Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

Comparative Effectiveness of Matching Methods for Causal Inference

Comparative Effectiveness of Matching Methods for Causal Inference
Gary King, Richard Nielsen, Carter Coberley, James E Pope, and Aaron Wells. 2011. “Comparative Effectiveness of Matching Methods for Causal Inference”.Abstract

Matching is an increasingly popular method of causal inference in observational data, but following methodological best practices has proven difficult for applied researchers. We address this problem by providing a simple graphical approach for choosing among the numerous possible matching solutions generated by three methods: the venerable ``Mahalanobis Distance Matching'' (MDM), the commonly used ``Propensity Score Matching'' (PSM), and a newer approach called ``Coarsened Exact Matching'' (CEM). In the process of using our approach, we also discover that PSM often approximates random matching, both in many real applications and in data simulated by the processes that fit PSM theory. Moreover, contrary to conventional wisdom, random matching is not benign: it (and thus PSM) can often degrade inferences relative to not matching at all. We find that MDM and CEM do not have this problem, and in practice CEM usually outperforms the other two approaches. However, with our comparative graphical approach and easy-to-follow procedures, focus can be on choosing a matching solution for a particular application, which is what may improve inferences, rather than the particular method used to generate it.

Read more

Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler

Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler
Gary King, Ori Rosen, Martin Tanner, and Alexander Wagner. 2008. “Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler.” Journal of Economic History, 68, 4, Pp. 996.Abstract

The enormous Nazi voting literature rarely builds on modern statistical or economic research. By adding these approaches, we find that the most widely accepted existing theories of this era cannot distinguish the Weimar elections from almost any others in any country. Via a retrospective voting account, we show that voters most hurt by the depression, and most likely to oppose the government, fall into separate groups with divergent interests. This explains why some turned to the Nazis and others turned away. The consequences of Hitler's election were extraordinary, but the voting behavior that led to it was not.

Read more

Designing Verbal Autopsy Studies

Designing Verbal Autopsy Studies
Gary King, Ying Lu, and Kenji Shibuya. 2010. “Designing Verbal Autopsy Studies.” Population Health Metrics, 8, 19.Abstract
Background: Verbal autopsy analyses are widely used for estimating cause-specific mortality rates (CSMR) in the vast majority of the world without high quality medical death registration. Verbal autopsies -- survey interviews with the caretakers of imminent decedents -- stand in for medical examinations or physical autopsies, which are infeasible or culturally prohibited. Methods and Findings: We introduce methods, simulations, and interpretations that can improve the design of automated, data-derived estimates of CSMRs, building on a new approach by King and Lu (2008). Our results generate advice for choosing symptom questions and sample sizes that is easier to satisfy than existing practices. For example, most prior effort has been devoted to searching for symptoms with high sensitivity and specificity, which has rarely if ever succeeded with multiple causes of death. In contrast, our approach makes this search irrelevant because it can produce unbiased estimates even with symptoms that have very low sensitivity and specificity. In addition, the new method is optimized for survey questions caretakers can easily answer rather than questions physicians would ask themselves. We also offer an automated method of weeding out biased symptom questions and advice on how to choose the number of causes of death, symptom questions to ask, and observations to collect, among others. Conclusions: With the advice offered here, researchers should be able to design verbal autopsy surveys and conduct analyses with greatly reduced statistical biases and research costs.
Read more

Inference in Case Control Studies

Inference in Case Control Studies
Gary King, Langche Zeng, and Shein-Chung Chow. 2010. “Inference in Case Control Studies.” In Encyclopedia of Biopharmaceutical Statistics, 3rd ed. New York: Marcel Dekker.Abstract

Classic (or "cumulative") case-control sampling designs do not admit inferences about quantities of interest other than risk ratios, and then only by making the rare events assumption. Probabilities, risk differences, and other quantities cannot be computed without knowledge of the population incidence fraction. Similarly, density (or "risk set") case-control sampling designs do not allow inferences about quantities other than the rate ratio. Rates, rate differences, cumulative rates, risks, and other quantities cannot be estimated unless auxiliary information about the underlying cohort such as the number of controls in each full risk set is available. Most scholars who have considered the issue recommend reporting more than just the relative risks and rates, but auxiliary population information needed to do this is not usually available. We address this problem by developing methods that allow valid inferences about all relevant quantities of interest from either type of case-control study when completely ignorant of or only partially knowledgeable about relevant auxiliary population information. This is a somewhat revised and extended version of Gary King and Langche Zeng. 2002. "Estimating Risk and Rate Levels, Ratios, and Differences in Case-Control Studies," Statistics in Medicine, 21: 1409-1427. You may also be interested in our related work in other fields, such as in international relations, Gary King and Langche Zeng. "Explaining Rare Events in International Relations," International Organization, 55, 3 (Spring, 2001): 693-715, and in political methodology, Gary King and Langche Zeng, "Logistic Regression in Rare Events Data," Political Analysis, Vol. 9, No. 2, (Spring, 2001): Pp. 137--63.

Read more

The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry

The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry
Bernard Grofman and Gary King. 2008. “The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry.” Election Law Journal, 6, 1, Pp. 2-35.Abstract

While the Supreme Court in Bandemer v. Davis found partisan gerrymandering to be justiciable, no challenged redistricting plan in the subsequent 20 years has been held unconstitutional on partisan grounds. Then, in Vieth v. Jubilerer, five justices concluded that some standard might be adopted in a future case, if a manageable rule could be found. When gerrymandering next came before the Court, in LULAC v. Perry, we along with our colleagues filed an Amicus Brief (King et al., 2005), proposing the test be based in part on the partisan symmetry standard. Although the issue was not resolved, our proposal was discussed and positively evaluated in three of the opinions, including the plurality judgment, and for the first time for any proposal the Court gave a clear indication that a future legal test for partisan gerrymandering will likely include partisan symmetry. A majority of Justices now appear to endorse the view that the measurement of partisan symmetry may be used in partisan gerrymandering claims as “a helpful (though certainly not talismanic) tool” (Justice Stevens, joined by Justice Breyer), provided one recognizes that “asymmetry alone is not a reliable measure of unconstitutional partisanship” and possibly that the standard would be applied only after at least one election has been held under the redistricting plan at issue (Justice Kennedy, joined by Justices Souter and Ginsburg). We use this essay to respond to the request of Justices Souter and Ginsburg that “further attention … be devoted to the administrability of such a criterion at all levels of redistricting and its review.” Building on our previous scholarly work, our Amicus Brief, the observations of these five Justices, and a supporting consensus in the academic literature, we offer here a social science perspective on the conceptualization and measurement of partisan gerrymandering and the development of relevant legal rules based on what is effectively the Supreme Court’s open invitation to lower courts to revisit these issues in the light of LULAC v. Perry.

Read more

A Method of Automated Nonparametric Content Analysis for Social Science

A Method of Automated Nonparametric Content Analysis for Social Science
Daniel Hopkins and Gary King. 2010. “A Method of Automated Nonparametric Content Analysis for Social Science.” American Journal of Political Science, 54, 1, Pp. 229–247.Abstract

The increasing availability of digitized text presents enormous opportunities for social scientists. Yet hand coding many blogs, speeches, government records, newspapers, or other sources of unstructured text is infeasible. Although computer scientists have methods for automated content analysis, most are optimized to classify individual documents, whereas social scientists instead want generalizations about the population of documents, such as the proportion in a given category. Unfortunately, even a method with a high percent of individual documents correctly classified can be hugely biased when estimating category proportions. By directly optimizing for this social science goal, we develop a method that gives approximately unbiased estimates of category proportions even when the optimal classifier performs poorly. We illustrate with diverse data sets, including the daily expressed opinions of thousands of people about the U.S. presidency. We also make available software that implements our methods and large corpora of text for further analysis.

This article led to the formation of Crimson Hexagon

Read more

An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design

An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design
Gary King and Will Lowe. 2003. “An Automated Information Extraction Tool For International Conflict Data with Performance as Good as Human Coders: A Rare Events Evaluation Design.” International Organization, 57, Pp. 617-642.Abstract
Despite widespread recognition that aggregated summary statistics on international conflict and cooperation miss most of the complex interactions among nations, the vast majority of scholars continue to employ annual, quarterly, or occasionally monthly observations. Daily events data, coded from some of the huge volume of news stories produced by journalists, have not been used much for the last two decades. We offer some reason to change this practice, which we feel should lead to considerably increased use of these data. We address advances in event categorization schemes and software programs that automatically produce data by "reading" news stories without human coders. We design a method that makes it feasible for the first time to evaluate these programs when they are applied in areas with the particular characteristics of international conflict and cooperation data, namely event categories with highly unequal prevalences, and where rare events (such as highly conflictual actions) are of special interest. We use this rare events design to evaluate one existing program, and find it to be as good as trained human coders, but obviously far less expensive to use. For large scale data collections, the program dominates human coding. Our new evaluative method should be of use in international relations, as well as more generally in the field of computational linguistics, for evaluating other automated information extraction tools. We believe that the data created by programs similar to the one we evaluated should see dramatically increased use in international relations research. To facilitate this process, we are releasing with this article data on 4.3 million international events, covering the entire world for the last decade.
Read more
All writings

Presentations

How the news media activate public expression and influence national agendas, at St. Louis Area Methods Meeting (SLAMM), Iowa State University, Friday, April 20, 2018:
This talk reports on the results of first large scale randomized news media experiment. We demonstrate that even small news media outlets can cause large numbers of Americans to take public stands on specific issues, join national policy conversations, and express themselves publicly—all key components of democratic politics—more often than they would otherwise. After recruiting \(48\) mostly small media outlets, and working with them over \(5\) years, we chose groups of these outlets to write and publish articles on subjects we... Read more about How the news media activate public expression and influence national agendas
Simplifying Matching Methods for Causal Inference, at Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Friday, March 9, 2018:
We show how to use matching in causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce matching methods that are simpler, more powerful, and easier to understand than existing approaches. We also show that the most commonly used existing method, propensity score matching, should rarely be used in practice. Easy-to-use software is available to implement all methods discussed.
How the news media activate public expression and influence national agendas Friday, February 16, 2018:
This talk reports on the results of first large scale randomized news media experiment. We demonstrate that even small news media outlets can cause large numbers of Americans to take public stands on specific issues, join national policy conversations, and express themselves publicly—all key components of democratic politics—more often than they would otherwise. After recruiting 48 mostly small media outlets, and working with them over 5 years, we chose groups of these outlets to write and publish articles on subjects we approved, on dates we randomly assigned. We estimate the causal effect... Read more about How the news media activate public expression and influence national agendas
How to Measure Legislative District Compactness If You Only Know it When You See it, at Stony Brook University, Institute for Advanced Computational Science, Thursday, February 15, 2018:
To prevent gerrymandering and to encourage a form of democratic representation, many state constitutions and judicial opinions require US legislative districts be "compact." Yet, few precise definitions are offered other than "you know it when you see it," effectively assuming the existence of a common understanding of the concept. In contrast, academics have concluded that the concept has multiple theoretical dimensions requiring large numbers of conflicting empirical measures. This has proved extremely challenging for courts tasked with adjudicating compactness. We hypothesize that both are... Read more about How to Measure Legislative District Compactness If You Only Know it When You See it
All presentations

Books

  • «
  • 2 of 2
  •  
All writings

Gary King on Twitter

  • kinggary
    kinggary @jwpatty @lauretig neither is possible since we rarely have certain-to-be true theories or empirical facts to condition on. tho we manage to make progress anyway
  • kinggary
    kinggary @lauretig @jwpatty put differently, inferences must be based on (uncertain) evidence constrained by true theory or (uncertain) theories constrained by facts. since neither is possible, we need to ensure we're not fetishizing evidence we are better at -- elegant estimators or pretty math models
  • kinggary
    kinggary @lauretig @jwpatty extending the joke into a principle (which is never as funny as it should be!): priors should be build on empirical evidence not modeling hypotheses.