Writings

Working Paper
Statistically Valid Inferences from Differentially Private Data Releases, II: Extensions to Nonlinear Transformations
Georgina Evans and Gary King. Working Paper. “Statistically Valid Inferences from Differentially Private Data Releases, II: Extensions to Nonlinear Transformations”.Abstract

We extend Evans and King (Forthcoming, 2021) to nonlinear transformations, using proportions and weighted averages as our running examples.

Paper
Statistically Valid Inferences from Privacy Protected Data
Georgina Evans, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. Working Paper. “Statistically Valid Inferences from Privacy Protected Data”.Abstract
Unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside companies, governments, and other organizations, in part because of privacy concerns. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for research subjects, and statistical validity guarantees for researchers seeking social science insights. We build on the standard of ``differential privacy,'' correct for biases induced by the privacy-preserving procedures, provide a proper accounting of uncertainty, and impose minimal constraints on the choice of statistical methods and quantities estimated. We also replicate two recent published articles and show how we can obtain approximately the same substantive results while simultaneously protecting the privacy. Our approach is simple to use and computationally efficient; we also offer open source software that implements all our methods.
Paper
Forthcoming
Jonathan Katz, Gary King, and Elizabeth Rosenblatt. Forthcoming. “Rejoinder: Concluding Remarks on Scholarly Communications.” Political Analysis.Abstract

We are grateful to DeFord et al. for the continued attention to our work and the crucial issues of fair representation in democratic electoral systems. Our response (Katz, King, and Rosenblatt, forthcoming) was designed to help readers avoid being misled by mistaken claims in DeFord et al. (forthcoming-a), and does not address other literature or uses of our prior work. As it happens, none of our corrections were addressed (or contradicted) in the most recent submission (DeFord et al., forthcoming-b).

We also offer a recommendation regarding DeFord et al.’s (forthcoming-b) concern with how expert witnesses, consultants, and commentators should present academic scholarship to academic novices, such as judges, public officials, the media, and the general public. In these public service roles, scholars attempt to translate academic understanding of sophisticated scholarly literatures, technical methodologies, and complex theories for those without sufficient background in social science or statistics.
 

Rejoinder
Differentially Private Survey Research
Georgina Evans, Gary King, Adam D. Smith, and Abhradeep Thakurta. Forthcoming. “Differentially Private Survey Research.” American Journal of Political Science.Abstract
Survey researchers have long sought to protect the privacy of their respondents via de-identification (removing names and other directly identifying information) before sharing data. Although these procedures can help, recent research demonstrates that they fail to protect respondents from intentional re-identification attacks, a problem that threatens to undermine vast survey enterprises in academia, government, and industry. This is especially a problem in political science because political beliefs are not merely the subject of our scholarship; they represent some of the most important information respondents want to keep private. We confirm the problem in practice by re-identifying individuals from a survey about a controversial referendum declaring life beginning at conception. We build on the concept of "differential privacy" to offer new data sharing procedures with mathematical guarantees for protecting respondent privacy and statistical validity guarantees for social scientists analyzing differentially private data.  The cost of these new procedures is larger standard errors, which can be overcome with somewhat larger sample sizes.
Paper Supplementary Appendix
The Essential Role of Statistical Inference in Evaluating Electoral Systems: A Response to DeFord et al.
Jonathan Katz, Gary King, and Elizabeth Rosenblatt. Forthcoming. “The Essential Role of Statistical Inference in Evaluating Electoral Systems: A Response to DeFord et al.” Political Analysis.Abstract
Katz, King, and Rosenblatt (2020) introduces a theoretical framework for understanding redistricting and electoral systems, built on basic statistical and social science principles of inference. DeFord et al. (Forthcoming, 2021) instead focuses solely on descriptive measures, which lead to the problems identified in our arti- cle. In this paper, we illustrate the essential role of these basic principles and then offer statistical, mathematical, and substantive corrections required to apply DeFord et al.’s calculations to social science questions of interest, while also showing how to easily resolve all claimed paradoxes and problems. We are grateful to the authors for their interest in our work and for this opportunity to clarify these principles and our theoretical framework.
Paper
An Improved Method of Automated Nonparametric Content Analysis for Social Science
Connor T. Jerzak, Gary King, and Anton Strezhnev. Forthcoming. “An Improved Method of Automated Nonparametric Content Analysis for Social Science.” Political Analysis.Abstract

Some scholars build models to classify documents into chosen categories. Others, especially social scientists who tend to focus on population characteristics, instead usually estimate the proportion of documents in each category -- using either parametric "classify-and-count" methods or "direct" nonparametric estimation of proportions without individual classification. Unfortunately, classify-and-count methods can be highly model dependent or generate more bias in the proportions even as the percent of documents correctly classified increases. Direct estimation avoids these problems, but can suffer when the meaning of language changes between training and test sets or is too similar across categories. We develop an improved direct estimation approach without these issues by including and optimizing continuous text features, along with a form of matching adapted from the causal inference literature. Our approach substantially improves performance in a diverse collection of 73 data sets. We also offer easy-to-use software software that implements all ideas discussed herein.

Paper Supplementary Appendix
Statistically Valid Inferences from Differentially Private Data Releases, with Application to the Facebook URLs Dataset
Georgina Evans and Gary King. Forthcoming. “Statistically Valid Inferences from Differentially Private Data Releases, with Application to the Facebook URLs Dataset.” Political Analysis.Abstract

We offer methods to analyze the "differentially private" Facebook URLs Dataset which, at over 40 trillion cell values, is one of the largest social science research datasets ever constructed. The version of differential privacy used in the URLs dataset has specially calibrated random noise added, which provides mathematical guarantees for the privacy of individual research subjects while still making it possible to learn about aggregate patterns of interest to social scientists. Unfortunately, random noise creates measurement error which induces statistical bias -- including attenuation, exaggeration, switched signs, or incorrect uncertainty estimates. We adapt methods developed to correct for naturally occurring measurement error, with special attention to computational efficiency for large datasets. The result is statistically valid linear regression estimates and descriptive statistics that can be interpreted as ordinary analyses of non-confidential data but with appropriately larger standard errors.

We have implemented these methods in open source software for R called PrivacyUnbiased.  Facebook has ported PrivacyUnbiased to open source Python code called svinfer.  We have extended these results in Evans and King (2021).

Paper
2021
Letter to US Census Bureau: "Request for release of “noisy measurements file” by September 30 along with redistricting data products"
Cynthia Dwork, Ruth Greenwood, and Gary King. 8/12/2021. “Letter to US Census Bureau: "Request for release of “noisy measurements file” by September 30 along with redistricting data products"”.Abstract
A letter, submitted on behalf of a large group of expert signatories, to request the release of the “noisy measurements file” and other redistricting data by September 30, 2021.  This includes the data created by the Bureau in preparing its differentially private data release, without their unnecessary (and, in many important situations, information destroying) post-processing.
Letter
There’s a simple solution to the latest census fight
Cynthia Dwork, Ruth Greenwood, and Gary King. 7/26/2021. “There’s a simple solution to the latest census fight.” Boston Globe, Pp. A9. Publisher's VersionAbstract
We offer a solution to debates over the use of differential privacy in releasing US Census Data.
Article
Cluster Analysis of Participant Responses for Test Generation or Teaching (2nd)
Gary King, Brian Lukoff, and Eric Mazur. 2/16/2021. “Cluster Analysis of Participant Responses for Test Generation or Teaching (2nd).” United States of America US 10,922,991 B2 (U.S Patent and Trademark Office).Abstract
Textual responses to open-ended (i.e., free-response) items provided by participants (e.g., by means of mobile wireless devices) are automatically classified, enabling an instructor to assess the responses in a convenient, organized fashion and adjust instruction accordingly.
patent
Participant Grouping for Enhanced Interactive Experience (4th)
Gary King, Brian Lukoff, and Eric Mazur. 1/26/2021. “Participant Grouping for Enhanced Interactive Experience (4th).” United States of America 10,902,031 B2 (U.S Patent and Trademark Office).Abstract
Representative embodiments of a method for grouping participants in an activity include the steps of: (i) defining a grouping policy; (ii) storing, in a database, participant records that include a participant identifier, a characteristic associated with the participant, and/or an identifier for a participant's handheld device; (iii) defining groupings based on the policy and characteristics of the participants relating to the policy and to the activity; and (iv) communicating the groupings to the handheld devices to establish the groups.
Patent
UnbiasedPrivacy
Georgina Evans, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. 2021. “UnbiasedPrivacy”.
Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition
Gary King, Robert O. Keohane, and Sidney Verba. 2021. Designing Social Inquiry: Scientific Inference in Qualitative Research, New Edition. 2nd ed. Princeton: Princeton University Press. Publisher's VersionAbstract
"The classic work on qualitative methods in political science"

Designing Social Inquiry presents a unified approach to qualitative and quantitative research in political science, showing how the same logic of inference underlies both. This stimulating book discusses issues related to framing research questions, measuring the accuracy of data and the uncertainty of empirical inferences, discovering causal effects, and getting the most out of qualitative research. It addresses topics such as interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. The book only uses mathematical notation to clarify concepts, and assumes no prior knowledge of mathematics or statistics.

Featuring a new preface by Robert O. Keohane and Gary King, this edition makes an influential work available to new generations of qualitative researchers in the social sciences.
Education and Scholarship by Video
Gary King. 2021. “Education and Scholarship by Video”. [Direct link to paper]Abstract

When word processors were first introduced into the workplace, they turned scholars into typists. But they also improved our work: Turnaround time for new drafts dropped from days to seconds. Rewriting became easier and more common, and our papers, educational efforts, and research output improved. I discuss the advantages of and mechanisms for doing the same with do-it-yourself video recordings of research talks and class lectures, so that they may become a fully respected channel for scholarly output and education, alongside books and articles. I consider innovations in video design to optimize education and communication, along with technology to make this change possible.

Exerpts of this paper appeared in Political Science Today (Vol. 1, No. 3, August 2021: Pp.5-6, copy here) and in a blog post at APSAEducate. See also my recorded videos here.

How to Measure Legislative District Compactness If You Only Know it When You See It
Aaron Kaufman, Gary King, and Mayya Komisarchik. 2021. “How to Measure Legislative District Compactness If You Only Know it When You See It.” American Journal of Political Science, 65, 3, Pp. 533-550. Publisher's VersionAbstract

To deter gerrymandering, many state constitutions require legislative districts to be "compact." Yet, the law offers few precise definitions other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. We hypothesize that both are correct -- that compactness is complex and multidimensional, but a common understanding exists across people. We develop a survey to elicit this understanding, with high reliability (in data where the standard paired comparisons approach fails). We create a statistical model that predicts, with high accuracy, solely from the geometric features of the district, compactness evaluations by judges and public officials responsible for redistricting, among others. We also offer compactness data from our validated measure for 20,160 state legislative and congressional districts, as well as open source software to compute this measure from any district.

Winner of the 2018 Robert H Durr Award from the MPSA.

Article Supplementary Appendix
Precision mapping child undernutrition for nearly 600,000 inhabited census villages in India
Rockli Kim, Avleen S. Bijral, Yun Xu, Xiuyuan Zhang, Jeffrey C. Blossom, Akshay Swaminathan, Gary King, Alok Kumar, Rakesh Sarwal, Juan M. Lavista Ferres, and S.V. Subramanian. 2021. “Precision mapping child undernutrition for nearly 600,000 inhabited census villages in India.” Proceedings of the National Academy of Sciences, 118, 18, Pp. 1-11. Publisher's VersionAbstract
There are emerging opportunities to assess health indicators at truly small areas with increasing availability of data geocoded to micro geographic units and advanced modeling techniques. The utility of such fine-grained data can be fully leveraged if linked to local governance units that are accountable for implementation of programs and interventions. We used data from the 2011 Indian Census for village-level demographic and amenities features and the 2016 Indian Demographic and Health Survey in a bias-corrected semisupervised regression framework to predict child anthropometric failures for all villages in India. Of the total geographic variation in predicted child anthropometric failure estimates, 54.2 to 72.3% were attributed to the village level followed by 20.6 to 39.5% to the state level. The mean predicted stunting was 37.9% (SD: 10.1%; IQR: 31.2 to 44.7%), and substantial variation was found across villages ranging from less than 5% for 691 villages to over 70% in 453 villages. Estimates at the village level can potentially shift the paradigm of policy discussion in India by enabling more informed prioritization and precise targeting. The proposed methodology can be adapted and applied to diverse population health indicators, and in other contexts, to reveal spatial heterogeneity at a finer geographic scale and identify local areas with the greatest needs and with direct implications for actions to take place.
Article
Survey Data and Human Computation for Improved Flu Tracking
Stefan Wojcik, Avleen Bijral, Richard Johnston, Juan Miguel Lavista, Gary King, Ryan Kennedy, Alessandro Vespignani, and David Lazer. 2021. “Survey Data and Human Computation for Improved Flu Tracking.” Nature Communications, 12, 194, Pp. 1-8. Publisher's VersionAbstract
While digital trace data from sources like search engines hold enormous potential for tracking and understanding human behavior, these streams of data lack information about the actual experiences of those individuals generating the data. Moreover, most current methods ignore or under-utilize human processing capabilities that allow humans to solve problems not yet solvable by computers (human computation). We demonstrate how behavioral research, linking digital and real-world behavior, along with human computation, can be utilized to improve the performance of studies using digital data streams. This study looks at the use of search data to track prevalence of Influenza-Like Illness (ILI). We build a behavioral model of flu search based on survey data linked to users’ online browsing data. We then utilize human computation for classifying search strings. Leveraging these resources, we construct a tracking model of ILI prevalence that outperforms strong historical benchmarks using only a limited stream of search data and lends itself to tracking ILI in smaller geographic units. While this paper only addresses searches related to ILI, the method we describe has potential for tracking a broad set of phenomena in near real-time.
Article Supporting Information
A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results
Beau Coker, Cynthia Rudin, and Gary King. 2021. “A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results.” Management Science, Pp. 1-24. Publisher's VersionAbstract
Inference is the process of using facts we know to learn about facts we do not know. A theory of inference gives assumptions necessary to get from the former to the latter, along with a definition for and summary of the resulting uncertainty. Any one theory of inference is neither right nor wrong, but merely an axiom that may or may not be useful. Each of the many diverse theories of inference can be valuable for certain applications. However, no existing theory of inference addresses the tendency to choose, from the range of plausible data analysis specifications consistent with prior evidence, those that inadvertently favor one's own hypotheses. Since the biases from these choices are a growing concern across scientific fields, and in a sense the reason the scientific community was invented in the first place, we introduce a new theory of inference designed to address this critical problem. We derive "hacking intervals," which are the range of a summary statistic one may obtain given a class of possible endogenous manipulations of the data. Hacking intervals require no appeal to hypothetical data sets drawn from imaginary superpopulations. A scientific result with a small hacking interval is more robust to researcher manipulation than one with a larger interval, and is often easier to interpret than a classical confidence interval. Some versions of hacking intervals turn out to be equivalent to classical confidence intervals, which means they may also provide a more intuitive and potentially more useful interpretation of classical confidence intervals. 
Article
2020
Computational social science: Obstacles and opportunities
David M. J. Lazer, Alex Pentland, Duncan J. Watts, Sinan Aral, Susan Athey, Noshir Contractor, Deen Freelon, Sandra Gonzalez-Bailon, Gary King, Helen Margetts, Alondra Nelson, Matthew J. Salganik, Markus Strohmaier, Alessandro Vespignani, and Claudia Wagner. 8/28/2020. “Computational social science: Obstacles and opportunities.” Science, 369, 6507, Pp. 1060-1062. Publisher's VersionAbstract
The field of computational social science (CSS) has exploded in prominence over the past decade, with thousands of papers published using observational data, experimental designs, and large-scale simulations that were once unfeasible or unavailable to researchers. These studies have greatly improved our understanding of important phenomena, ranging from social inequality to the spread of infectious diseases. The institutions supporting CSS in the academy have also grown substantially, as evidenced by the proliferation of conferences, workshops, and summer schools across the globe, across disciplines, and across sources of data. But the field has also fallen short in important ways. Many institutional structures around the field—including research ethics, pedagogy, and data infrastructure—are still nascent. We suggest opportunities to address these issues, especially in improving the alignment between the organization of the 20th-century university and the intellectual requirements of the field.
Article
Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behaviour and Testing
William E. Allen, Han Altae-Tran, James Briggs, Xin Jin, Glen McGee, Andy Shi, Rumya Raghavan, Mireille Kamariza, Nicole Nova, Albert Pereta, Chris Danford, Amine Kamel, Patrik Gothe, Evrhet Milam, Jean Aurambault, Thorben Primke, Weijie Li, Josh Inkenbrandt, Tuan Huynh, Evan Chen, Christina Lee, Michael Croatto, Helen Bentley, Wendy Lu, Robert Murray, Mark Travassos, Brent A. Coull, John Openshaw, Casey S. Greene, Ophir Shalem, Gary King, Ryan Probasco, David R. Cheng, Ben Silbermann, Feng Zhang, and Xihong Lin. 8/26/2020. “Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behaviour and Testing.” Nature Human Behavior. Publisher's VersionAbstract
Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic.
Article

Pages