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1 Comparison of Nominal Confidence Interval Lengths

To quantify the magnitude of uncertainty differences between the Normal and LogisTiCC

models for district- and legislature-level statistics, we compute the ratios of the credible

interval (CI) widths from these two models. To compute the ratio of CI widths for district-

level results, we take each of the elections for which we make a prediction and compute

the width of the 95% credibility interval for both the Normal and LogisTiCC models. We

then calculate the ratio of the widths of the LogisTiCC CI’s to the Normal. To compute the

ratio of the credibility intervals for the legislative median, we compute a 95% credibility

interval for the median seat in the House for each year under each model, again out-of-

sample. We take the ratio for each of the 27 years for which we make a prediction, and

report the density of these ratios.

Figure 1 reports distributions of these ratios, with summaries in Table 1. The table

shows that, at the individual level, the LogisTiCC forecast credible intervals are only 42

percent larger than those of Gelman-King model on average, with a mode at 25 percent,

which we can see from the figure. At the same time, because of the correlations between

different districts represented in the LogisTiCC, its CIs for the legislative median are 500

percent larger, on average. Given the results in Figures 1–3, it is clear that these larger CIs

are needed for accurate calibration due to dependence across districts.

Mean Standard Deviation
District Level Results 1.42 0.246
Legislature Level Results 5.06 1.19

Table 1: Numerical summaries of Figure 1

2 Ablation Studies

We make four modeling innovations to achieve generatively accurate model predictions:

a national trend, coefficient stability, local uniqueness, and electoral surprises. In this

section, we conduct “ablation studies,” where each model component is sequentially re-

moved to show how the model degrades. The conclusion of this section is that all model

components are essential to achieve the performance we report.
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Figure 1: LogisTiCC-to-Normal Ratios of 95% Credibility Interval Widths

The linear-normal model treats the data as having 435 independent district-level obser-

vations for each election year. In reality, congressional elections data have high levels and

sophisticated patterns of dependence among voting outcomes across districts. In Figure

2, we replicate the calibration exercise from Figure 3, which reports the model predic-

tions and observed values for the median congressional seat in the given election year.

We report results for three ablated models. We give the normal model with none of the

modeling innovations (in gold); a model with neither a National trend assumption nor

coefficient stability, but with an additive logistic student-T (ALT) assumption on the error

term (in yellow); and a model with normal errors, but with a national trend and coefficient

stability (in green).

We would expect a well-calibrated model to contain the true value of the median seat’s

vote share about ∼ 95 percent of the time. To that end, we see that the normal with none of

our innovations fares poorly, correctly containing the true value for the median seat only
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Figure 2: Comparison of Model Calibration as under Ablation

25 percent of the elections. If we switch to the ALT specification, we achieve a 40 percent

accuracy rate, which is still inadequate, but better than Normal alone. When we assume

normal errors with a national trend and coefficient stability, we achieve 64 percent accu-

racy. Under the ablated models, we find that the coefficient stability and national trend

alone allow the model to achieve about 60 percent accuracy in our calibration calibration,

while the ALT error assumption achieves 40 percent accuracy. Only the inclusion of all

our modeling assumptions allowed us to achieve 100 percent accuracy.

In Figure 3, we reproduce Figure 3 from the paper with additional information. As in

the original, the linear-normal model (in gold), which assumes independence, has confi-

dence intervals that are extremely overconfident, and the LogisTiCC (in black) has accu-

rately calibrated intervals. To these results, we add a version of our LogisTiCC that zeros

out the parameters that model dependence. These include the national swing parameter

ση and also our covariate stability parameter σβ > 0 which, after transforming to the vote

scale, also allows for some dependence across districts. In this model, we retain local

uniquenesss.

Thus, we add to Figure 3, in green, estimates from the LogisTiCC model constrained

to give predictions with zero cross-district independence, while retaining local unique-
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Figure 3: Expected Vote Share of the Median House Seat (95 Percent Credible Interval)

ness. While this set of assumptions reduces overconfidence of the model relative to the

normal somewhat, the model is still highly overconfident. Only when we allow our full

ALT error structure with cross-district correlations are the out-of-sample model predic-

tions from the LogisTiCC well-calibrated to the historical data (in black). Under the

linear-normal error structure, the incumbent party will never lose control of the House

of Representative. Under the ALT without cross-district correlation, the uncertainty gets

larger so that the incumbent party is sometimes forecast to lose an election, but clearly not

often enough. By introducing cross-district correlation, our forecasts are well-calibrated.

3 Imputation for Uncontested Seats

Missingingess due to uncontestedness is an important feature of historical congressional

election data. In Figure 4, we show the historical rate of uncontestedness in U.S. Congres-

sional elections, which ranges from 21 percent in 1954 to 4 percent in 1996. Rather than

drop these estimates which compose a nontrivial share of the data in any given election

year, we impute predictive vote shares within our wholesale model framework.
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Figure 4: Uncontested Elections over Time

To account for missing data due to uncontestedness, we jointly estimate a multivariate

model which predicts the uncontested vote share and missing lagged uncontested vote

share. To this end, we assume that missing vote share is a censored variable where an

uncontested incumbent is constrained to always win. That is, we know uncontested vote

share data are not missing at random.

In Figure 5, we show that our predictions are bimodal around modes centered at 25 and

75 percent vote shares. These predictions are in line for historical estimates of uncontested

vote shares.

4 Computational Details

The standard approach is usually estimated with a linear regression for forecasting (i.e.,

dropping γi) or, for other quantities of interest, via an approximate two-step procedure

designed to avoid computational challenges that were difficult in the 1990s (see Gelman

and King, 1994).
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Figure 5: Histogram of Predicted Values for Uncontested Elections

Because of improvements in computation and Bayesian modeling, we estimate our

LogisTiCC model via a fully Bayesian specification of Equation 2, beginning with the

likelihood in Equation 5. We implement the model in “brms,” open-source software that

uses Hamiltonian Markov Chains (HMC) sampling to draw from the posterior distribu-

tion of a mixed-effects model (Bürkner, 2018). In practice, we draw 50,000 samples of the

posterior distribution from the Bayesian mixed-effects representation. When lagged con-

gressional vote share is a covariate, we drop the first election of each redistricting decade

to fit the model. Our Bayesian methods are computationally demanding but efficient,

which enables us to analyze large legislatures, and does not require asymptotic assump-

tions, which is especially important for legislatures like the small U.S. Senate class up

for election in any one year, small national legislatures, or the many small state houses.

We are also able to simulate quantities of interest directly from the full joint posterior

distribution of the predicted values and parameters, which means researchers can easily
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calculate any relevant quantity of interest, along with accurate and calibrated uncertainty

estimates.

In order to achieve valid calibrated uncertainty estimates, we use conservative search

parameters for Stan’s HMC sampler. We set a delta step of 0.99, set a maximum tree

depth of 10, draw 50, 000 samples with a warm up of 5, 000 iterations on 5 chains run in

parallel. All Markov Chains successfully converged, with no divergent transitions, Rhats

of 1 across all parameters, well-mixed chains, and no breaches of maximum tree depth.

We employ weakly informative priors for estimation convenience. In our case, be-

cause we have an average of about 1, 500 elections per decade, we do not require reg-

ularization to identify model parameters, although our weakly informative priors reduce

computational time for HMC convergence. Priors are useful for speeding computation

but, in our data, the choice of hyperprior parameter values does not have much effect on

empirical results. The specific values we use are σβ, σω, σtk, σi,∼ Exponential(0.2) and

ν ∼ Γ(3, 0.5).

In Figure 6, we show the prior and posterior histograms for the coefficient on our

predictor of the “normal” vote. This figure shows that our weakly informative prior is

diffuse, while the coefficient posterior is tightly estimated around its mean, confirming

that our model estimates are mostly a function of the data rather than priors. We have

also found that small changes in the priors have little substantive consequences for our

estimates.

Statistical results are likely less robust to the choice of the these parameters in smaller

legislators. In applications with small legislatures, researchers should carefully consider

the impacts of both prior specification and sampler behavior to guarantee statistically valid

inference of the HMC chains.

5 Alternative Modeling Assumptions

We tried to eliminate any feature of our model not required for accurate out-of-sample

validation and accurate uncertainty intervals, to include additional features that would

improve performance, and to consider alternative specifications that might be easier to
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Figure 6: Posterior vs. Prior Densities

understand.

As we have shown in the main text, the linear-normal model is poorly calibrated for

congressional elections. Additionally, we fit a linear-normal Student-t, which failed be-

cause it lacked the flexibility and asymmetry in the tails provided by the additive logistic

t (ALT). The Additive Logistic Normal failed because it could not properly capture the

levels of concentration (nearly 60 percent in the 1980s) exhibited in Figure 5a, nor did it

accurately capture surprises with appropriate tails. Fitting an IID ALT, that is without con-

temporaneous correlations, is not well-calibrated because it misses the correlations due to

year-to-year swings in the national trend or dependence due to the stability of coefficient

estimates, as we showed in Figure 3.

We also tried other flexible distributions. We tried the Beta distribution, which models

the unit interval directly, but produces poorly calibrated results because it, like the IID

normal, does not capture appropriate levels of concentration or tail behavior. We also

tried mixture distributions and errors which, while flexible, wound up being highly model
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dependent, poorly identified, and computationally fragile.

We also attempted to find alternative correlation structures, besides time mixed effects

and district random effects on the logit scale, such as regional mixed effects. Besides

districts in the south and outside the south, there was little predictable inter-regional vari-

ation. Districts in the North, West, and Southwest do not seem to systematically vary,

conditional on the covariates. Our covariates includes an indicator for districts in the

South that varies over time to capture what appear to be the most important systematic

effects. In terms of covariate selection, we made choices for easy comparison to the

literature. Our general model structure, like the normal, can easily accommodate other

indicators when desired.

6 Additional Information about The Three Regimes

We now give additional ways of distinguishing the three regimes described in Section 4.1.

These regimes are also characterized by high levels of continuity, which we convey by

a plot of the coefficient on the lagged vote from our model in Figure 7a ranging in 0.8–

0.95 in the early and later periods, and as low as 0.3 in the middle period. We can also

see high levels of partisan alignment during the same periods outside of our model by

observing the correlation between the congressional and presidential vote. We construct

a time series plot of these correlations in Figure 7b, and they again reveal a now familiar

U-shaped pattern.

7 The History of Generative Modeling

To calculate generatively accurate descriptive summaries, the statistical model generating

these summaries should (a) pass extensive, rigorous out-of-sample tests that validate its

generative abilities and (b) reflect available prior information from the literature. In our

efforts to meet these conditions, we benefit from developments in three major fields of

statistics, each of which has engaged with these same conditions. We now situate the

ideas described in this paper (particularly Section 5) in the history of statistical analyses

by briefly describing these three research traditions.

10



0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

19
56

19
60

19
64

19
68

19
72

19
76

19
80

19
84

19
88

19
92

19
96

20
00

20
04

20
08

20
12

20
16

20
20

La
gg

ed
 V

ot
e 

C
oe

ffi
ci

en
t

(a) Election 1–Election 2 (Lagged Vote Coefficient)
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(b) Congress–President Vote (correlation)

Figure 7: Partisan Voter Alignment

First, direct attempts to build generative models in the social sciences have a long

history, from path analysis originating in 1920s sociology, to linear structural equation

modeling in econometrics and psychometrics in the 1960s and 70s, and, more recently, to

hierarchical Bayesian models in statistics. At one point, econometricians had built many

structural equation models of the economy, sometimes with hundreds of equations and

each finely tuned to their past theoretical knowledge. However, rigorous out-of-sample

forecasting were surprisingly embarrassed by a comparison with “atheoretical” univariate

ARIMA models, leading many to reassess the value of their prior information. These

attempts failed because researchers lacked the requisite computational resources to build

models that reflected prior knowledge and sufficient data to make extensive validation

possible. Now, model checking has become a more common part of Bayesian best prac-

tices (e.g., Gelman, Meng, and Stern, 1996).

Second, when estimating accurate generative models was not feasible, or required too

many unjustified assumptions, social scientists turned to other research frameworks, often

changing their quantities of interest in the process. Most notably, the literature on causal

inference, especially since the 1980s, has made tremendous progress by developing ways

of estimating causal effects without modeling assumptions. Although numerous articles
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had previously attempted to make causal inferences, Leamer (1983) and others pointed

out that high levels of (what came to be known as) model dependence meant that most

of these inferences were not right, and maybe not even wrong, but instead mostly re-

flected researchers’ priors. The “credibility crisis” that resulted from this skepticism and

from rigorous tests of observational estimates compared with out-of-sample randomized

experiments (Lalonde, 1986), lit a fire under the methodological community, resulting

in remarkable progress that continues until today (Imbens, 2022). The theories and de-

scriptive stories that emerge from generative models, including ours, often include many

causal effects, and so the ability of these methods to proceed without modeling assump-

tions has been valuable for everyone. At the same time, even if we had exact knowledge

of all causal effects ever estimated and a vast number of others, we would not come close

to the range of descriptive knowledge social scientists seek and which can be gained by

generatively accurate descriptive summaries. Descriptive quantities such as partisan bias,

responsiveness, forecasts, farcasts, and many others are not causal effects but of course

remain of interest to political scientists and policymakers.

Finally, machine learning methods of classification and prediction have made contin-

ual progress by their single-minded focus on out-of-sample validation. By taking their

task as engineering better algorithms and downplaying constraints suggested by prior

theoretical “knowledge,” they make themselves continually vulnerable to being proven

wrong. Although one can often do as well with simpler models that explicitly code more

prior knowledge, this literature’s focus on validation helps them avoid being fooled by

elegant theories that do not have empirical support.

As has been true throughout the history of quantitative social science methodology,

political scientists have a comparative advantage when they employ their knowledge of

the political world, but do best when subjecting their statistical claims to the possibility of

being proven wrong.
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