Gary King is the Weatherhead University Professor at Harvard University. He also serves as Director of the Institute for Quantitative Social Science. He and his research group develop and apply empirical methods in many areas of social science research. Full bio and CV

Research Areas

    • Evaluating Social Security Forecasts
      The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, government programs comprising greater than 50% of all federal government expenditures, industry decision making, and the evidence base of many scholarly articles. Forecasts are also essential for scoring policy proposals, put forward by both political parties. Because SSA makes public little replication information, and uses ad hoc, qualitative, and antiquated statistical forecasting methods, no one in or out of government has been able to produce fully independent alternative forecasts or policy scorings. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else. We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors all turn out to be in the same potentially dangerous direction, each making the Social Security Trust Funds look healthier than they actually are. We also discover the cause of these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security and influence the forecasts, SSA's actuaries hunkered down trying hard to insulate themselves from the intense political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led them to also miss important changes in the input data such as retirees living longer lives, and drawing more benefits, than predicted by simple extrapolations. We explain that solving this problem involves using (a) removing human judgment where possible, by using formal statistical methods -- via the revolution in data science and big data; (b) instituting formal structural procedures when human judgment is required -- via the revolution in social psychological research; and (c) requiring transparency and data sharing to catch errors that slip through -- via the revolution in data sharing & replication.An article at Barron's about our work.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Information Control by Authoritarian Governments
      Reverse engineering Chinese information controls -- the most extensive effort to selectively control human expression in the history of the world. We show that this massive effort to slow the flow of information paradoxically also conveys a great deal about the intentions, goals, and actions of the leaders. We downloaded all Chinese social media posts before the government could read and censor them; wrote and posted comments randomly assigned to our categories on hundreds of websites across the country to see what would be censored; set up our own social media website in China; and discovered that the Chinese government fabricates and posts 450 million social media comments a year in the names of ordinary people and convinced those posting (and inadvertently even the government) to admit to their activities. We found that the goverment does not engage on controversial issues (they do not censor criticism or fabricate posts that argue with those who disagree with the government), but they respond on an emergency basis to stop collective action (with censorship, fabricating posts with giant bursts of cheerleading-type distractions, responding to citizen greviances, etc.). They don't care what you think of them or say about them; they only care what you can do.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data, as well as standard errors that are as much as 600% smaller; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, understanding, conceptualizing, and consuming knowledge from massive quantities of unstructured text.
    • Anchoring Vignettes (for interpersonal incomparability)
      Methods for interpersonal incomparability, when respondents (from different cultures, genders, countries, or ethnic groups) understand survey questions in different ways; for developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it").
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data & Measurement Error
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      How surveys work and a variety of methods to use with surveys. Surveys for estimating death rates, why election polls are so variable when the vote is so predictable, and health inequality.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Papers

Statistically Valid Inferences from Privacy Protected Data

Statistically Valid Inferences from Privacy Protected Data
Georgina Evans, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. Working Paper. “Statistically Valid Inferences from Privacy Protected Data”.Abstract
Unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data, statistical guarantees for researchers seeking population-level insights from it, and protection for society from some fallacious scientific conclusions. We build on the standard of "differential privacy" but, unlike most such approaches, we also correct for the serious statistical biases induced by privacy-preserving procedures, provide a proper accounting for statistical uncertainty, and impose minimal constraints on the choice of data analytic methods and types of quantities estimated. Our algorithm is easy to implement, simple to use, and computationally efficient; we also offer open source software to illustrate all our methods.
Read more

The “Math Prefresher” and The Collective Future of Political Science Graduate Training

The “Math Prefresher” and The Collective Future of Political Science Graduate Training
Gary King, Shiro Kuriwaki, and Yon Soo Park. Forthcoming. “The “Math Prefresher” and The Collective Future of Political Science Graduate Training.” PS: Political Science and Politics.Abstract

The political science math prefresher arose a quarter century ago and has now spread to many of our discipline’s Ph.D. programs. Incoming students arrive for graduate school a few weeks early for ungraded instruction in math, statistics, and computer science as they are useful for political science. The prefresher’s benefits, however, go beyond the technical material taught: it develops lasting camaraderie with their entering class, facilitates connections with senior graduate students, opens pathways to mastering methods necessary for research, and eases the transition to the increasingly collaborative nature of graduate work. The prefresher also shows how faculty across a highly diverse discipline can work together to train the next generation. We review this program, highlight its collaborative aspects, and try to take the idea to the next level by building infrastructure to share teaching materials across universities so separate programs can build on each other’s work and improve all our programs.

Read more

So You're a Grad Student Now? Maybe You Should Do This

So You're a Grad Student Now? Maybe You Should Do This
Gary King. Forthcoming. “So You're a Grad Student Now? Maybe You Should Do This.” In Sage Handbook of Research Methods in Political Science, edited by Jr. Robert J. Franzese and Luigi Curini. London: Sage Publications.Abstract
Congratulations! You’ve made it to graduate school. This means you’re in a select group, about to embark on a great adventure to learn about the world and teach us all some new things. This also means you obviously know how to follow rules. So I have five for you -- not counting the obvious one that to learn new things you’ll need to break some rules. After all, to be a successful academic, you’ll need to cut a new path, and so if you do exactly what your advisors and I did, you won’t get anywhere near as far since we already did it. So here are some rules, but break some of them, perhaps including this one
Read more

Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies

Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies
Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. Forthcoming. “Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies.” American Political Science Review.Abstract
We clarify the theoretical foundations of partisan fairness standards for district-based democratic electoral systems, including essential assumptions and definitions that have not been recognized, formalized, or in some cases even discussed. We also offer extensive empirical evidence for assumptions with observable implications. Throughout, we follow a fundamental principle of statistical inference too often ignored in this literature -- defining the quantity of interest separately so its measures can be proven wrong, evaluated, or improved. This enables us to prove which of the many newly proposed fairness measures are statistically appropriate and which are biased, limited, or not measures of the theoretical quantity they seek to estimate at all. Because real world redistricting and gerrymandering involves complicated politics with numerous participants and conflicting goals, measures biased for partisan fairness sometimes still provide useful descriptions of other aspects of electoral systems.
Read more

A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results

A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results
Beau Coker, Cynthia Rudin, and Gary King. Working Paper. “A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results”. Publisher's VersionAbstract
Inference is the process of using facts we know to learn about facts we do not know. A theory of inference gives assumptions necessary to get from the former to the latter, along with a definition for and summary of the resulting uncertainty. Any one theory of inference is neither right nor wrong, but merely an axiom that may or may not be useful. Each of the many diverse theories of inference can be valuable for certain applications. However, no existing theory of inference addresses the tendency to choose, from the range of plausible data analysis specifications consistent with prior evidence, those that inadvertently favor one's own hypotheses. Since the biases from these choices are a growing concern across scientific fields, and in a sense the reason the scientific community was invented in the first place, we introduce a new theory of inference designed to address this critical problem. We derive "hacking intervals," which are the range of a summary statistic one may obtain given a class of possible endogenous manipulations of the data. Hacking intervals require no appeal to hypothetical data sets drawn from imaginary superpopulations. A scientific result with a small hacking interval is more robust to researcher manipulation than one with a larger interval, and is often easier to interpret than a classical confidence interval. Some versions of hacking intervals turn out to be equivalent to classical confidence intervals, which means they may also provide a more intuitive and potentially more useful interpretation of classical confidence intervals.
Read more

Ecological Regression with Partial Identification

Ecological Regression with Partial Identification
Wenxin Jiang, Gary King, Allen Schmaltz, and Martin A. Tanner. 2019. “Ecological Regression with Partial Identification.” Political Analysis, Pp. 1--22.Abstract

Ecological inference (EI) is the process of learning about individual behavior from aggregate data. We relax assumptions by allowing for ``linear contextual effects,'' which previous works have regarded as plausible but avoided due to non-identification, a problem we sidestep by deriving bounds instead of point estimates. In this way, we offer a conceptual framework to improve on the Duncan-Davis bound, derived more than sixty-five years ago. To study the effectiveness of our approach, we collect and analyze 8,430  2x2 EI datasets with known ground truth from several sources --- thus bringing considerably more data to bear on the problem than the existing dozen or so datasets available in the literature for evaluating EI estimators. For the 88% of real data sets in our collection that fit a proposed rule, our approach reduces the width of the Duncan-Davis bound, on average, by about 44%, while still capturing the true district level parameter about 99% of the time. The remaining 12% revert to the Duncan-Davis bound. 

Easy-to-use software is available that implements all the methods described in the paper. 

Read more

A New Model for Industry-Academic Partnerships

Indaca
Gary King and Nathaniel Persily. 2019. “A New Model for Industry-Academic Partnerships.” PS: Political Science and Politics. Publisher's VersionAbstract

The mission of the social sciences is to understand and ameliorate society’s greatest challenges. The data held by private companies, collected for different purposes, hold vast potential to further this mission. Yet, because of consumer privacy, trade secrets, proprietary content, and political sensitivities, these datasets are often inaccessible to scholars. We propose a novel organizational model to address these problems. We also report on the first partnership under this model, to study the incendiary issues surrounding the impact of social media on elections and democracy: Facebook provides (privacy-preserving) data access; eight ideologically and substantively diverse charitable foundations provide funding; an organization of academics we created, Social Science One (see SocialScience.One), leads the project; and the Institute for Quantitative Social Science at Harvard and the Social Science Research Council provide logistical help.

Read more
  •  
  • 1 of 28
  • »
All writings

Presentations

Statistically Valid Inferences from Privacy Protected Data (Microsoft) Thursday, November 21, 2019:
Unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data, statistical guarantees for researchers seeking insights from it, and protection for society from some fallacious scientific conclusions. We build on the standard of ``... Read more about Statistically Valid Inferences from Privacy Protected Data (Microsoft)
Statistically Valid Inferences from Privacy Protected Data (University of Chicago) Friday, November 8, 2019:
The vast majority of data that could help social scientists understand and ameliorate the challenges of human society is presently locked away inside companies, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data, statistical guarantees for researchers seeking insights from it, and protection for society from some fallacious scientific conclusions. We build on the standard of ``differential privacy'' but, unlike most such... Read more about Statistically Valid Inferences from Privacy Protected Data (University of Chicago)
How to Measure Legislative District Compactness If You Only Know it When You See it (University of Chicago) Thursday, November 7, 2019:

To deter gerrymandering, many state constitutions require legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. We hypothesize that both are correct -- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey to elicit this understanding, with high reliability (in data where...

Read more about How to Measure Legislative District Compactness If You Only Know it When You See it (University of Chicago)
Simplifying Matching Methods for Causal Inference (University of Minho) Tuesday, October 22, 2019:
We show how to use matching methods for causal inference to ameliorate model dependence -- where small, indefensible changes in model specification have large impacts on our conclusions. We introduce methods that are simpler, more powerful, and easier to understand than existing approaches. We also show that propensity score matching, an enormously popular approach, often accomplishes the opposite of its intended goal -- increasing imbalance, inefficiency, model dependence, and bias -- and should be replaced with other matching methods in applications.  See ... Read more about Simplifying Matching Methods for Causal Inference (University of Minho)
  •  
  • 1 of 54
  • »
All presentations

Books

Demographic Forecasting

Demographic Forecasting
Federico Girosi and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract

We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.

Read more

Ecological Inference: New Methodological Strategies

Ecological Inference: New Methodological Strategies
Gary King, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
Read more
  •  
  • 1 of 2
  • »
All writings

Gary King on Twitter