and newborn outcomes. Pilot-testing of the Checklist in Southern India demonstrated dramatic improvements in adherence by health workers to essential childbirth-related practices (EBPs). The BetterBirth Trial seeks to measure the effectiveness of SCC impact on EBPs, deaths, and complications at a larger scale.

Methods: This matched-pair, cluster-randomized controlled, adaptive trial will be conducted in 120 facilities across 24 districts in Uttar Pradesh, India. Study sites, identified according to predefined eligibility criteria, were matched by measured covariates before randomization. The intervention, the SCC embedded in a quality improvement program, consists of leadership engagement, a 2-day educational launch of the SCC, and support through placement of a trained peer “coach” to provide supportive supervision and real-time data feedback over an 8-month period with decreasing intensity. A facility-based childbirth quality coordinator is trained and supported to drive sustained behavior change after the BetterBirth team leaves the facility. Study participants are birth attendants and women and their newborns who present to the study facilities for childbirth at 60 intervention and 60 control sites. The primary outcome is a composite measure including maternal death, maternal severe morbidity, stillbirth, and newborn death, occurring within 7 days after birth. The sample size (n = 171,964) was calculated to detect a 15% reduction in the primary outcome. Adherence by health workers to EBPs will be measured in a subset of births (n = 6000). The trial will be conducted in close collaboration with key partners including the Governments of India and Uttar Pradesh, the World Health Organization, an expert Scientific Advisory Committee, an experienced local implementing organization (Population Services International, PSI), and frontline facility leaders and workers

Discussion: If effective, the WHO Safe Childbirth Checklist program could be a powerful health facilitystrengthening intervention to improve quality of care and reduce preventable harm to women and newborns, with millions of potential beneficiaries.

Trial registration: BetterBirth Study Protocol dated: 13 February 2014; ClinicalTrials.gov: NCT02148952; Universal Trial Number: U1111-1131-5647. 

Read more

booc.io: An Education System with Hierarchical Concept Maps

booc.io: An Education System with Hierarchical Concept Maps
Michail Schwab, Hendrik Strobelt, James Tompkin, Colin Fredericks, Connor Huff, Dana Higgins, Anton Strezhnev, Mayya Komisarchik, Gary King, and Hanspeter Pfister. Forthcoming. “booc.io: An Education System with Hierarchical Concept Maps.” IEEE Transactions on Visualization and Computer Graphics.Abstract

Information hierarchies are difficult to express when real-world space or time constraints force traversing the hierarchy in linear presentations, such as in educational books and classroom courses. We present booc.io, which allows linear and non-linear presentation and navigation of educational concepts and material. To support a breadth of material for each concept, booc.io is Web based, which allows adding material such as lecture slides, book chapters, videos, and LTIs. A visual interface assists the creation of the needed hierarchical structures. The goals of our system were formed in expert interviews, and we explain how our design meets these goals. We adapt a real-world course into booc.io, and perform introductory qualitative evaluation with students.

Read more

PSI (Ψ): a Private data Sharing Interface

PSI (Ψ): a Private data Sharing Interface
Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman, and Salil Vadhan. Working Paper. “PSI (Ψ): a Private data Sharing Interface”. Publisher's VersionAbstract

We provide an overview of PSI ("a Private data Sharing Interface"), a system we are developing to enable researchers in the social sciences and other fields to share and explore privacy-sensitive datasets with the strong privacy protections of differential privacy.

Read more

Scoring Social Security Proposals: Response from Kashin, King, and Soneji

Scoring Social Security Proposals: Response from Kashin, King, and Soneji
Konstantin Kashin, Gary King, and Samir Soneji. 2016. “Scoring Social Security Proposals: Response from Kashin, King, and Soneji.” Journal of Economic Perspectives, 30, 2, Pp. 245-248. Publisher's VersionAbstract

This is a response to Peter Diamond's comment on a two paragraph passage in our article, Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 2, 29: 239-258. 

Read more
All writings

Presentations

Simplifying Matching Methods for Causal Inference, at Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Friday, March 9, 2018:
We show how to use matching in causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce matching methods that are simpler, more powerful, and easier to understand than existing approaches. We also show that the most commonly used existing method, propensity score matching, should rarely be used in practice. Easy-to-use software is available to implement all methods discussed.
How the news media activate public expression and influence national agendas Friday, February 16, 2018:
This talk reports on the results of first large scale randomized news media experiment. We demonstrate that even small news media outlets can cause large numbers of Americans to take public stands on specific issues, join national policy conversations, and express themselves publicly—all key components of democratic politics—more often than they would otherwise. After recruiting 48 mostly small media outlets, and working with them over 5 years, we chose groups of these outlets to write and publish articles on subjects we approved, on dates we randomly assigned. We estimate the causal effect... Read more about How the news media activate public expression and influence national agendas
How to Measure Legislative District Compactness If You Only Know it When You See it, at Stony Brook University, Institute for Advanced Computational Science, Thursday, February 15, 2018:
To prevent gerrymandering and to encourage a form of democratic representation, many state constitutions and judicial opinions require US legislative districts be "compact." Yet, few precise definitions are offered other than "you know it when you see it," effectively assuming the existence of a common understanding of the concept. In contrast, academics have concluded that the concept has multiple theoretical dimensions requiring large numbers of conflicting empirical measures. This has proved extremely challenging for courts tasked with adjudicating compactness. We hypothesize that both are... Read more about How to Measure Legislative District Compactness If You Only Know it When You See it
Matching Methods for Causal Inference, at Microsoft, Cambridge, Friday, January 19, 2018:
This presentation shows how to use matching in causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce matching methods that are simpler, more powerful, and easier to understand. We also show that the most commonly used existing method, propensity score matching, should rarely be used. Easy-to-use software is available to implement all methods discussed.
All presentations

Books

  • «
  • 2 of 2
  •  
All writings

Gary King on Twitter