Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Randomized Experiments

Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Randomized Experiments
Kosuke Imai, Gary King, and Carlos Velasco Rivera. Working Paper. “Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Randomized Experiments”.Abstract

A vast literature demonstrates that voters around the world who benefit from their governments' discretionary spending cast more ballots for the incumbent party than those who do not benefit. But contrary to most theories of political accountability, some evidence suggests that voters also reward incumbent parties for implementing "programmatic" spending legislation, over which incumbents have no discretion, and even when passed with support from all major parties. Why voters would attribute responsibility when none exists is unclear, as is why minority party legislators would approve of legislation that will cost them votes. We study the electoral effects of two prominent programmatic policies that fit the ideal type unusually well. For the first, we implement one of the largest randomized social experiments ever, and find that its programmatic policies do not increase voter support for incumbents. For the second, we reanalyze the study cited as claiming the strongest support for the electoral effects of programmatic policies, which is also a very large randomized experiment. We show that its key results vanish after correcting either a simple coding error affecting only two observations or highly unconventional data analysis procedures (or both). Our results may differ from those of prior research because we were able to marshal large scale experiments rather than observational studies or because we analyze relatively pure forms of programmatic policies rather than mixtures of programmatic and clientelistic policies. However, we conjecture that the primary explanation is the differing nature of the politics for which these policies are passed and implemented.

Read more

How Human Subjects Research Rules Mislead You and Your University, and What to Do About it

How Human Subjects Research Rules Mislead You and Your University, and What to Do About it
Gary King and Melissa Sands. Working Paper. “How Human Subjects Research Rules Mislead You and Your University, and What to Do About it”.Abstract

Universities require faculty and students planning research involving human subjects to pass formal certification tests and then submit research plans for prior approval. Those who diligently take the tests may better understand certain important legal requirements but, at the same time, are often misled into thinking they can apply these rules to their own work which, in fact, they are not permitted to do. They will also be missing many other legal requirements not mentioned in their training but which govern their behaviors. Finally, the training leaves them likely to completely misunderstand the essentially political situation they find themselves in. The resulting risks to their universities, collaborators, and careers may be catastrophic, in addition to contributing to the more common ordinary frustrations of researchers with the system. To avoid these problems, faculty and students conducting research about and for the public need to understand that they are public figures, to whom different rules apply, ones that political scientists have long studied. University administrators (and faculty in their part-time roles as administrators) need to reorient their perspectives as well. University research compliance bureaucracies have grown, in well-meaning but sometimes unproductive ways that are not required by federal laws or guidelines. We offer advice to faculty and students for how to deal with the system as it exists now, and suggestions for changes in university research compliance bureaucracies, that should benefit faculty, students, staff, university budgets, and our research subjects.

Read more

Preface: Big Data is Not About the Data!

Preface: Big Data is Not About the Data!
Gary King. 2016. “Preface: Big Data is Not About the Data!.” In Computational Social Science: Discovery and Prediction, edited by R. Michael Alvarez. Cambridge: Cambridge University Press.Abstract

A few years ago, explaining what you did for a living to Dad, Aunt Rose, or your friend from high school was pretty complicated. Answering that you develop statistical estimators, work on numerical optimization, or, even better, are working on a great new Markov Chain Monte Carlo implementation of a Bayesian model with heteroskedastic errors for automated text analysis is pretty much the definition of conversation stopper.

Then the media noticed the revolution we’re all apart of, and they glued a label to it. Now “Big Data” is what you and I do.  As trivial as this change sounds, we should be grateful for it, as the name seems to resonate with the public and so it helps convey the importance of our field to others better than we had managed to do ourselves. Yet, now that we have everyone’s attention, we need to start clarifying for others -- and ourselves -- what the revolution means. This is much of what this book is about.

Throughout, we need to remember that for the most part, Big Data is not about the data....

Read more

Systematic Bias and Nontransparency in US Social Security Administration Forecasts

Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Journal of Economic Perspectives, 29, 2, Pp. 239-258. Publisher's VersionAbstract

The financial stability of four of the five largest U.S. federal entitlement programs, strategic decision making in several industries, and many academic publications all depend on the accuracy of demographic and financial forecasts made by the Social Security Administration (SSA). Although the SSA has performed these forecasts since 1942, no systematic and comprehensive evaluation of their accuracy has ever been published by SSA or anyone else. The absence of a systematic evaluation of forecasts is a concern because the SSA relies on informal procedures that are potentially subject to inadvertent biases and does not share with the public, the scientific community, or other parts of SSA sufficient data or information necessary to replicate or improve its forecasts. These issues result in SSA holding a monopoly position in policy debates as the sole supplier of fully independent forecasts and evaluations of proposals to change Social Security. To assist with the forecasting evaluation problem, we collect all SSA forecasts for years that have passed and discover error patterns that could have been---and could now be---used to improve future forecasts. Specifically, we find that after 2000, SSA forecasting errors grew considerably larger and most of these errors made the Social Security Trust Funds look more financially secure than they actually were. In addition, SSA's reported uncertainty intervals are overconfident and increasingly so after 2000. We discuss the implications of these systematic forecasting biases for public policy.

Read more

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts

Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Konstantin Kashin, Gary King, and Samir Soneji. 2015. “Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts.” Political Analysis, 23, 3, Pp. 336-362. Publisher's VersionAbstract

The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, other government programs, industry decision making, and the evidence base of many scholarly articles. Because SSA makes public little replication information and uses qualitative and antiquated statistical forecasting methods, fully independent alternative forecasts (and the ability to score policy proposals to change the system) are nonexistent. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else --- until a companion paper to this one (King, Kashin, and Soneji, 2015a). We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors are all in the same potentially dangerous direction, making the Social Security Trust Funds look healthier than they actually are. We extend and then attempt to explain these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security, SSA's actuaries hunkered down trying hard to insulate their forecasts from strong political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led the actuaries to miss important changes in the input data. Retirees began living longer lives and drawing benefits longer than predicted by simple extrapolations. We also show that the solution to this problem involves SSA or Congress implementing in government two of the central projects of political science over the last quarter century: [1] promoting transparency in data and methods and [2] replacing with formal statistical models large numbers of qualitative decisions too complex for unaided humans to make optimally.

Read more

Why Propensity Scores Should Not Be Used for Matching

Why Propensity Scores Should Not Be Used for Matching
Gary King and Richard Nielsen. Working Paper. “Why Propensity Scores Should Not Be Used for Matching”.Abstract

We show that propensity score matching (PSM), an enormously popular method of preprocessing data for causal inference, often accomplishes the opposite of its intended goal -- increasing imbalance, inefficiency, model dependence, and bias. PSM supposedly makes it easier to find matches by projecting a large number of covariates to a scalar propensity score and applying a single model to produce an unbiased estimate. However, in observational analysis the data generation process is rarely known and so users typically try many models before choosing one to present. The weakness of PSM comes from its attempts to approximate a completely randomized experiment, rather than, as with other matching methods, a more efficient fully blocked randomized experiment. PSM is thus uniquely blind to the often large portion of imbalance that can be eliminated by approximating full blocking with other matching methods. Moreover, in data balanced enough to approximate complete randomization, either to begin with or after pruning some observations, PSM approximates random matching which, we show, increases imbalance even relative to the original data. Although these results suggest that researchers replace PSM with one of the other available methods when performing matching, propensity scores have many other productive uses.

Read more

Automating Open Science for Big Data

Automating Open Science for Big Data
Merce Crosas, James Honaker, Gary King, and Latanya Sweeney. 2015. “Automating Open Science for Big Data.” ANNALS of the American Academy of Political and Social Science, 659, 1, Pp. 260-273. Publisher's VersionAbstract

The vast majority of social science research presently uses small (MB or GB scale) data sets. These fixed-scale data sets are commonly downloaded to the researcher's computer where the analysis is performed locally, and are often shared and cited with well-established technologies, such as the Dataverse Project (see Dataverse.org), to support the published results.  The trend towards Big Data -- including large scale streaming data -- is starting to transform research and has the potential to impact policy-making and our understanding of the social, economic, and political problems that affect human societies.  However, this research poses new challenges in execution, accountability, preservation, reuse, and reproducibility. Downloading these data sets to a researcher’s computer is infeasible or not practical; hence, analyses take place in the cloud, require unusual expertise, and benefit from collaborative teamwork and novel tool development. The advantage of these data sets in how informative they are also means that they are much more likely to contain highly sensitive personally identifiable information. In this paper, we discuss solutions to these new challenges so that the social sciences can realize the potential of Big Data.

Read more
All writings

Presentations

Reverse Engineering Chinese Government Information Controls, at Paul and Marica Wythes Center on Contemporary China, Princeton University, Wednesday, October 11, 2017:
This talk is based on this paper (in the current issue of the American Political Science Review), by Jen Pan, Molly Roberts, and me, along with a brief summary of our previous work (in Science here, and the American Poltiical Science Review ... Read more about Reverse Engineering Chinese Government Information Controls
How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at Harvard University and National Taiwan University, Friday, September 29, 2017:
This talk is based on this paper (in the current issue of the American Political Science Review), by Jen Pan, Molly Roberts, and me, along with a brief summary of our previous work (2014 in Science here, and 2013 in the American Poltiical Science Review ... Read more about How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument
Big Data is Not About the Data!, at Abt Associates, Thursday, September 28, 2017:
The spectacular progress the media describes as "big data" has little to do with the growth of data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data. I illustrate these points with a wide range of examples from research I've participated in, including ... Read more about Big Data is Not About the Data!
Fabricating News In Chinese Social Media, at Congress of the Mexican Political Science Association, University of Quintana Roo, Cancun, Mexico, Friday, September 15, 2017:

This talk is based on this paper (in the current issue of the American Political Science Review), by Jen Pan, Molly Roberts, and me, along with a brief summary of our previous work (2014 in Science here, and 2013 in the American Poltiical Science Review ...

Read more about Fabricating News In Chinese Social Media
All presentations

Gary King on Twitter