Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data, Measurement Error, Differential Privacy
      Statistical methods to accommodate missing information in data sets due to survey nonresponse, missing variables, or variables measured with error or with error added to protect privacy. Applications and software for analyzing electoral, compositional, survey, time series, and time series cross-sectional data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.
    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Chinese Censorship
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data, as well as standard errors that are as much as 600% smaller; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.

Recent Papers

Why Context Should Not Count

Gary King. 1996. “Why Context Should Not Count.” Political Geography, 15, Pp. 159–164.Abstract

This paper is an invited comment on a paper by John Agnew. I largely agree with Agnew’s comments and thus focus on remaining areas wehre an alternative perspective might be useful. My argument is that political geographers should not be so concerned with demonstrating that context matters. My reasoning is based on three arguments. First, in fact context rarely counts (Section 1) and, second, the most productive practical goal for political researchers should be to show that it does not count (Section 2). Finally, a disproportionate focus on ‘context counting’ can lead, and has led, to some seriosu problems in practical research situations, such as attempting to give theoretical answers to empirical questions (Section 3) and empirical answers to theoretical questions (Section 4).

Read more

A Preview of EI and EzI: Programs for Ecological Inference

Kenneth Benoit and Gary King. 1996. “A Preview of EI and EzI: Programs for Ecological Inference.” Social Science Computer Review, 14, Pp. 433–438.Abstract
Ecological inference, as traditionally defined, is the process of using aggregate (i.e., "ecological") data to infer discrete individual-level relationships of interest when individual-level data are not available. Existing methods of ecological inference generate very inaccurate conclusions about the empirical world- which thus gives rise to the ecological inference problem. Most scholars who analyze aggregate data routinely encounter some form of this problem. EI (by Gary King) and EzI (by Kenneth Benoit and Gary King) are freely available software that implement the statistical and graphical methods detailed in Gary King’s book A Solution to the Ecological Inference Problem. These methods make it possible to infer the attributes of individual behavior from aggregate data. EI works within the statistics program Gauss and will run on any computer hardware and operating system that runs Gauss (the Gauss module, CML, or constrained maximum likelihood- by Ronald J. Schoenberg- is also required). EzI is a menu-oriented stand-alone version of the program that runs under MS-DOS (and soon Windows 95, OS/2, and HP-UNIX). EI allows users to make ecological inferences as part of the powerful and open Gauss statistical environment. In contrast, EzI requires no additional software, and provides an attractive menu-based user interface for non-Gauss users, although it lacks the flexibility afforded by the Gauss version. Both programs presume that the user has read or is familiar with A Solution to the Ecological Inference Problem.
Read more

Estimating the Probability of Events that Have Never Occurred: When Is Your Vote Decisive?

Estimating the Probability of Events that Have Never Occurred: When Is Your Vote Decisive?
Andrew Gelman, Gary King, and John Boscardin. 1998. “Estimating the Probability of Events that Have Never Occurred: When Is Your Vote Decisive?” Journal of the American Statistical Association, 93, Pp. 1–9.Abstract
Researchers sometimes argue that statisticians have little to contribute when few realizations of the process being estimated are observed. We show that this argument is incorrect even in the extreme situation of estimating the probabilities of events so rare that they have never occurred. We show how statistical forecasting models allow us to use empirical data to improve inferences about the probabilities of these events. Our application is estimating the probability that your vote will be decisive in a U.S. presidential election, a problem that has been studied by political scientists for more than two decades. The exact value of this probability is of only minor interest, but the number has important implications for understanding the optimal allocation of campaign resources, whether states and voter groups receive their fair share of attention from prospective presidents, and how formal "rational choice" models of voter behavior might be able to explain why people vote at all. We show how the probability of a decisive vote can be estimated empirically from state-level forecasts of the presidential election and illustrate with the example of 1992. Based on generalizations of standard political science forecasting models, we estimate the (prospective) probability of a single vote being decisive as about 1 in 10 million for close national elections such as 1992, varying by about a factor of 10 among states. Our results support the argument that subjective probabilities of many types are best obtained through empirically based statistical prediction models rather than solely through mathematical reasoning. We discuss the implications of our findings for the types of decision analyses used in public choice studies.
Read more

No Evidence on Directional vs. Proximity Voting

No Evidence on Directional vs. Proximity Voting
Jeffrey Lewis and Gary King. 1999. “No Evidence on Directional vs. Proximity Voting.” Political Analysis, 8, Pp. 21–33.Abstract
The directional and proximity models offer dramatically different theories for how voters make decisions and fundamentally divergent views of the supposed microfoundations on which vast bodies of literature in theoretical rational choice and empirical political behavior have been built. We demonstrate here that the empirical tests in the large and growing body of literature on this subject amount to theoretical debates about which statistical assumption is right. The key statistical assumptions have not been empirically tested and, indeed, turn out to be effectively untestable with exiting methods and data. Unfortunately, these assumptions are also crucial since changing them leads to different conclusions about voter processes.
Read more

Binomial-Beta Hierarchical Models for Ecological Inference

Binomial-Beta Hierarchical Models for Ecological Inference
Gary King, Ori Rosen, and Martin A Tanner. 1999. “Binomial-Beta Hierarchical Models for Ecological Inference.” Sociological Methods and Research, 28, Pp. 61–90.Abstract
The authors develop binomial-beta hierarchical models for ecological inference using insights from the literature on hierarchical models based on Markov chain Monte Carlo algorithms and King’s ecological inference model. The new approach reveals some features of the data that King’s approach does not, can easily be generalized to more complicated problems such as general R x C tables, allows the data analyst to adjust for covariates, and provides a formal evaluation of the significance of the covariates. It may also be better suited to cases in which the observed aggregate cells are estimated from very few observations or have some forms of measurement error. This article also provides an example of a hierarchical model in which the statistical idea of "borrowing strength" is used not merely to increase the efficiency of the estimates but to enable the data analyst to obtain estimates.
Read more
All writings

Presentations

Statistically Valid Inferences from Privacy Protected Data (Deloitte), at Deloitte, Thursday, July 14, 2022:

Venerable procedures used for privacy protection in sharing data within individual companies and governments, within academia, and between sectors have recently been proven massively inadequate (e.g., respondents in de-identified surveys can usually be re-identified). Furthermore, the benefits of getting our data sharing act together go far beyond the university, since unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations,...

Read more about Statistically Valid Inferences from Privacy Protected Data (Deloitte)
Statistically Valid Inferences from Privacy Protected Data (SICSS, University of Rochester), at SICSS, University of Rochester, Monday, May 9, 2022:

Venerable procedures used for privacy protection in sharing academic data have recently been proven massively inadequate (e.g., respondents in de-identified surveys can usually be re-identified). Furthermore, the benefits of getting our data sharing act together go far beyond the university, since unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations, in part because of worries about privacy violations. We address these...

Read more about Statistically Valid Inferences from Privacy Protected Data (SICSS, University of Rochester)
Public Policy for the Poor? A Randomized Evaluation of the Mexican Universal Health Insurance Program (Harvard School of Public Health), at Seminar on Health System Quality, Prof Margaret Kruk, Thursday, May 5, 2022:
An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an... Read more about Public Policy for the Poor? A Randomized Evaluation of the Mexican Universal Health Insurance Program (Harvard School of Public Health)
  •  
  • 1 of 60
  • »
All presentations

Books

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition

Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition
Gary King, Robert O. Keohane, and Sidney Verba. 2021. Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition. 2nd ed. Princeton: Princeton University Press. Publisher's VersionAbstract
"The classic work on qualitative methods in political science"

Designing Social Inquiry presents a unified approach to qualitative and quantitative research in political science, showing how the same logic of inference underlies both. This stimulating book discusses issues related to framing research questions, measuring the accuracy of data and the uncertainty of empirical inferences, discovering causal effects, and getting the most out of qualitative research. It addresses topics such as interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. The book only uses mathematical notation to clarify concepts, and assumes no prior knowledge of mathematics or statistics.

Featuring a new preface by Robert O. Keohane and Gary King, this edition makes an influential work available to new generations of qualitative researchers in the social sciences.
Read more

Demographic Forecasting

Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Read more

Ecological Inference: New Methodological Strategies

Ecological Inference: New Methodological Strategies
Gary King, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
Read more
  •  
  • 1 of 2
  • »
All writings

An Interview with Gary

Gary King on Twitter