Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data, as well as standard errors that are as much as 600% smaller; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

A New Model for Industry-Academic Partnerships

Indaca
Gary King and Nathaniel Persily. 2019. “A New Model for Industry-Academic Partnerships.” PS: Political Science and Politics. Publisher's VersionAbstract

The mission of the social sciences is to understand and ameliorate society’s greatest challenges. The data held by private companies, collected for different purposes, hold vast potential to further this mission. Yet, because of consumer privacy, trade secrets, proprietary content, and political sensitivities, these datasets are often inaccessible to scholars. We propose a novel organizational model to address these problems. We also report on the first partnership under this model, to study the incendiary issues surrounding the impact of social media on elections and democracy: Facebook provides (privacy-preserving) data access; eight ideologically and substantively diverse charitable foundations provide funding; an organization of academics we created, Social Science One (see SocialScience.One), leads the project; and the Institute for Quantitative Social Science at Harvard and the Social Science Research Council provide logistical help.

Read more

Use of a Social Annotation Platform for Pre-Class Reading Assignments in a Flipped Introductory Physics Class

Use of a Social Annotation Platform for Pre-Class Reading Assignments in a Flipped Introductory Physics Class
Kelly Miller, Brian Lukoff, Gary King, and Eric Mazur. 3/2018. “Use of a Social Annotation Platform for Pre-Class Reading Assignments in a Flipped Introductory Physics Class.” Frontiers in Education, 3, 8, Pp. 1-12. Publisher's VersionAbstract

In this paper, we illustrate the successful implementation of pre-class reading assignments through a social learning platform that allows students to discuss the reading online with their classmates. We show how the platform can be used to understand how students are reading before class. We find that, with this platform, students spend an above average amount of time reading (compared to that reported in the literature) and that most students complete their reading assignments before class. We identify specific reading behaviors that are predictive of in-class exam performance. We also demonstrate ways that the platform promotes active reading strategies and produces high-quality learning interactions between students outside class. Finally, we compare the exam performance of two cohorts of students, where the only difference between them is the use of the platform; we show that students do significantly better on exams when using the platform.

Reprinted in Cassidy, R., Charles, E. S., Slotta, J. D., Lasry, N., eds. (2019). Active Learning: Theoretical Perspectives, Empirical Studies and Design Profiles. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-885-1

Read more

An Improved Method of Automated Nonparametric Content Analysis for Social Science

An Improved Method of Automated Nonparametric Content Analysis for Social Science
Connor T. Jerzak, Gary King, and Anton Strezhnev. Forthcoming. “An Improved Method of Automated Nonparametric Content Analysis for Social Science.” Political Analysis.Abstract

Some scholars build models to classify documents into chosen categories. Others, especially social scientists who tend to focus on population characteristics, instead usually estimate the proportion of documents in each category -- using either parametric "classify-and-count" methods or "direct" nonparametric estimation of proportions without individual classification. Unfortunately, classify-and-count methods can be highly model dependent or generate more bias in the proportions even as the percent of documents correctly classified increases. Direct estimation avoids these problems, but can suffer when the meaning of language changes between training and test sets or is too similar across categories. We develop an improved direct estimation approach without these issues by including and optimizing continuous text features, along with a form of matching adapted from the causal inference literature. Our approach substantially improves performance in a diverse collection of 73 data sets. We also offer easy-to-use software software that implements all ideas discussed herein.

Read more

How to conquer partisan gerrymandering

How to conquer partisan gerrymandering
Gary King and Robert X Browning. 12/26/2017. “How to conquer partisan gerrymandering.” Boston Globe (Op-Ed), 292 , 179 , Pp. A10. Publisher's VersionAbstract
PARTISAN GERRYMANDERING has long been reviled for thwarting the will of the voters. Yet while voters are acting disgusted, the US Supreme Court has only discussed acting — declaring they have the constitutional right to fix the problem, but doing nothing. But as better data and computer algorithms are now making gerrymandering increasingly effective, continuing to sidestep the issue could do permanent damage to American democracy. In Gill v. Whitford, the soon-to-be-decided challenge to Wisconsin’s 2011 state Assembly redistricting plan, the court could finally fix the problem for the whole country. Judging from the oral arguments, the key to the case is whether the court endorses the concept of “partisan symmetry,” a specific standard for treating political parties equally in allocating legislative seats based on voting.
Read more

Edited transcript of a talk on Partisan Symmetry at the 'Redistricting and Representation Forum'

Edited transcript of a talk on Partisan Symmetry at the 'Redistricting and Representation Forum'
Gary King. Forthcoming. “Edited transcript of a talk on Partisan Symmetry at the 'Redistricting and Representation Forum'.” Bulletin of the American Academy of Arts and Sciences, Winter, Pp. 55-58.Abstract

The origin, meaning, estimation, and application of the concept of partisan symmetry in legislative redistricting, and the justiciability of partisan gerrymandering. An edited transcript of a talk at the “Redistricting and Representation Forum,” American Academy of Arts & Sciences, Cambridge, MA 11/8/2017.

Here also is a video of the original talk.

Read more

How the news media activate public expression and influence national agendas

How the news media activate public expression and influence national agendas
Gary King, Benjamin Schneer, and Ariel White. 11/10/2017. “How the news media activate public expression and influence national agendas.” Science, 358, Pp. 776-780. Publisher's VersionAbstract

We demonstrate that exposure to the news media causes Americans to take public stands on specific issues, join national policy conversations, and express themselves publicly—all key components of democratic politics—more often than they would otherwise. After recruiting 48 mostly small media outlets, we chose groups of these outlets to write and publish articles on subjects we approved, on dates we randomly assigned. We estimated the causal effect on proximal measures, such as website pageviews and Twitter discussion of the articles’ specific subjects, and distal ones, such as national Twitter conversation in broad policy areas. Our intervention increased discussion in each broad policy area by approximately \(\approx 62.7\%\) (relative to a day’s volume), accounting for 13,166 additional posts over the treatment week, with similar effects across population subgroups. 

On the Science website: AbstractReprintFull text, and a comment (by Matthew Gentzkow) "Small media, big impact".

 

 

Read more

How to Measure Legislative District Compactness If You Only Know it When You See It

How to Measure Legislative District Compactness If You Only Know it When You See It
Aaron Kaufman, Gary King, and Mayya Komisarchik. Forthcoming. “How to Measure Legislative District Compactness If You Only Know it When You See It.” American Journal of Political Science.Abstract

To deter gerrymandering, many state constitutions require legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. We hypothesize that both are correct -- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey to elicit this understanding, with high reliability (in data where the standard paired comparisons approach fails). We create a statistical model that predicts, with high accuracy, solely from the geometric features of the district, compactness evaluations by judges and public officials responsible for redistricting, among others. We also offer compactness data from our validated measure for 20,160 state legislative and congressional districts, as well as open source software to compute this measure from any district.

Winner of the 2018 Robert H Durr Award from the MPSA.

Read more
All writings

Presentations

Simplifying Matching Methods for Causal Inference (Hebrew University of Jerusalem) Wednesday, January 1, 2020:
We show how to use matching methods for causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce methods that are simpler, more powerful, and easier to understand than existing approaches. We also show that propensity score matching, an enormously popular approach, often accomplishes the opposite of its intended goal -- increasing imbalance, inefficiency, model dependence, and bias -- and should be replaced with other matching methods in applications.  See ... Read more about Simplifying Matching Methods for Causal Inference (Hebrew University of Jerusalem)
Statistically Valid Inferences from Privacy Protected Data (Microsoft) Thursday, November 21, 2019:
Unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data, statistical guarantees for researchers seeking insights from it, and protection for society from some fallacious scientific conclusions. We build on the standard of ``... Read more about Statistically Valid Inferences from Privacy Protected Data (Microsoft)
Statistically Valid Inferences from Privacy Protected Data (University of Chicago) Friday, November 8, 2019:
The vast majority of data that could help social scientists understand and ameliorate the challenges of human society is presently locked away inside companies, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data, statistical guarantees for researchers seeking insights from it, and protection for society from some fallacious scientific conclusions. We build on the standard of ``differential privacy'' but, unlike most such... Read more about Statistically Valid Inferences from Privacy Protected Data (University of Chicago)
How to Measure Legislative District Compactness If You Only Know it When You See it (University of Chicago) Thursday, November 7, 2019:

To deter gerrymandering, many state constitutions require legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. We hypothesize that both are correct -- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey to elicit this understanding, with high reliability (in data where...

Read more about How to Measure Legislative District Compactness If You Only Know it When You See it (University of Chicago)
All presentations

Books

  • «
  • 2 of 2
  •  
All writings

Gary King on Twitter