Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data, Measurement Error, Differential Privacy
      Statistical methods to accommodate missing information in data sets due to survey nonresponse, missing variables, or variables measured with error or with error added to protect privacy. Applications and software for analyzing electoral, compositional, survey, time series, and time series cross-sectional data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.
    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Chinese Censorship
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data, as well as standard errors that are as much as 600% smaller; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.

Recent Papers

Rejoinder: Concluding Remarks on Scholarly Communications

Jonathan Katz, Gary King, and Elizabeth Rosenblatt. Forthcoming. “Rejoinder: Concluding Remarks on Scholarly Communications.” Political Analysis.Abstract

We are grateful to DeFord et al. for the continued attention to our work and the crucial issues of fair representation in democratic electoral systems. Our response (Katz, King, and Rosenblatt, forthcoming) was designed to help readers avoid being misled by mistaken claims in DeFord et al. (forthcoming-a), and does not address other literature or uses of our prior work. As it happens, none of our corrections were addressed (or contradicted) in the most recent submission (DeFord et al., forthcoming-b).

We also offer a recommendation regarding DeFord et al.’s (forthcoming-b) concern with how expert witnesses, consultants, and commentators should present academic scholarship to academic novices, such as judges, public officials, the media, and the general public. In these public service roles, scholars attempt to translate academic understanding of sophisticated scholarly literatures, technical methodologies, and complex theories for those without sufficient background in social science or statistics.
 

Read more

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition
Gary King, Robert O. Keohane, and Sidney Verba. 2021. Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition. 2nd ed. Princeton: Princeton University Press. Publisher's VersionAbstract
"The classic work on qualitative methods in political science"

Designing Social Inquiry presents a unified approach to qualitative and quantitative research in political science, showing how the same logic of inference underlies both. This stimulating book discusses issues related to framing research questions, measuring the accuracy of data and the uncertainty of empirical inferences, discovering causal effects, and getting the most out of qualitative research. It addresses topics such as interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. The book only uses mathematical notation to clarify concepts, and assumes no prior knowledge of mathematics or statistics.

Featuring a new preface by Robert O. Keohane and Gary King, this edition makes an influential work available to new generations of qualitative researchers in the social sciences.
Read more

The Essential Role of Statistical Inference in Evaluating Electoral Systems: A Response to DeFord et al.

The Essential Role of Statistical Inference in Evaluating Electoral Systems: A Response to DeFord et al.
Jonathan Katz, Gary King, and Elizabeth Rosenblatt. Forthcoming. “The Essential Role of Statistical Inference in Evaluating Electoral Systems: A Response to DeFord et al.” Political Analysis.Abstract
Katz, King, and Rosenblatt (2020) introduces a theoretical framework for understanding redistricting and electoral systems, built on basic statistical and social science principles of inference. DeFord et al. (Forthcoming, 2021) instead focuses solely on descriptive measures, which lead to the problems identified in our arti- cle. In this paper, we illustrate the essential role of these basic principles and then offer statistical, mathematical, and substantive corrections required to apply DeFord et al.’s calculations to social science questions of interest, while also showing how to easily resolve all claimed paradoxes and problems. We are grateful to the authors for their interest in our work and for this opportunity to clarify these principles and our theoretical framework.
Read more

Precision mapping child undernutrition for nearly 600,000 inhabited census villages in India

Precision mapping child undernutrition for nearly 600,000 inhabited census villages in India
Rockli Kim, Avleen S. Bijral, Yun Xu, Xiuyuan Zhang, Jeffrey C. Blossom, Akshay Swaminathan, Gary King, Alok Kumar, Rakesh Sarwal, Juan M. Lavista Ferres, and S.V. Subramanian. 2021. “Precision mapping child undernutrition for nearly 600,000 inhabited census villages in India.” Proceedings of the National Academy of Sciences, 118, 18, Pp. 1-11. Publisher's VersionAbstract
There are emerging opportunities to assess health indicators at truly small areas with increasing availability of data geocoded to micro geographic units and advanced modeling techniques. The utility of such fine-grained data can be fully leveraged if linked to local governance units that are accountable for implementation of programs and interventions. We used data from the 2011 Indian Census for village-level demographic and amenities features and the 2016 Indian Demographic and Health Survey in a bias-corrected semisupervised regression framework to predict child anthropometric failures for all villages in India. Of the total geographic variation in predicted child anthropometric failure estimates, 54.2 to 72.3% were attributed to the village level followed by 20.6 to 39.5% to the state level. The mean predicted stunting was 37.9% (SD: 10.1%; IQR: 31.2 to 44.7%), and substantial variation was found across villages ranging from less than 5% for 691 villages to over 70% in 453 villages. Estimates at the village level can potentially shift the paradigm of policy discussion in India by enabling more informed prioritization and precise targeting. The proposed methodology can be adapted and applied to diverse population health indicators, and in other contexts, to reveal spatial heterogeneity at a finer geographic scale and identify local areas with the greatest needs and with direct implications for actions to take place.
Read more
  •  
  • 1 of 30
  • »
All writings

Presentations

Simplifying Matching Methods for Causal Inference (University of Wisconsin at Madison), at University of Wisconsin at Madison, Department of Population Health Sciences, Monday, October 11, 2021:
We show how to use matching methods for causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce methods that are simpler, more powerful, and easier to understand than existing approaches. We also show that propensity score matching, an enormously popular approach, often accomplishes the opposite of its intended goal -- increasing imbalance, inefficiency, model dependence, and bias -- and should be replaced with other matching methods in applications.  See ... Read more about Simplifying Matching Methods for Causal Inference (University of Wisconsin at Madison)
How to Measure Legislative District Compactness If You Only Know it When You See it (IPSA World Congress), at IPSA World Congress, Panel on Innovative Methods in Political Science, Monday, July 12, 2021

 

 

To deter gerrymandering, many state constitutions require legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. We hypothesize that both are correct -- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey to elicit this understanding,...

Read more about How to Measure Legislative District Compactness If You Only Know it When You See it (IPSA World Congress)
Scientific Measurement in Redistricting Research (Princeton University), at The Princeton Gerrymandering Project, Friday, May 21, 2021:
We discuss the essential requirements for the measurement of any quantity of interest as applied to redistricting research.  Most importantly, a quantity of interest must be defined separately from its measure, without which empirical estimates cannot evaluated or improved. Only with such a standard can we learn about an electoral system or understand fundamental concepts in the field such as legislative compactness, partisan bias, electoral responsiveness, among others (with or without differentially private noise applied to census data), all of which we will illustrate. 
  •  
  • 1 of 58
  • »
All presentations

Books

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition
Gary King, Robert O. Keohane, and Sidney Verba. 2021. Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition. 2nd ed. Princeton: Princeton University Press. Publisher's VersionAbstract
"The classic work on qualitative methods in political science"

Designing Social Inquiry presents a unified approach to qualitative and quantitative research in political science, showing how the same logic of inference underlies both. This stimulating book discusses issues related to framing research questions, measuring the accuracy of data and the uncertainty of empirical inferences, discovering causal effects, and getting the most out of qualitative research. It addresses topics such as interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. The book only uses mathematical notation to clarify concepts, and assumes no prior knowledge of mathematics or statistics.

Featuring a new preface by Robert O. Keohane and Gary King, this edition makes an influential work available to new generations of qualitative researchers in the social sciences.
Read more

Demographic Forecasting

Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Read more

Ecological Inference: New Methodological Strategies

Ecological Inference: New Methodological Strategies
Gary King, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
Read more
  •  
  • 1 of 2
  • »
All writings

Gary King on Twitter