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INTRODUCTION

Classic (or ‘‘cumulative’’) case-control sampling designs

do not admit inferences about quantities of interest other

than risk ratios and then only by making the rare events

assumption. Probabilities, risk differences, number needed

to treat, and other quantities cannot be computed without

knowledge of the population incidence fraction. Similarly,

density (or ‘‘risk set’’) case-control sampling designs do

not allow inferences about quantities other than the rate

ratio. Rates, rate differences, cumulative rates, risks, and

other quantities cannot be estimated unless auxiliary

information about the underlying cohort such as the

number of controls in each full risk set is available. Most

scholars who have considered the issue recommend

reporting more than just risk and rate ratios, but auxiliary

population information needed to do this is not usually

available. We address this problem by developing

methods that allow valid inferences about all relevant

quantities of interest from either type of case-control study

when completely ignorant of or only partially knowledge-

able about relevant auxiliary population information.

OVERVIEW

Moynihan et al.[1] express the conclusions of nearly all

who have written about the standards of statistical

reporting for academic and general audiences:

In general, giving only the absolute or only the relative

benefits does not tell the full story; it is more informative

if both researchers and the media make data available in

both absolute and relative terms. For individual deci-

sions. . .consumers need information to weigh the proba-

bility of benefit and harm; in such cases it [also] seems

desirable for media stories to include actual event

[probabilities] with and without treatment.

Unfortunately, existing methods make this consensus

methodological advice impossible to follow in the most

used research design in many areas of medical research:

case-control studies. In practice, medical researchers have

historically used classic (i.e., ‘‘cumulative’’) case-control

designs along with the rare events assumption (i.e., that

the exposure and nonexposure incidence fractions ap-

proach zero) to estimate risk ratios—or they abandon

these quantities of interest altogether and merely report

odds ratios. Although virtually no one supports the

publication of odds ratios alone, this remains the

dominant practice in the field.

In recent years, medical researchers have been switch-

ing to density sampling, which requires no such

assumption for estimating rate ratios. (We discuss the

failure-time matched version of density sampling called

risk-set sampling by biostatisticians.) Unfortunately,

researchers rarely have the population information needed

by existing methods to estimate almost any other quantity

of interest, such as absolute risks and rates, risk and rate

differences, attributable fractions, or numbers needed to

treat. We provide a way out of this situation by developing

methods of estimating all relevant quantities of interest

under classic and density case-control sampling designs

when completely ignorant of, or only partially knowl-

edgeable about, the relevant population information.

We begin with theoretical work on cumulative case-

control sampling by Manski,[2,3] who shows that inform-

ative bounds on the risk ratio and difference are identified

for this sampling design even when no auxiliary

population information is available. We build on these

results and improve them in several ways to make them

more useful in practice. First, we provide a substantial

simplification of Manski’s risk difference bounds, which

also makes estimation feasible. Second, we show how to

provide meaningful bounds for a variety of quantities of

interest in situations of partial ignorance. Third, we

provide confidence intervals for all quantities and a

‘‘robust Bayesian’’ interpretation of our methods that

work even for researchers who are completely ignorant

of prior information. Fourth, through the reanalysis of

the hypothetical example from Manski’s work and a

replication and extension of an epidemiological study of
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bacterial pneumonia in individuals infected with human

immunodeficiency virus (HIV), we demonstrate that

adding information in the way we suggest is quite

powerful as it can substantially narrow the bounds on

the quantities of interest. Fifth, we extend our methods to

the density case-control sampling design and provide

informative bounds for all quantities of interest when

auxiliary information on the population data is not

available or only partially available. Finally, we suggest

new reporting standards for applied research and offer

software in Stata and in Gauss that implements the

methods developed in this paper (available at http://

GKing.Harvard.edu).

QUANTITIES OF INTEREST

For subject i (i=1,. . .,Dn), define the outcome variable

Yi,(t,t +Dt) as 1 when one or more ‘‘events’’ (such as disease

incidence) occur in interval (t,t+Dt) (for Dt>0) and 0

otherwise. The variable t usually indexes time but can

denote any continuous variable. In etiological studies, we

shall be interested in Yit� limDt!0Yi,(t,t +Dt). In other

studies, such as of perinatal epidemiology, conditions

with brief risk periods such as acute intoxication, and

some prevalence data, scholars only measure, or only can

measure, Yi,(t,t +Dt), which we refer to as Yi, because the

observation period in these studies is usually the same for

all i.[4] Define a k-vector of covariates and constant term

as Xi.
a In addition, let X0 and X‘ each denote k-vectors of

possibly hypothetical values of the explanatory variables

(often chosen so that the treatment variable changes and

the others remain constant at their means).

Quantities of interest that are generally a function of

t include the rate (or ‘‘hazard rate’’ or ‘‘instantaneous

rate’’), li(t)=limDt!0Pr(Yi,(t,t +Dt)=1jYis=0, 8s< t,Xi)/Dt,

and functions of the rate. For example, the rate ratio,

rrt=l‘(t)/l0(t), and the rate difference, rdt=l‘(t)�l0(t),

indicate how rates differ as the explanatory variables

change from values X0 to X‘.

Quantities of interest that are cumulated over an

interval of time include the risk (also called the

‘‘probability’’ or ‘‘conditional probability of disease’’),

pi ¼ PrðY ¼ 1jXiÞ ¼ 1 � e�HðTi;XiÞ

¼ 1 � exp �
Z t þ Dt

t

liðsÞds

� �
ð1Þ

[where H(Ti,Xi) is the cumulative hazard rate for

individual i over time interval (t, t+Dt)], the risk ratio,

RR�Pr(Y =1jX‘)/Pr(Y =1jX0), and the risk difference (or

‘‘first difference,’’ as it is called in political science, or the

‘‘attributable risk,’’ as economists and some epidemiol-

ogists call it), RD�Pr(Y =1jX‘)�Pr(Y =1jX0). The prob-

ability is evaluated at some values of the explanatory

variables, such as X0 or X‘. The quantity RD is the increase

in probability, and RR is the factor by which the

probability increases [an (RR�1)
100 percent increase]

when the explanatory variables change from X0 to X‘.

The quantities l(t), rrt, rdt, p, RR, and RD are normally

used to study incidence in etiological analyses, but they

are sometimes used to study prevalence by changing the

definition of an ‘‘event.’’ Functions of these quantities,

such as the proportionate increase in the risk or rate

difference, the attributable fraction, or the expected

number of people needed to treat to prevent one adverse

event (or, when the ‘‘treatment’’ has an adverse effect, the

expected number of people needed to harm to result in one

adverse event), can also be computed as a function of

these quantities with the methods described below. For

example, to compute the number needed to treat (NNT), we

merely calculate:

NNT ¼ 1

jRDj ð2Þ

¼ 1

j PrðY ¼ 1jX‘Þ � PrðY ¼ 1jX0Þj
ð3Þ

That is, we simply use the reciprocal of the size of the risk

difference between the ‘‘treatment’’ and ‘‘control’’

groups. The number needed to harm (NNT) is obtained in

the same way.

The other quantity frequently discussed and presented

in the epidemiological literature is the odds ratio

OR � PrðY ¼ 1jX‘Þ= PrðY ¼ 0jX‘Þ
PrðY ¼ 1jX0Þ= PrðY ¼ 0jX0Þ

¼ PrðX‘jY ¼ 1Þ PrðX0jY ¼ 0Þ
PrðX0jY ¼ 1Þ PrðX‘jY ¼ 0Þ ð4Þ

where the second equality holds by Bayes theorem. The

main advantage of OR is that it has been easier to estimate

than the other quantities. In logit and other multiplicative

intercept models (but not generally), OR also has the

attractive feature of being invariant with respect to

the values at which control variables are held constant.

The disadvantage of OR is understanding what it means, and

when OR is not the quantity of interest—which is almost all

the time—then its ‘‘advantages’’ are not sufficient to

recommend its use. Some statisticians seem comfortable

with OR as their ultimate quantity of interest, but this is not

common. Even more unusual is to find anyone who feels

aWe assume for the purpose of this paper that the X’s are not

time-dependent.
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more comfortable with OR than the other quantities defined

above; we have found no author who claims to be more

comfortable communicating with the general public using

an odds ratio than one of the other quantities.[5] The odds

ratio has been used ‘‘largely because it serves as a link

between results obtainable from follow-up studies and

those obtainable from case-control studies.’’[6] We provide

this link with other quantities so that OR is no longer the

only choice available.

Concluding a controversy on this subject in the British

Medical Journal, Davies et al.[7] write ‘‘On one thing we

are in clear agreement: odds ratios can lead to confu-

sion and alternative measures should be used when these

are available.’’

We show here how to make all relevant alternative

measures always available, even in case-control data.

With the results in this article, scholars should never again

feel forced into presenting odds ratios.b

CASE-CONTROL SAMPLING DESIGNS

We now introduce the two key case-control sampling

designs. With appropriate modifications, most of the

methods we introduce also work with many variants

of them.

Classic (or cumulative) case-control designs involve

sampling (usually all) ‘‘cases’’ (subjects for which Yi=1)

and a random sample of ‘‘controls’’ (subjects for which

Yi=0) at the end of the study period. This design is most

appropriate in studies of closed populations and when Yi

but not Yit is observed. Statistical models for such data

specify the risk Pr(Yi=1jXi) as a function of the input Xi.

The most commonly used model is the logistic:

PrðYi ¼ 1jXiÞ ¼ 1

1 þ e�Xib
ð5Þ

Some examples in medical research using the cumulative

case-control design are studies of congenital malforma-

tion, analyses of ‘‘chronic conditions with ill-defined

onset times and limited effects on mortality, such as

obesity and multiple sclerosis, and studies of health

services utilization’’[8] and research that has as its goal

descriptive, rather than causal, inferences (such as

ascertaining the types of people that now have lung

cancer so we can better prepare health-care facilities

in anticipation).

The newer density case-control sampling design

involves, in the study of cohort data organized by risk

sets, sampling ‘‘cases’’ (subjects for which Yit=1) at their

failure times and a subset of ‘‘controls’’ (subjects for

which Yit=0) from all individuals at risk at the time of

each failure, possibly matched on a set of other control

variables. So each sampled risk set Rj ( j=1,. . .,M, where

M is the total number of cases in the data) is composed of

one case (or more in the case of timing ties in their

occurrence) and a random sample of controls at the same

time (or other continuous index) t. A subject may appear

in multiple risk sets. This administratively convenient data

collection strategy can result in a substantial reduction in

the resources required for the study and also has the

advantage of controlling nonparametrically (i.e., without

functional form assumptions) for all omitted variables,

and unmeasured heterogeneity, related to t. Statistical

models for such data specify the incidence (hazard) rate

as a function of t and X. The most commonly used model

is the Cox proportional hazard:

liðtÞ ¼ lðtÞrðXi; bÞ ð6Þ

where, in most applications, r(Xi,b)=eXib and the baseline

hazard l(t) does not vary over subjects.c

INFERENCE WITHOUT
POPULATION INFORMATION

Classic Case-Control

Without additional population information or assump-

tions, the literature provides no method for estimating any

quantity of interest from classic case-control data.

Historically, medical researchers have used the rare

events assumption to estimate the risk ratio by the odds

ratio. Denote the population fraction of incident cases by

t, which is the key piece of auxiliary information about

the population not reflected in the sample [although other

quantities such as P(X), the possibly multivariate density

of X, are also sufficient]. The rare events assumption

states that t is arbitrarily small [while P(X) stays bounded

away from zero, or instead that Pr(Yi=1jXj)!0 for j=0, ‘].
This assumption is not merely that cases are ‘‘rare,’’ but

that they occur, at the limit, with zero probability. The

advantage of this assumption is that, when correct, OR is a

good approximation to the risk ratio: limt!0OR=RR.

This limit result is attractive because OR is often easy to

estimate in case-control designs. For example, if X is a

single binary variable, OR could be estimated by replacing

elements in the second line of Eq. 4 with their sample

analogs [e.g., Pr(X‘jY=1) can be estimated by the fraction

bUnfortunately, the term ‘‘relative risk’’ no longer seems useful because

it has been co-opted to denote such diverse quantities as rr, RR, and OR.

cThe proportionality assumption holds when Xi is time-invariant. When

this is not appropriate, a model that allows time-dependent covariates

(such as the so-called Cox regression model) can be used.

Case-Control Studies, Inference in 3
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of cases for which Xi=X‘ among all observations where

Yi=1]. For another example, in logistic regression Eq. 5,

case-control sampling only biases the intercept term,

which drops out in the odds ratio expression, OR=

e(X‘�X0)b. The coefficients of the control variables also

drop out (because the elements of X‘�X0 corresponding

to those parameters are zero).

As is well known (e.g., Ref. [8]), the rare events

assumption is problematic when t is not nearly zero, and

as a result, the odds ratio overestimates RR (when both are

above 1; OR underestimates RR otherwise). In addition, this

assumption implies, implausibly for most applications,

that the risk difference tends to zero (limt!0RD=0), no

matter how strong the real effect. In practice, RD is

therefore not estimated, even when it is of more interest

than RR.

When t is very small but not zero, the bias introduced

by using OR as if it were RR can be ignored without

practical consequence. The rare events assumption is

inappropriate in etiology studies with more commonly

occurring events, such as in highly infectious diseases.

The assumption is also often not plausible when study-

ing diseases with nonabsorbing states or when study-

ing prevalence.

Density Case-Control

In the commonly used proportional hazard model (6), the

coefficients b can be consistently estimated without any

auxiliary information on the population risk sets. The

contribution of each sampled risk set to the likelihood

function is the ex ante incidence probability for the

individual who will actually acquire the disease, condi-

tional on the total number of cases in the set being one:

PrðYitj
¼ 1jRjÞ ¼

PrðYitj
¼ 1ÞP

k2Rj

PrðYktj ¼ 1Þ ¼ eXibP
k2Rj

eXkb
ð7Þ

where i indexes the case in the risk set and the summation

in each denominator is over all observations in the risk set,

k=1,. . .,nj, where nj is the number of observations, or the

size, of Rj. The likelihood function then is the product of

terms such as Eq. 7 over all M sampled risk sets (see, e.g.,

Ref. [9]). When a risk set includes multiple cases, because

of timing ties, the conditional probability expression is

more complicated, but the approach remains the same.

This same estimator was independently proposed in

econometrics by Chamberlain[10] to estimate consistently

the parameters in a fixed-effect logit model when the

number of subjects per group remains fixed even as the

total number of subjects grows. Note also that Eq. 7 takes

the same form as the probability expressions in the

popular multinomial logit model (or McFadden’s choice

model as some call it), and indeed the same software can

be used on the data organized in risk sets to estimate b.

Eq. 7 also takes the same form as the conditional

probability expression for matched cohort data (for which

Greenland[11] gives an alternative modeling strategy for

estimating the risk ratio).

Eq. 7 takes the same form as the likelihood function

contribution of a full risk set in a Cox regression model for

full cohort data, only that now the sampled risk sets are

used. Fortunately, this does not bias the first-order

condition and preserves the consistency and asymptotic

normality of the maximum likelihood estimator (see

Refs. [12–14]). Moreover, values of nj of only about 6 can

result in nearly full efficiency.[12,15] For a discussion of

biased selection of the controls, see Refs. [16,17] and see

Ref. [18] for a discussion of alternative sampling designs.

With b consistently estimated by the conditional logit

approach, we can compute the rate ratio using the

incidence model (6), although the baseline hazard rate

l(t) is not estimated:

rr ¼ l‘ðtÞ
l0ðtÞ

¼ lðtÞeX‘b

lðtÞeX0b
¼ eX‘b

eX0b
¼ eðX0 � X‘Þb ð8Þ

Thus a key advantage of density designs over classic case-

control designs is that we can estimate rr without any

additional (rare events or other) assumptions or any

population information. However, without auxiliary

information on the population, the literature provides no

method for estimating any other quantity of interest, such

as the rate, rate difference, the risk, risk difference, risk

ratio, or number needed to treat.

INFERENCE UNDER FULL
POPULATION INFORMATION

We now discuss the quantities of interest that can be

estimated under each sampling design when required

auxiliary population information is available.

Classic Case-Control

In the classic case-control design, the population fraction

of cases, t, can supply the required auxiliary informa-

tion.[19–21] For example, in the simple case of a single

binary explanatory variable, the risk can be estimated as

p ¼ PrðY ¼ 1jX; tÞ

¼ PðXjY ¼ 1Þ PrðY ¼ 1Þ
PðXÞ

¼ PðXjY ¼ 1Þt
PðXjY ¼ 1Þt þ PðXjY ¼ 0Þð1 � tÞ ð9Þ

where P(XjY=1) and P(XjY=0) are replaced with the

sample mean of X among subjects where Y=1 and Y=0,

4 Case-Control Studies, Inference in



ORDER                        REPRINTS

respectively. From this expression, we can compute RR=

Pr(Y = 1jX‘,t) / Pr(Y = 1jX0,t), RD = Pr(Y =1jX‘,t)�Pr(Y=

1jX0,t), or NNT=1/jRDj.
For another example, the commonly used logistic

regression model (5) on case-control data yields consistent

maximum likelihood estimates of the slope coefficients

and only the estimated intercept b0 requires a correction

such that the quantity estimated should instead be:

b0 � ln
1 � t

t

� �
�y

1 � �y

� �� �
ð10Þ

where ȳ is the mean of Y or the sampling probability of

Y=1. Thus with exact knowledge of t, all logit parame-

ters can be consistently estimated (see Refs. [22–26]; see

Ref. [19] for a comprehensive review). Let bt denote the

logit coefficient vector, with the first element corrected as

in Eq. 10. Then the quantities of interest are:

p ¼ PrðY ¼ 1jX; tÞ ¼ ½1 þ e�Xbt 
�1;

RR ¼ ½1 þ e�X‘bt 
�1

½1 þ e�X0bt 
�1
;

RD ¼ ½1 þ e�X‘bt 
�1 � ½1 þ e�X0bt 
�1;

NNT ¼ 1

jRDj

For estimation, we can plug in the maximum likelihood

estimates for b or use improved methods with lower mean

square error in the presence of rare events.[26] Standard

errors for any of these quantities can be computed easily

by simulation.[27]

The correction in Eq. 10 applies not only to logit

models, but also to any multiplicative intercept model,

even including many neural networks (such as the feed-

forward perceptron with a logit output function[28,29]).

Statistical research in medicine still predominately uses

the logit specification for parametric analysis, whereas

numerous other scholarly fields have been steadily

switching to more flexible functional forms such as neural

networks. In other fields, scholars have recognized that

the logit model makes specific assumptions that are

normally without substantive justification and indeed in

the vast majority of research in this field are not even

addressed explicitly. This is acknowledged in medical

research in its use of matching models, but not when it

comes to parametric approaches. Unfortunately, when

using highly restrictive parametric forms such as logit, our

empirical answers are functions of our theoretical

specification rather than our data. By recognizing that

the correction above applies to a much broader class of

models, and makes considerably less stringent assump-

tions, researchers using case-control designs will have

many new and far more valid parametric approaches to

choose from.

Density Case-Control

To estimate quantities of interest other than rr under

density case-control sampling, we require information that

enables the estimation of the baseline hazard rate. We

employ the baseline hazard rate estimator proposed by

Ref. [30] where the key population information needed is

tj=nj/Nj, the sampling fraction for each observed risk set

Rj (j=1,. . .,M). With this information, and denoting the

maximum likelihood estimate of b from the conditional

logit procedure as b, the baseline incidence rate l at time tj
is estimated as:d

lðtjÞ ¼ 1X
k2Rj

ðeXkbÞð1=tjÞ
¼ 1X

k2Rj

eXkb � lnðtjÞ
ð11Þ

and with this, we can estimate the rate, li(t), from Eq. 6:

liðtjÞ ¼ eXibP
k2Rj

eXkb � lnðtjÞ
ð12Þ

With the rate, we can further estimate the cumulative rate:

HðTi;XiÞ ¼
X
tj2Ti

liðtjÞ ¼
X
tj2Ti

eXibX
k2Rj

eXkb � lnðtjÞ
ð13Þ

and hence the risk:

pi ¼ PrðY ¼ 1jXiÞ ¼ 1 � e�HðTi;XiÞ

¼ 1 � exp �
X
tj2Ti

eXibX
k2Rj

eXkb � lnðtjÞ

0
BB@

1
CCA ð14Þ

and any of the other quantities of interest. The factor 1/tj

serves as a weighting factor that enables us to weight up

each risk set to the full risk set size.

INFERENCE WITH BAYESIAN
PRIOR ASSUMPTIONS

‘‘Inference Without Population Information’’ and ‘‘Infer-

ence Under Full Population Information’’ discuss infer-

ence under conditions of ignorance and full knowledge of

the relevant auxiliary population information (t and tj).

When this information is not known exactly, but some

dFor simplicity, we use the same notation for the estimated baseline

hazard as for the theoretical version. We do the same for the other

quantities below as well.
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prior information exists, Bayesian methods are appropriate

and straightforward (although we are not aware of their use

in applications in this context). Ideally, this prior in-

formation would come from registry or survey data from

the target population, but similar information from closely

related populations would help form reasonable priors also.

The procedure then is simply to put a prior distribution on t
(in classic case-control designs) or tj (in density case-

control designs) and draw inferences about the quantity of

interest from the posterior. These inferences have all the

desirable properties of Bayesian estimates. They are

consistent, efficient, asymptotically normal, etc. when

averaging over the prior. We strongly support their use

when prior information is available and known to be valid.

Bayesian estimates also share at least two disadvan-

tages. First, they are not calculable when the analyst is

completely ignorant of t or tj in some or all parts of its

range because the required prior density cannot be fully

specified, and, in Bayesian inference, one must have a full

prior. Second, Bayesian estimates yield biased inferences

when prior information is biased. This second problem is

especially severe in case-control studies because the data

contain no information about t and tj, and so the prior does

not become dominated by the likelihood as the sample size

grows. That is, even for very large samples, inferences

from case-control data depend heavily on the prior.

These disadvantages combine in unfortunate ways

sometimes when analysts are unsure of the validity of

their prior information. In these cases, the classic

Bayesian paradigm may, in practice, have the effect of

encouraging researchers to guess values for their prior,

hence introducing biased information into their analyses

and adversely affecting their inferences. ‘‘Diffuse’’ priors

with large variances are also no solution here because in

general, increasing the variance of t or tj will also make

the mean tend toward 0.5, which of course is a statement

of knowledge, not ignorance.

We therefore pursue ‘‘robust Bayesian’’ methods

below that allow full or partial ignorance to be represented

accurately without biasing inferences.

INFERENCES WITHOUT FULL POPULATION
INFORMATION OR ASSUMPTIONS:
CLASSIC CASE-CONTROL

We now discuss inferences under classic case-control de-

signs about p, RR, and RD without the rare events as-

sumption or population information about t. We begin by

extending Manski’s results in the situation of pure

ignorance and then add methods for partial ignorance,

confidence intervals, and our preferred robust Bayesian

interpretation. We conclude the section with two examples.

Extending Manski’s ‘‘Ignorance’’ Results

As an alternative to full knowledge of t and the rare

events assumption, Manski[2,3] studied what inferences we

could make when the researcher had no knowledge of t. It

is widely known that under these circumstances, no

information about risk is available [i.e., p2 (0,1)] and RR is

bounded between 1 and OR. That is, RR 2 [min(1,OR),

max(1,OR)], apart from sampling error. That this expres-

sion depends on the odds ratio is useful because of how

often it is easily estimable.

Manski’s advance is that he also shows that RD can be

bounded, although it requires the following complicated

expression. Let

f ¼ PrðX0jY ¼ 1Þ PrðX0jY ¼ 0Þ
PrðX‘jY ¼ 1Þ PrðX‘jY ¼ 0Þ

� �1
2

ð15Þ

and

g ¼ a

a � ½fPrðX‘jY ¼ 1Þ � PrðX0jY ¼ 1Þ
 ; ð16Þ

where a=fPr(X‘|Y=0)�Pr(X0|Y=0, and

RDg ¼ PrðX‘jY ¼ 1Þg
PrðX‘jY ¼ 1Þg þ PrðX‘jY ¼ 0Þð1 � gÞ

� PrðX0jY ¼ 1Þg
PrðX0jY ¼ 1Þg þ PrðX0jY ¼ 0Þð1 � gÞ

ð17Þ

Then RD is bounded between 0 and RDg, apart from

sampling error, where RDg is the value of the risk

difference if t were equal to g.

Manski’s expression for the risk difference is useful but

only when it can be estimated. Unfortunately, except for

very simple cases, sophisticated nonparametric methods

are required to estimate each of the component probabil-

ities in Eqs. 15–17, and f, g, and RDg are not easy to

estimate directly; to our knowledge, they have never been

estimated in a real application. We remedy this situa-

tion by showing, in Appendix A, that these equations

can be simplified so that RDg ¼ ð
ffiffiffiffiffi
OR

p
� 1Þ=ð

ffiffiffiffiffi
OR

p
þ 1Þ

(which, surprisingly, is exactly Yule’s[31] ‘‘coefficient of

colligation,’’ sometimes called Yule’s Y). The bounds are

thus a simple function of the odds ratio:

RD 2 min 0;

ffiffiffiffiffi
OR

p
� 1ffiffiffiffiffi

OR
p

þ 1

� �
; max 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OR � 1

pffiffiffiffiffi
OR

p
þ 1

� �� �
ð18Þ

The advantages of our expression in Eq. 18 are not only

algebraic simplicity, and the familiarity with the odds

ratio among applied researchers, but also that OR can be

estimated very easily without nonparametric methods in

simple discrete cases, in logistic regression, and in a wide

6 Case-Control Studies, Inference in
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variety of multiplicative intercept models such as neural

network models. Because these neural network models

have arbitrary approximation capabilities, Eq. 18 can ef-

fectively always be applied.

A Proposed ‘‘Available
Information’’ Assumption

Applied researchers have been reluctant to adopt Manski’s

‘‘ignorance’’ assumption, perhaps in part because the

knowledge they have about t is discarded entirely, often

resulting in very wide bounds on the quantities of interest.

Particularly uncomfortable for researchers is that no

matter how strong the empirical relationship among the

variables is, the bounds on RR always include 1 and on RD

always include 0, which in both cases denote no treat-

ment effect.

Thus existing literature effectively requires researchers

to choose among three extreme assumptions: t is es-

sentially zero, is known exactly (possibly apart from

sampling error), or is completely unknown. Our alterna-

tive approach is to elicit from researchers a range of

values into which they are willing to say that t must fall

(e.g., [0.001,0.05]), which appears to be a better reflection

of the nature of prior information available in applied

research settings than the extremes of exact knowledge or

complete ignorance. Our approach seems consistent with

Manski’s[2] goals for future research and, like his specific

methods, does not require a fully Bayesian prior

distribution. Our approach could also be applied to bring

available information and probabilistic inference to the

methods Manski[2] has offered in other areas.

Let pt, RRt, RDt, and NNTt denote values of the

probability, relative risk, risk difference, and number

needed to treat, respectively, evaluated at t. Suppose that

t is known only to fall within the range [t0,t1], where

0<t0<t1<1. (Because, by definition, choice-based sam-

ples include at least one example of a case and one of a

control, t0 and t1 are known not to equal zero or one

exactly.) Then, because p and RR are monotonic in t, their

bounds are simply

p 2 ½pt0
; pt1


 ð19Þ

and

RR 2 ½minðRRt0
; RRt1

Þ;maxðRRt0
; RRt1

Þ
 ð20Þ

The bounds for the risk difference are more compli-

cated because RDt is a parabolic function of t, and so the

bounds differ in the monotonic and nonmonotonic

regions. The relationship is monotonic in regions where

t0 and t1 are both greater than or both less than the value

of t that corresponds to RDg ¼ ð
ffiffiffiffiffi
OR

p
� 1Þ=ð

ffiffiffiffiffi
OR

p
þ 1Þ.

This region corresponds to cases where the derivative of

RDt with respect to t, evaluated at t0 and t1, have the same

sign. (This derivative can easily be checked numerically

by comparing the signs of RDt0 + e
�RDt0

and RDt1 + e
�RDt1

for a suitably small value of e.) When the relationship is

monotonic, the bounds are

RD 2 ½minðRDt0
; RDt1

Þ;maxðRDt0
; RDt1

Þ
 ð21Þ

and otherwise, they are

RD 2 ½minðRDt0
; RDt1

; RDgÞ;maxðRDt0
; RDt1

; RDgÞ
 ð22Þ

The bounds for number needed to treat can be directly

derived from those for the risk difference by using

reciprocals of the latter.

Revisiting a Numerical Example

We illustrate our methods by extending the numerical

example concerning smoking and heart disease given

by Manski.[2,3] For clarity, we follow Manski in ignoring

uncertainty (i.e., equating sample fractions with sampling

probabilities as if n!1 ) in this section (only); in the

next two sections, we show how to include estimation

uncertainty and compute confidence intervals. This sec-

tion also demonstrates the degree to which results un-

der our approach are sensitive to assumptions about the

interval [t0,t1] while holding constant (at zero) estima-

tion uncertainty. (The effect of estimation uncertainty,

while holding constant the interval, follows standard

sampling theory.)

In Manski’s example, X is a binary explanatory var-

iable taking values 1 for smokers and 0 for nonsmokers,

and Y takes on the values 1 for coronary heart disease and

0 for healthy individuals. The assumptions in his example

imply that Pr(X = 1jY = 1) = 0.6, Pr(X = 1jY = 0) = 0.49,

Pr(X=0jY=1)=0.4, and Pr(X=0jY=0)=0.51. Hence using

Eq. 9, we can write the probabilities as functions of t:

PrðY ¼ 1jX ¼ 1; tÞ ¼ 0:6t
0:6t þ 0:49ð1 � tÞ

¼ t
0:82 þ 0:18t

PrðY ¼ 1jX ¼ 0; tÞ ¼ 0:4t
0:4t þ 0:51ð1 � tÞ

¼ t
1:28 � 0:28t

For each of the quantities of interest, we now compare

the case where t is unknown, as Manski does, to where it

is known to lie in the interval [0.05, 0.15] (Manski’s

example implies that t=0.1, which he treats as not

known). Without bounds on t, the problem provides no

information about any probability, whereas the additional

Case-Control Studies, Inference in 7
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information about t gives much more informative bounds:

the probability of heart disease among smokers is

Pr(Y=1jX=1)2 [0.06, 0.18], whereas among nonsmokers,

it is Pr(Y =1jX= 0)2 [0.04, 0.12]. For relative risk,

Manski’s ‘‘ignorance’’ assumption gives RR2 [1., 1.57],

whereas our alternative approach implies the very tight

bounds of RR2 [1.46, 1.53], indicating that smoking

increases the risk of heart disease between 46% and

53%. For the risk difference, the bounds given no

information on t are RD2 [0, 0.11], whereas our approach

yields much narrower bounds of RD2 [0.021, 0.056], the

increase in probability due to smoking. Because smoking

has an adverse effect, we can also obtain bounds for NNT,

the number needed to harm, based on that for the risk

difference. With no information on t, Manski’s approach

would result in NNT2 [9, 1 ], which is hardly informative

at all, while our method gives NNT2 [18, 48], a range

infinitely narrower than ‘‘between 9 and infinity’’ and of

course more substantively meaningful.

Classical Confidence Intervals

We now provide a method of computing classical

confidence intervals, saving our preferred robust Bayesian

interpretation for the following section. Because each end

of the bounds on p, RR, and RD are measured with error,

upper and lower confidence intervals could be computed

and reported for each. However, the inner bounds (the

upper confidence limit on the lower bound and the lower

confidence limit on the upper bound) are not of interest.

Thus we recommend defining a confidence interval (CI)

as the range between the outer confidence limits. The

actual CI coverage of the resulting interval is always at

least as great as the nominal coverage.

For all methods provided above, confidence intervals

can easily be computed by simulation (the delta method is

also possible but difficult because of the discontinuities

caused by the minimum and maximum functions). The

bounds are known functions of, and derive their sampling

distributions from, the estimated model parameters.

Therefore the distribution of the bounds can be simulated

using random draws from the sampling distributions of

the parameters.[27] For example, in the logit model, the

asymptotic distribution of the estimated parameters is

normal with mean vector and covariance matrix estimated

by the usual maximum likelihood procedures. Random

draws from this distribution can then be converted into

random draws from the distribution of the bounds through

the relevant formulas relating the bounds and the model

parameters. A 90% (for example) CI for the bounds can be

obtained by sorting the m random draws of the bounds and

taking the 5th and 95th percentile values as the lower and

upper bounds, respectively. Our software implements

these procedures. The choice of m reflects the tradeoff

between accuracy and speed: larger values of m improve

accuracy and reduce speed. The required m depends on the

example; 1000 will often be enough, but it is easy to verify:

rerun the simulation and if anything changes in as many

significant digits as is needed, increase m and try again.

A Robust Bayesian Interpretation

Our estimation procedure is not strictly Bayesian in that

choosing an interval for t is not equivalent to imposing a

uniform (or any version of a ‘‘noninformative’’) prior

density within those bounds. However, our procedure can

be thought of as a special case of ‘‘robust Bayesian

analysis’’ (e.g., Refs. [32,33]) and one that happens to be

easier to apply and gives results that are considerably

easier for applied researchers to use than most examples in

this literature.

From this robust Bayesian perspective, the interval

chosen for t can be thought of as narrowing the choice of a

prior to only a class of densities rather than a (fully

Bayesian) single density. In our case, the class of priors is

defined to include all densities P(t) subject to the

constraint that
R
t0

t1P(t)dt=1. The advantages of this

approach are that prior elicitation is much easier, it does

not force analysts to give priors when no prior information

exists, and, more importantly, estimates depend only on

real information and so are the same for any density within

the class. If a classical Bayesian prior is inaccurate,

classical Bayesian inferences will be incorrect. In contrast,

our ‘‘robust Bayesian’’ approach will give valid inferences

even if we can only narrow the prior to a class of densities

rather than one particular density function. (Because data

do not help in making inferences about t, this model is

an example of the type of analysis for which Berger[32]

argues that robust Bayesian analysis is required.)

The cost of this approach is that the information about

our quantity of interest can only be narrowed to a class of

posterior densities. Fortunately, in the present case, this

class can be conveniently summarized as an inequality

(rather than an equality) statement regarding the credible

intervals: the probability that the actual quantity of in-

terest is within the computed interval is always at least as

great as the nominal coverage.e

eOne objection to our procedure is that assuming a zero prior probability

for t outside the interval [t0,t1] may be unrealistic. Of course, one may

simply enlarge the prior interval to include the nonzero density area, but

a probabilistic version is easy to construct: first, elicit the interval

endpoints, t0 and t1, and also a fraction a (e.g., 0.05) such that 1� a
fraction of the time t falls within [t0,t1], i.e.,

R
t0

t1P(t)dt=1� a. Then,

outside this interval, use a portion of a (single) density to allocate the

remaining probability to [0,t0) and (t1,1], so that the sum of the integrals

of the two add to a. In this way, every member of the class of densities on

the full interval [0, 1] is proper, and robust Bayesian analysis can proceed

as before. We have found these changes inconsequential in the real

applications we have studied, although our software offers the option to

handle this situation.

8 Case-Control Studies, Inference in
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Thus reporting results from our methods can be as

simple as from existing methods used in this field. This is

a considerable advantage over other applications of robust

Bayesian methods because although considerable research

in statistics has focused on these approaches, applications

are still fairly rare. The reason is that the class of priors

turns into a class of posteriors, and it is the entire class of

posteriors that constitutes the research results. Summariz-

ing a single multidimensional posterior is already fairly

difficult; summarizing a class of posteriors in multidi-

mensional space only creates more problems. Yet in our

case, the class of posteriors can be reduced for pre-

sentation purposes to a credible interval, the only dis-

advantage of which is that it provides an inequality rather

than equality statement.

An Empirical Example

We now reanalyze data provided in Tumbarello et al.,[34]

the largest case-control study ever conducted of the risk

factors leading to bacterial pneumonia in HIV-infected

patients. We focus on their univariate analysis of risk

factors in 350 cases and 700 controls. The authors report

prior knowledge of t (the fraction of HIV-seropositive

individuals in the general population who have an episode

of bacterial pneumonia), based on previous studies, as

falling in the interval [0.097, 0.29]. We interpret this to be

a 99% prior interval and, for simplicity, assume the

remaining a=0.01 mass to be uniform in [0, 0.097) and

(0.29, 0.6]; our experiments (not shown) indicate that

inferences change very little across many reasonable

choices for the density outside the [0.097, 0.29] interval

for t.

The first row of Table 1 replicates the CI for the

univariate odds ratio reported in Ref. [34] for each of

four risk factors they considered. The second row of

the table gives �95% CIs for the risk ratio of each risk

factor, using the robust Bayesian methods described in ‘‘A

Robust Bayesian Interpretation’’ (with m=1000 simula-

tions). As the table shows, the intervals for RR indicate

somewhat smaller effects than OR, with the most no-

ticeable effects for IV drug use and smoking.

Perhaps more interesting are the final three rows of the

table which offer information not reported in any form in

the original article. For example, Table 1 shows that

smoking increases the probability of bacterial pneumonia

between 0.05 and 0.27 (a �95% CI for the risk difference,

RD). For another example, the �95% CI for the base

probability of an IV drug user contracting bacterial

pneumonia is 0.10–0.38. These examples and the other

information in Table 1 all seem like valuable information

for researchers and others interested in the study and its

results. The information existed in the data from this

study, but they are revealed only by application of the

methods offered here.

INFERENCE WITHOUT FULL POPULATION
INFORMATION OR ADDITIONAL
ASSUMPTIONS: DENSITY CASE-CONTROL

We now give analogous results for density case-control

designs to those provided in ‘‘Inferences Without Full

Population Information or Assumptions: Classic Case-

Control’’ for classic case-control designs and provide

informative bounds for p, RR, RD, li(t), and rdt when no

information or only partial information is available about

the tj’s in ‘‘Inference Under Full Population Information’’

(we skip rr because it does not depend on tj and is estimable

from the conditional logit procedure). Inference from

density case-control samples is complicated by the fact that

more than one piece of population information is involved:

there is a tj associated with each of the M risk sets.f We

fSee Ref. [35] for methods for estimating the risk using only the overall

cohort disease rate. However, this estimator is less efficient than the

one proposed by Langholz and Ørnulf [30] and employed here. See

also Ref. [6] on estimating rates using information on the crude

incidence density.

Table 1 Replication and extension of 95% CIs

Quantity of interest

Risk factor

IV Drug use Smoking Pneumonia Cirrhosis

OR 1.44–2.70 1.81–3.64 1.01–1.88 1.01–2.49

RR 1.31–2.45 1.52–3.13 1.01–1.73 1.03–2.17

RD 0.03–0.19 0.05–0.27 0.00–0.13 0.00–0.20

Pr(Y =1jX=0) 0.05–0.26 0.05–0.26 0.08–0.31 0.08–0.31

Pr(Y =1jX=1) 0.10–0.38 0.13–0.47 0.09–0.40 0.10–0.50

The OR row is an exact replication and the others are extensions using the methods developed here. The last two rows give the probability of

contracting bacterial pneumonia given the absence and presence of the given risk factor, respectively.

(From Ref. [34].)

Case-Control Studies, Inference in 9
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elicit the minimum and maximum values of each tj, which

we denote tj and �tj, respectively. The interval (tj; �tj) can

change with j or can be constant over risk sets; it can be

specified to include 100% of the prior density, as in ‘‘A

Proposed ‘Available Information’ Assumption,’’ or 1�a
fraction of the density, as in ‘‘A Robust Bayesian

Interpretation.’’ When we are completely ignorant over

tj, the interval is (0, 1).

To simplify notation, let rk=exkb and r j=
P

k2Rj
rk.

Clearly rk>0 and r j>0 8k, j. Then the estimators for the

rate, cumulative rate, and risk in Eqs. 12–14, respec-

tively, can be rewritten as:

liðtjÞ ¼ ritj

rj
ð23Þ

HðTi;XiÞ ¼
X
tj2Ti

liðtjÞ ¼
X
tj2Ti

ritj

rj
ð24Þ

and

pi ¼ PrðY ¼ 1jXiÞ ¼ 1 � e�HðTi;XiÞ

¼ 1 � exp �
X
tj2Ti

ritj

rj

 !
ð25Þ

respectively. We now develop bounds for the quantities

of interest as functions of tj and �tj.

Risk

From Eq. 25, we have

@pi

@tj

¼ e�HðXi;TiÞri

rj
> 0 8j

hence the risk is a monotonically increasing function with

respect to every tj. Denote pi and �pi as the values of pi

with all tj set to tj and �tj, respectively; then the bounds

for pi are simply pi 2 ½pi; �pi
. For example, when we are

completely ignorant about tj and therefore (tj;�tj
 is (0, 1],

the bounds give pi2 (0, 1�exp(�
P

tj
2Rj

(ri/r
j))].

Risk Ratio

We now examine RR=p1/p0, where pi is as in Eq. 25,

i=0, 1. We have

@RR

@tj

¼ r1ð1 � p1Þp0 � r0ð1 � p0Þp1

p2
0r j

ð26Þ

the sign of which is determined by that of the numerator.

When the numerator is positive, i.e., when

rr ¼ r1=r0 >
p1ð1 � p0Þ
ð1 � p1Þp0

¼ OR ð27Þ

the partial derivative is positive and so RR increases with

respect to tj. Otherwise, the derivative is negative and

RR decreases with respect to tj. In Appendix B, we show

that Eq. 27 holds whenever rr<1, independent of the

values of tj. Similarly, the sign is reversed whenever rr>1.

Hence RR is either monotonically increasing or monoton-

ically decreasing with respect to tj, for all j.

Thus when rr<1, RR is monotonically increasing with

respect to all tj and is therefore bounded by RR and RR,

which are values of RR with all tj set to their minimum and

maximum values, respectively. Otherwise, RR is mono-

tonically decreasing and the bounds are RR and RR. In

short, RR is bounded by

RR ¼ 2 ½minðRR; RRÞ;maxðRR; RRÞ
 ð28Þ

It is easy to see that lim tj!0 RR=r1/r0, hence when no

information is available for tj and therefore ðtj;�tj
 is (0, 1),

the bounds become

RR 2 ðminðr1=r0; RRÞ;maxðr1=r0; RRÞÞ

where RR is RR evaluated at tj=1 8j.

Risk Difference

The case of RD=p1�p0 is more complicated because

RD is not a monotonic function of the tj’s and @RD/@tj =

[r1e�H(T1,X‘)�r0e�H(T0,X0)]/r j can change signs depending

on the values of tj. Under the proportional hazards model

where ri and r j are not functions of time, however, we

can reduce the analytically difficult or even intractable

problem of constrained optimization in multidimensional

space to a simple one in which RD is a one-dimensional

function of the cumulative baseline hazard, which is a

monotone function of the tj’s.

Let Q(tj)=
P

j = 1
M tj/r

j denote the cumulative baseline

hazard rate, and note that @Q(tj)/@tj=1/r j>0 for all j,

so Q(tj) is monotonically increasing in all tj’s and

therefore bounded between Q=Q(tjÞ and �Q=Q(�tjÞ.
Now rewrite RD in terms of Q. From Eq. 24, we have

H(Tk,Xk)=rkQ for k=0, 1; hence

RD ¼ ð1 � e�r1QÞ � ð1 � e�r0QÞ

¼ e�r0Q � e�r1Q ð29Þ

and

@RD

@tj

¼ r1e�r1Q � r0e�r0Q

rj
ð30Þ

RD is not monotone in Q, but Q is a scalar and we know

its bounds, which brings us to a situation mathematically

similar to analyzing RD in classic case-control designs.

10 Case-Control Studies, Inference in
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Let Q* be the solution to the first-order condition @RD/

@tj = 0. From Eq. 30, we can solve for Q* = [1/

(r1�r0)]ln(r1/r0). Then from Eq. 29, we have

RDðQ*Þ ¼ ðr0=r1Þr0=ðr1 � r0Þ � ðr0=r1Þr1=ðr1 � r0Þ ð31Þ

To obtain the bounds for RD, we first see whether ½Q;Q

contains Q*. If it does, then

RD 2 ½minðRD; RD; RD*Þ;maxðRD; RD; RD*Þ
 ð32Þ

where RD=RD(Q), RD =RD(Q), and RD*=RD(Q*). Other-

wise, the bounds are

RD 2 ½minðRD; RDÞ;maxðRD; RDÞ
 ð33Þ

When no information is available for tj, the bounds

become

RD 2 ½minð0; RD*Þ;maxð0; RD*Þ
 ð34Þ

Rate

From Eq. 23, we see that @li(tj)/@tj=ri/r
j>0; hence li(tj)

is monotonically increasing in tj. It is therefore bound-

ed in ðliðtjÞ; liðtjÞÞ, where liðtjÞ is li(tj) evaluated at tj and

liðtjÞ is li(tj) evaluated at �tj. When we are ignorant with

respect to the tj’s, the rate is bounded as (0, ri/r
j).

Rate Difference

Because @rd/@tj=(r1�r0)/r j, rd is monotonically increas-

ing in tj if r1>r0 and decreasing otherwise. Hence the

bound on the rate difference is

rd 2 ½min½rdðtjÞ; rdð�tjÞ
;max½rdðtjÞ; rdð�tjÞ

 ð35Þ

and when ignorant of all information on tj, the bounds are

rd 2 ½min½0; ðr1 � r0Þ=r j
;max½0; ðr1 � r0Þ=r j



CONCLUSION

As is increasingly recognized, the quantity of interest in

most case-control studies is not the odds ratio, but rather

some version or function of a probability, risk ratio, risk

difference, rate, rate ratio, or rate difference, depending on

context.[6,7,36–41] We provide the methods to estimate each

of these quantities from case-control studies, even if no

auxiliary information, or only limited auxiliary informa-

tion, is available.

Unless the odds ratio happens to approximate a

parameter of central substantive interest, which is quite

rare, we suggest that it should not be reported any more

frequently than any other intermediate quantity in

statistical calculations. We suggest instead that research-

ers justify their assumption regarding bounds on t (in

classic case-control studies) or tj (in risk set case-control

studies) in the data or methods section of their work.

Then, they can substitute the confidence interval (CI)

now reported for the odds ratio with the CI for their

chosen quantity (or quantities) of interest. For example,

instead of an uninformative but presently common

reporting style:

the effect of smoking on lung cancer is positive OR =1:38

(95% CI 1.30–1.46)

researchers could give the much more interesting:

smoking increases the risk of contracting lung cancer by a

factor of between 2.5 and 3.1 (a �95% CI)

or

smoking increases the probability of contracting lung

cancer between 0.022 and 0.051 (a �95% CI)

If uncertainty exists over the appropriate bounds for the

unknown quantities, we suggest using the widest bounds,

conducting sensitivity analyses by showing how the CI

depends on different assumptions or setting a to a value

other than zero.

The methods discussed here are meant to improve

presentation and increase the amount of information that

can be extracted from existing models and data collec-

tions. They do not enable scholars to ignore the usual

threats to inference (measurement error, selection bias,

confounding, etc.) that must be avoided in any study.

APPENDIX A

SIMPLIFYING MANSKI’S BOUNDS ON
THE RISK DIFFERENCE

Proving Eq. 18 requires algebra only. For simplicity, let

Pab=Pr(XajY=b), so that OR=(P11P00)=(P01P10). Then,

omitting tedious but straightforward algebra at several

stages, f=(ORP01
2 /P11

2 )1/2=
ffiffiffiffiffi
OR

p
P01=P11, and g ¼

ffiffiffiffiffi
OR

p
=

ð
ffiffiffiffiffi
OR

p
þ P11=P10Þ. Then the components of RDg are

P11g ¼
ffiffiffiffi
OR

p
P10P11ffiffiffiffi

OR
p

P10 þ P11
; P01g ¼

ffiffiffiffi
OR

p
P01P10ffiffiffiffi

OR
p

P10 þ P11

P10ð1 � gÞ ¼ P10P11ffiffiffiffi
OR

p
P10 þ P11

; P00ð1 � gÞ ¼ P11P00ffiffiffiffi
OR

p
P10 þ P11

and so putting the terms together yields RDg ¼
ffiffiffiffiffi
OR

p
=ð1 þffiffiffiffiffi

OR
p

Þ � 1=ð1 þ
ffiffiffiffiffi
OR

p
Þ ¼ ð

ffiffiffiffiffi
OR

p
� 1Þ=ð

ffiffiffiffiffi
OR

p
þ 1Þ.
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APPENDIX B

MONOTONICITY OF RISK RATIO UNDER
DENSITY CASE-CONTROL DESIGNS

We show here that if rr<1, then rr>[p1(1�p0)]/[(1�
p1)p0] (the r1/r0>1 case is similar). Let Hk=H(Tk,Xk),

k=0, 1. From the definition of p1 and p0, [p1(1�p0)]/

[(1�p1)p0] can be simplified to (eH1�1)/(eH0�1).

Because rr=H1/H0, we only need to show that if H1/

H0< 1, then H1/H0>(eH1�1)/(eH0�1) or, equivalently,

H1(eH0�1)>H0(eH1�1).

The Taylor series expansions of eH1�1 and eH0�1 at

0 give

eH1 � 1 ¼ H1 þ ð1=2ÞH2
1 þ ð1=3!ÞH3

1 þ . . . ð36Þ

eH0 � 1 ¼ H0 þ ð1=2ÞH2
0 þ ð1=3!ÞH3

0 þ . . . ð37Þ

and hence

H1ðeH0 � 1Þ ¼ H1H0 þ ð1=2ÞH2
0H1

þ ð1=3!ÞH3
0H1 þ . . . ð38Þ

H0ðeH1 � 1Þ ¼ H0H1 þ ð1=2ÞH2
1H0

þ ð1=3!ÞH3
1H0 þ . . . ð39Þ

The first terms in Eqs. 38 and 39 are equal, and when H1/

H0<1, hence H1<H0, all other terms in Eq. 38 are greater

than the corresponding terms in Eq. 39 (because both

H0 > 0 and H1 > 0 always). Thus when H1/H0 < 1,

H1(eH0�1)>H0(eH1�1).
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