Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It

How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It
Gary King and Margaret E Roberts. 2015. “How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It.” Political Analysis, 23, 2, Pp. 159–179. Publisher's VersionAbstract

"Robust standard errors" are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, with or without robust standard errors, will still bias estimators of all but a few quantities of interest. The resulting cavernous gap between theory and practice suggests that considerable gains in applied statistics may be possible. We seek to help researchers realize these gains via a more productive way to understand and use robust standard errors; a new general and easier-to-use "generalized information matrix test" statistic that can formally assess misspecification (based on differences between robust and classical variance estimates); and practical illustrations via simulations and real examples from published research. How robust standard errors are used needs to change, but instead of jettisoning this popular tool we show how to use it to provide effective clues about model misspecification, likely biases, and a guide to considerably more reliable, and defensible, inferences. Accompanying this article [soon!] is software that implements the methods we describe. 

Read more

Empirical versus Theoretical Claims about Extreme Counterfactuals: A Response

Gary King and Langche Zeng. 2009. “Empirical versus Theoretical Claims about Extreme Counterfactuals: A Response.” Political Analysis, 17, Pp. 107-112.Abstract

In response to the data-based measures of model dependence proposed in King and Zeng (2006), Sambanis and Michaelides (2008) propose alternative measures that rely upon assumptions untestable in observational data. If these assumptions are correct, then their measures are appropriate and ours, based solely on the empirical data, may be too conservative. If instead and as is usually the case, the researcher is not certain of the precise functional form of the data generating process, the distribution from which the data are drawn, and the applicability of these modeling assumptions to new counterfactuals, then the data-based measures proposed in King and Zeng (2006) are much preferred. After all, the point of model dependence checks is to verify empirically, rather than to stipulate by assumption, the effects of modeling assumptions on counterfactual inferences.

Read more

Amelia II: A Program for Missing Data

Amelia II: A Program for Missing Data
James Honaker, Gary King, and Matthew Blackwell. 2011. “Amelia II: A Program for Missing Data.” Journal of Statistical Software, 45, 7, Pp. 1-47.Abstract

Amelia II is a complete R package for multiple imputation of missing data. The package implements a new expectation-maximization with bootstrapping algorithm that works faster, with larger numbers of variables, and is far easier to use, than various Markov chain Monte Carlo approaches, but gives essentially the same answers. The program also improves imputation models by allowing researchers to put Bayesian priors on individual cell values, thereby including a great deal of potentially valuable and extensive information. It also includes features to accurately impute cross-sectional datasets, individual time series, or sets of time series for different cross-sections. A full set of graphical diagnostics are also available. The program is easy to use, and the simplicity of the algorithm makes it far more robust; both a simple command line and extensive graphical user interface are included.

Amelia II software web site

Read more

Estimating Incidence Curves of Several Infections Using Symptom Surveillance Data

Estimating Incidence Curves of Several Infections Using Symptom Surveillance Data
Edward Goldstein, Benjamin J Cowling, Allison E Aiello, Saki Takahashi, Gary King, Ying Lu, and Marc Lipsitch. 2011. “Estimating Incidence Curves of Several Infections Using Symptom Surveillance Data.” PLoS ONE, 6, 8, Pp. e23380.Abstract

We introduce a method for estimating incidence curves of several co-circulating infectious pathogens, where each infection has its own probabilities of particular symptom profiles. Our deconvolution method utilizes weekly surveillance data on symptoms from a defined population as well as additional data on symptoms from a sample of virologically confirmed infectious episodes. We illustrate this method by numerical simulations and by using data from a survey conducted on the University of Michigan campus. Last, we describe the data needs to make such estimates accurate.

Link to PLoS version

Read more

Statistical Security for Social Security

Statistical Security for Social Security
Samir Soneji and Gary King. 2012. “Statistical Security for Social Security.” Demography, 49, 3, Pp. 1037-1060 . Publisher's versionAbstract

The financial viability of Social Security, the single largest U.S. Government program, depends on accurate forecasts of the solvency of its intergenerational trust fund. We begin by detailing information necessary for replicating the Social Security Administration’s (SSA’s) forecasting procedures, which until now has been unavailable in the public domain. We then offer a way to improve the quality of these procedures due to age-and sex-specific mortality forecasts. The most recent SSA mortality forecasts were based on the best available technology at the time, which was a combination of linear extrapolation and qualitative judgments. Unfortunately, linear extrapolation excludes known risk factors and is inconsistent with long-standing demographic patterns such as the smoothness of age profiles. Modern statistical methods typically outperform even the best qualitative judgments in these contexts. We show how to use such methods here, enabling researchers to forecast using far more information, such as the known risk factors of smoking and obesity and known demographic patterns. Including this extra information makes a sub¬stantial difference: For example, by only improving mortality forecasting methods, we predict three fewer years of net surplus, $730 billion less in Social Security trust funds, and program costs that are 0.66% greater of projected taxable payroll compared to SSA projections by 2031. More important than specific numerical estimates are the advantages of transparency, replicability, reduction of uncertainty, and what may be the resulting lower vulnerability to the politicization of program forecasts. In addition, by offering with this paper software and detailed replication information, we hope to marshal the efforts of the research community to include ever more informative inputs and to continue to reduce the uncertainties in Social Security forecasts.

This work builds on our article that provides forecasts of US Mortality rates (see King and Soneji, The Future of Death in America), a book developing improved methods for forecasting mortality (Girosi and King, Demographic Forecasting), all data we used (King and Soneji, replication data sets), and open source software that implements the methods (Girosi and King, YourCast).  Also available is a New York Times Op-Ed based on this work (King and Soneji, Social Security: It’s Worse Than You Think), and a replication data set for the Op-Ed (King and Soneji, replication data set).

Read more

Ensuring the Data Rich Future of the Social Sciences

Ensuring the Data Rich Future of the Social Sciences
Gary King. 2011. “Ensuring the Data Rich Future of the Social Sciences.” Science, 331, 11 February, Pp. 719-721.Abstract

Massive increases in the availability of informative social science data are making dramatic progress possible in analyzing, understanding, and addressing many major societal problems. Yet the same forces pose severe challenges to the scientific infrastructure supporting data sharing, data management, informatics, statistical methodology, and research ethics and policy, and these are collectively holding back progress. I address these changes and challenges and suggest what can be done.

Read more
All writings

Presentations

How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument, at University of Wisconsin-Madison, Monday, January 23, 2017:

This talk is based on this paper (forthcoming in the American Political Science Review), by me, Jennifer Pan, and Margaret Roberts, along with a brief summary of our previous work. Here's an abstract: The Chinese government has long been suspected of hiring as many as 2,000,000 people to surreptitiously insert huge numbers of pseudonymous and other deceptive writings into the stream of real social media posts, as if they were the genuine opinions of ordinary people. Many academics, and most journalists...

Read more about How the Chinese Government Fabricates Social Media Posts for Strategic Distraction, not Engaged Argument
An Improved Method of Automated Nonparametric Content Analysis for Social Science, at Texas A&M Inaugural STATA Lecture, Thursday, January 19, 2017:

A vast literature in computer science and statistics develops methods to automatically classify textual documents into chosen categories. In contrast, social scientists are often more interested in aggregate generalizations about populations of documents --- such as the percent of social media posts that speak favorably of a candidate's foreign policy. Unfortunately, trying to maximize the percent of individual documents correctly classified often yields biased estimates of statistical aggregates. Fortunately, classification is neither a necessary nor even a desirable step in estimating...

Read more about An Improved Method of Automated Nonparametric Content Analysis for Social Science
Big Data is Not About the Data!, at Shanghai Jiao Tong University, Wednesday, January 4, 2017:

The spectacular progress the media describes as "big data" has little to do with the data.  Data, after all, is becoming commoditized, less expensive, and an automatic byproduct of other changes in organizations and society. More data alone doesn't generate insights; it often merely makes data analysis harder. The real revolution isn't about the data, it is about the stunning progress in the statistical and other methods of extracting insights from the data. I illustrate these points with a wide range of examples from research I've participated in from the quantitative social...

Read more about Big Data is Not About the Data!
All presentations

Gary King on Twitter