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SUMMARY

Classic (or ‘cumulative’) case-control sampling designs do not admit inferences about quantities of
interest other than risk ratios, and then only by making the rare events assumption. Probabilities, risk
di�erences and other quantities cannot be computed without knowledge of the population incidence
fraction. Similarly, density (or ‘risk set’) case-control sampling designs do not allow inferences about
quantities other than the rate ratio. Rates, rate di�erences, cumulative rates, risks, and other quantities
cannot be estimated unless auxiliary information about the underlying cohort such as the number of
controls in each full risk set is available. Most scholars who have considered the issue recommend
reporting more than just risk and rate ratios, but auxiliary population information needed to do this is
not usually available. We address this problem by developing methods that allow valid inferences about
all relevant quantities of interest from either type of case-control study when completely ignorant of or
only partially knowledgeable about relevant auxiliary population information. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Moynihan et al. [1] express the conclusions of nearly all who have written about reporting
standards:

In general, giving only the absolute or only the relative bene�ts does not tell the full
story; it is more informative if both researchers and the media make data available
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in both absolute and relative terms. For individual decisions: : : consumers need in-
formation to weigh the probability of bene�t and harm; in such cases it [also] seems
desirable for media stories to include actual event [probabilities] with and without
treatment.

Unfortunately, existing methods make this consensus methodological advice impossible to
follow in case-control studies. In practice, medical researchers have historically used classic
(that is, ‘cumulative’) case-control designs along with the rare events assumption (that is, that
the exposure and non-exposure incidence fractions approach zero) to estimate risk ratios, and
in recent years have been switching to density sampling, which requires no such assumption for
estimating rate ratios. (We discuss the failure-time matched version of density sampling called
risk-set sampling by biostatisticians.) Unfortunately, researchers rarely have the population
information needed by existing methods to estimate almost any other quantity of interest,
such as absolute risks and rates, risk and rate di�erences, attributable fractions, or numbers
needed to treat. We provide a way out of this situation by developing methods of estimating
all relevant quantities of interest under classic and density case-control sampling designs
when completely ignorant of, or only partially knowledgeable about, the relevant population
information.
We begin with theoretical work on cumulative case-control sampling by Manski [2; 3], who

shows that informative bounds on the risk ratio and di�erence are identi�ed for this sampling
design even when no auxiliary population information is available. We build on these results
and improve them in several ways to make them more useful in practice. First, we provide
a substantial simpli�cation of Manski’s risk di�erence bounds, which also makes estimation
feasible. Second, we show how to provide meaningful bounds for a variety of quantities of
interest in situations of partial ignorance. Third, we provide con�dence intervals for all quanti-
ties and a ‘robust Bayesian’ interpretation of our methods that work even for researchers who
are completely ignorant of prior information. Fourth, through the reanalysis of the hypothetical
example from Manski’s work and a replication and extension of an epidemiological study of
bacterial pneumonia in HIV-infected individuals, we demonstrate that adding information in
the way we suggest is quite powerful as it can substantially narrow the bounds on the quanti-
ties of interest. Fifth, we extend our methods to the density case-control sampling design and
provide informative bounds for all quantities of interest when auxiliary information on the
population data is not available or only partially available. Finally, we suggest new reporting
standards for applied research, and o�er software in Stata and in Gauss that implements the
methods developed in this paper (available at http://GKing.Harvard.edu).

2. QUANTITIES OF INTEREST

For subject i (i=1; : : : ; n), de�ne the outcome variable Yi; (t; t+� t) as 1 when one or more
‘events’ (such as disease incidence) occur in interval (t; t+� t) for (� t ¿ 0) and 0 otherwise.
The variable t usually indexes time but can denote any continuous variable. In etiological
studies, we shall be interested in Yit ≡ lim

� t→0
Yi; (t; t+� t). In other studies such as perinatal

epidemiology, conditions with brief risk periods like acute intoxication, and some prevalence
data, scholars only measure, or only can measure, Yi; (t; t+� t), which we refer to as Yi since
the observation period in these studies is usually the same for all i (reference [4], p. 548).

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1409–1427
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De�ne a k-vector of covariates and constant term as Xi. (We assume for purpose of this paper
that the X ’s are not time dependent.) Also let X0 and X‘ each denote k-vectors of possibly
hypothetical values of the explanatory variables (often chosen so that the treatment variable
changes and the others remain constant at their means).
Quantities of interest that are generally a function of t include the rate (or ‘hazard rate’

or ‘instantaneous rate’), �i(t) = lim
� t→0

Pr(Yi;(t;t+�t) = 1|Yis = 0;∀s ¡ ts Xi=� t and functions of

the rate. For example, the rate ratio, rrt = �‘(t)=�0(t), and the rate di�erence, rdt = �‘(t) −
�0(t) indicate how rates di�er as the explanatory variables change from values X0 to X‘.
Quantities of interest that are cumulated over an interval of time include the risk (also called
the ‘probability’ or ‘conditional probability of disease’)

�i=Pr(Y =1|Xi)=1− e−H (Ti; Xi) = 1− exp
(
−
∫ t+� t

(t; t+� t)
�i(t) dt

)
(1)

(where H (Ti; Xi) is the cumulative hazard rate for individual i over time Ti=(t0i ; t1i)), the
risk ratio, RR≡Pr(Y =1|X‘)= Pr(Y =1|X0), and the risk di�erence (or ‘�rst di�erence’, as it
is called in political science, or the ‘attributable risk’, as economists and some epidemiologists
call it), RD≡Pr(Y =1|X‘)− Pr(Y =1|X0). The probability is evaluated at some values of the
explanatory variables, such as X0 or X‘. The quantity RD is the increase in probability, and
RR is the factor by which the probability increases (an (RR − 1)×100 per cent increase),
when the explanatory variables change from X0 to X‘.
The quantities �(t), rrt , rdt , �, RR and RD are normally used to study incidence in etio-

logical analyses, but they are sometimes used to study prevalence by changing the de�nition
of an ‘event’. Functions of these quantities, such as the proportionate increase in the risk or
rate di�erence, the attributable fraction, or the expected number of people needed to treat to
prevent one adverse event can also be computed as a function of these quantities with the
methods described below.
The other key quantity often discussed in the epidemiological literature is the odds ratio

OR≡ Pr(Y =1|X‘)= Pr(Y =0|X‘)
Pr(Y =1|X0)= Pr(Y =0|X0) =

Pr(X‘|Y =1)Pr(X0|Y =0)
Pr(X0|Y =1)Pr(X‘|Y =0) (2)

where the second equality holds by Bayes theorem. The key advantage of OR is that it
has been easier to estimate than the other quantities. In logit and other multiplicative in-
tercept models (but not generally), OR also has the attractive feature of being invariant
with respect to the values at which control variables are held constant. The disadvantage
of OR is understanding what it means, and when OR is not the quantity of interest then
its ‘advantages’ are not su�cient to recommend its use. Some statisticians seem comfort-
able with OR as their ultimate quantity of interest, but this is not common. Even more
unusual is to �nd anyone who feels more comfortable with OR than the other quanti-
ties de�ned above; we have found no author who claims to be more comfortable com-
municating with the general public using an odds ratio [5]. The odds ratio has been used
‘largely because it serves as a link between results obtainable from follow-up studies and
those obtainable from case-control studies’ (reference [6], p. 761). We provide this link
with other quantities so that OR is no longer the only choice available. Concluding a con-
troversy on this subject in the British Medical Journal, Davies et al. [7] write ‘On one
thing we are in clear agreement: odds ratios can lead to confusion and alternative measures
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should be used when these are available’. We show here how to make all relevant quantities
always available even in case-control data. (Unfortunately, the term ‘relative risk’ no longer
seems useful since it has been co-opted to denote such diverse quantities as rr, RR and OR.)

3. CASE-CONTROL SAMPLING DESIGNS

We now introduce the two key case-control sampling designs. With appropriate modi�cations,
most of the methods we introduce also work with many variants of them.
Classic (or ‘cumulative’) case-control designs involve sampling (usually all) ‘cases’ (sub-

jects for which Yi=1) and a random sample of ‘controls’ (subjects for which Yi=0) at the
end of the study period. This design is most appropriate in studies of closed populations and
when Yi but not Yit is observed. Statistical models for such data specify the risk Pr(Yi=1|Xi)
as a function of the input Xi. The most commonly used model is the logistic

Pr(Yi=1|Xi)= 1
1+e−Xi�

(3)

Some examples in medical research using the cumulative case-control design are studies of
congenital malformation, analyses of ‘chronic conditions with ill-de�ned onset times and lim-
ited e�ects on mortality, such as obesity and multiple sclerosis, and studies of health services
utilization’ (reference [8], p. 113), and research that has as its goal descriptive, rather than
causal, inferences (such as ascertaining the types of people that now have lung cancer so we
can better prepare health care facilities in anticipation).
The newer density case-control sampling design involves, in the study of cohort data or-

ganized by risk sets, sampling ‘cases’ (subjects for which Yit =1) at their failure times and
a subset of ‘controls’ (subjects for which Yit =0) from all individuals at risk at the time
of each failure, possibly matched on a set of other control variables. Thus each sampled
risk set Rj ( j=1; : : : ; M , where M is the total number of cases in the data) is composed of
one case (or more in the case of timing ties in their occurrence) and a random sample of
controls at the same time (or other continuous index) t. A subject may appear in multiple
risk sets. This administratively convenient data collection strategy can result in a substantial
reduction in the resources required for the study, and also has the advantage of controlling
non-parametrically (that is, without functional form assumptions) for all omitted variables, and
unmeasured heterogeneity, related to t. Statistical models for such data specify the incidence
(hazard) rate as a function of t and X . The most commonly used model is the Cox proportional
hazard:

�i(t)= �(t)r(Xi; �) (4)

where in most applications r(Xi; �)= eXi� and the baseline hazard �(t) does not vary over
subjects. (The proportionality assumption holds when Xi is time invariant. When this is not
appropriate a model that allows time dependent covariates, such as the so-called Cox regression
model, can be used.)

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1409–1427
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4. INFERENCE WITHOUT POPULATION INFORMATION

4.1. Classic case-control

Without additional population information or assumptions, the literature provides no method
for estimating any quantity of interest from classic case-control data. Historically, medical
researchers have used the rare events assumption to estimate the risk ratio by the odds ratio.
Denote the population fraction of incident cases by �, which is the key piece of auxiliary
information about the population not re�ected in the sample (although other quantities such
as P(X ), the possibly multivariate density of X , are also su�cient). The rare events assumption
states that � is arbitrarily small (while P(X ) stays bounded away from zero, or instead that
Pr(Yi=1|Xj)→ 0 for j=0; ‘). This assumption is not merely that cases are ‘rare’, but that
they occur, at the limit, with zero probability. The advantage of this assumption is that, when
correct, OR is a good approximation to the risk ratio: lim�→0 OR=RR.
This limit result is attractive since OR is often easy to estimate in case-control designs.

For example, if X is a single binary variable, OR could be estimated by replacing elements
in the second line of equation (2) with their sample analogues (for example, Pr(X‘|Y =1)
can be estimated by the fraction of cases for which Xi=X‘ among all observations where
Yi=1). For another example, in logistic regression (3), case-control sampling only biases the
intercept term, which drops out in the odds ratio expression, OR=e(X‘−X0)�. The coe�cients
of the control variables also drop out (since the elements of X‘ − X0 corresponding to those
parameters are zero).
As is well known (for example, reference [8], pp. 244–245), the rare events assumption is

problematic when � is not nearly zero, and as a result the odds ratio overestimates RR (when
both are above 1; OR underestimates RR otherwise). In addition, this assumption implies,
implausibly for most applications, that the risk di�erence tends to zero (lim�→0 RD=0), no
matter how strong the real e�ect. In practice, RD is therefore not estimated, even when it is
of more interest than RR.
When � is very small but not zero, the bias introduced by using OR as if it were RR

can be ignored without practical consequence. The rare events assumption is inappropriate in
aetiology studies with more commonly occurring events, such as in highly infectious diseases.
The assumption is also often not plausible when studying diseases with non-absorbing states
or when studying prevalence.

4.2. Density case-control

In the commonly used proportional hazard model (4), the coe�cients � can be consistently
estimated without any auxiliary information on the population risk sets. The contribution of
each sampled risk set to the likelihood function is the ex ante incidence probability for the
individual who will actually get the disease, conditional on the total number of cases in the
set being one:

Pr(Yitj =1|Rj)=
Pr(Yitj =1)∑
k∈Rj Pr(Yktj =1)

=
eXi�∑
k∈Rj e

Xk�
(5)

where i indexes the case in the risk set and the summation in each denominator is over all
observations in the risk set, k=1; : : : ; nj, where nj is the number of observations, or the size,
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of Rj. The likelihood function then is the product of terms like (5) over all M sampled risk sets
(see, for example, reference [9]). When a risk set includes multiple cases, because of timing
ties, the conditional probability expression is more complicated, but the approach remains
the same. This same estimator was independently proposed in econometrics by Chamberlain
[10] to estimate consistently the parameters in a �xed e�ect logit model when the number
of subjects per group remains �xed even as the total number of subjects grows. Note also
that (5) takes the same form as the probability expressions in the popular multinomial logit
model (or McFadden’s choice model as some call it), and indeed the same software can be
used on the data organized in risk sets to estimate �. Equation (5) also takes the same form
as the conditional probability expression for matched cohort data (for which Greenland [11]
gives an alternative modelling strategy for estimating the risk ratio.)
Equation (5) takes the same form as the likelihood function contribution of a full risk

set in a Cox regression model for full cohort data, only that now the sampled risk sets are
used. Fortunately this does not bias the �rst-order condition, and preserves the consistency
and asymptotic normality of the maximum likelihood estimator (see references [12–14]).
Moreover, values of nj of only about 6 can result in nearly full e�ciency [12; 15]. For
a discussion of biased selection of the controls, see references [16; 17], and of alternative
sampling designs, see reference [18].
With � consistently estimated by the conditional logit approach, we can compute the rate

ratio using the incidence model (4) even though the baseline hazard rate �(t) is not estimated:

rr =
�‘(t)
�0(t)

=
�(t)eX‘�

�(t)eX0�
=
eX‘�

eX0�
=e(X0−X‘)� (6)

Thus, a key advantage of density designs over classic case-control designs is that we can
estimate rr without any additional (rare events or other) assumptions, or any population in-
formation. However, without auxiliary information on the population, the literature provides
no method for estimating any other quantity of interest, such as the rate, rate di�erence, the
risk, risk di�erence, or risk ratio.

5. INFERENCE UNDER FULL POPULATION INFORMATION

We now discuss the quantities of interest that can be estimated under each sampling design
when required auxiliary population information is available.

5.1. Classic case-control

In the classic case-control design, the population fraction of cases, �, can supply the required
auxiliary information [19–21]. For example, in the simple case of a single binary explanatory
variable, the risk can be estimated as

�=Pr(Y =1|X; �) = P(X |Y =1)Pr(Y =1)
P(X )

=
P(X |Y =1)�

P(X |Y =1)�+ P(X |Y =0)(1− �) (7)

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1409–1427
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where P(X |Y =1) and P(X |Y =0) are replaced with the sample mean of X among subjects
where Y =1 and Y =0, respectively. From this expression, we can compute RR=Pr(Y =1|
X‘; �)= Pr(Y =1|X0; �) or RD=Pr(Y =1|X‘; �)− Pr(Y =1|X0; �).
For another example, the commonly used logistic regression model (3) on case-control

data yields consistent maximum likelihood estimates of the slope coe�cients and only the
estimated intercept �0 requires a correction such that the quantity estimated should instead be

�0 − ln
[(
1− �
�

)(
�y

1− �y

)]
(8)

where �y is the mean of Y or the sampling probability of Y =1. Thus, with exact knowledge
of �, all logit parameters can be consistently estimated (see references [22–25]; see reference
[19], for a comprehensive review). Let �� denote the logit coe�cient vector, with the �rst ele-
ment corrected as in equation (8). Then the quantities of interest are �=Pr(Y =1|X; �)= [1+
e−X��]−1, RR= [1+e−X‘��]−1=[1+ e−X0��]−1, and RD= [1+e−X‘��]−1 − [1+ e−X0��]−1. For es-
timation, we can plug in the maximum likelihood estimates or use improved methods with
lower mean square error [26]. Standard errors for any of these quantities can be computed
easily by simulation [27].

5.2. Density case-control

To estimate quantities of interest other than rr under density case-control sampling, we require
information that enables the estimation of the baseline hazard rate. We employ the baseline
hazard rate estimator proposed by reference [28], where the key population information needed
is �j= nj=Nj, the sampling fraction for each observed risk set Rj ( j=1; : : : ; M). With this
information, and denoting the maximum likelihood estimate of � from the conditional logit
procedure as b, the baseline incidence rate � at time tj is estimated as∗

�(tj)=
1∑

k∈Rj(e
Xkb)(1=�j)

=
1∑

k∈Rj e
Xkb−ln(�j) (9)

and with this we can estimate the rate, �i(t), from equation (4):

�i(tj)=
eXib∑

k∈Rj e
Xkb−ln(�j) (10)

With the rate, we can further estimate the cumulative rate

H (Ti; Xi)=
∑
tj∈Ti

�i(tj)=
∑
tj∈Ti

eXib∑
k∈Rj e

Xkb−ln(�j) (11)

and hence the risk

�i=Pr(Y =1|Xi)=1− e−H (Ti; Xi) = 1− exp

(
− ∑
tj∈Ti

eXib∑
k∈Rj e

Xkb−ln(�j)

)
(12)

∗For simplicity we use the same notation for the estimated baseline hazard as for the theoretical version. We do
the same for the other quantities below as well.
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and any of the other quantities of interest. The factor 1=�j serves as a weighting factor that
enables us to weight up each risk set to the full risk set size.

6. INFERENCE WITH BAYESIAN PRIOR ASSUMPTIONS

Sections 4 and 5 discuss inference under conditions of ignorance and full knowledge of the
relevant auxiliary population information (� and �j). When this information is not known ex-
actly, but some prior information exists, Bayesian methods are appropriate and straightforward
(although we are not aware of their use in applications in this context). Ideally, this prior
information would come from registry or survey data from the target population, but similar
information from closely related populations would help form reasonable priors too. The pro-
cedure then is simply to put a prior distribution on � (in classic case-control designs) or �j
(in density case-control designs) and draw inferences about the quantity of interest from the
posterior. These inferences have all the desirable properties of Bayesian estimates. They are
consistent, e�cient, asymptotically normal etc., when averaging over the prior. We strongly
support their use when prior information is available and known to be valid.
Bayesian estimates also share at least two disadvantages. First, they are not calculable

when the analyst is completely ignorant of � or �j in some or all parts of its range, since
the required prior density cannot be fully speci�ed. Second, Bayesian estimates yield biased
inferences when prior information is biased. These disadvantages combine in unfortunate ways
sometimes when analysts are unsure of the validity of their prior information. In these cases,
the classic Bayesian paradigm may in practice have the e�ect of encouraging researchers
to guess values for their prior, hence introducing biased information into their analyses and
adversely a�ecting their inferences. ‘Di�use’ priors with large variances are also no solution
here since in general increasing the variance of � on �j will also make the mean tend toward
0.5, which is of course a statement of knowledge, not ignorance. These problems are especially
severe in case-control studies since the data contain no information about � and �j, and so
the prior does not become dominated by the likelihood as the sample size grows. That is,
even for very large samples, inferences from case-control data depend heavily on the prior.
We therefore pursue ‘robust Bayesian’ methods below that allow full or partial ignorance to
be represented accurately without biasing inferences.

7. INFERENCES WITHOUT FULL POPULATION INFORMATION
OR ASSUMPTIONS: CLASSIC CASE-CONTROL

We now discuss inferences under classic case-control designs about �, RR and RD without the
rare events assumption or population information about �. We begin by extending Manski’s
results in the situation of pure ignorance and then add methods for partial ignorance, con-
�dence intervals and our preferred robust Bayesian interpretation. We conclude the section
with two examples.

7.1. Extending Manski’s ‘ignorance’ results

As an alternative to full knowledge of � and the rare events assumption, Manski [2; 3] studied
what inferences we could make when the researcher had no knowledge of �. It is widely known
that under these circumstances no information about risk is available (that is, �∈(0; 1)) and RR

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1409–1427
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is bounded between 1 and OR. That is, RR∈[min(1;OR);max(1;OR)], apart from sampling
error. That this expression depends on the odds ratio is useful because of how often it is
easily estimable.
Manski’s advance is that he also shows that RD can be bounded, although it requires the

following complicated expression. Let

�=
[
Pr(X0|Y =1)Pr(X0|Y =0)
Pr(X‘|Y =1)Pr(X‘|Y =0)

]1=2
(13)

�=
�Pr(X‘|Y =0)− Pr(X0|Y =0)

�Pr(X‘|Y =0)− Pr(X0|Y =0)− [�Pr(X‘|Y =1)− Pr(X0|Y =1)] (14)

and

RD�=
Pr(X‘|Y =1)�

Pr(X‘|Y =1)�+ Pr(X‘|Y =0)(1− �) −
Pr(X0|Y =1)�

Pr(X0|Y =1)�+ Pr(X0|Y =0)(1− �) (15)

Then RD is bounded between 0 and RD�, apart from sampling error, where RD� is the value
of the risk di�erence if � were equal to �.
Manski’s expression for the risk di�erence is useful but only when it can be estimated.

Unfortunately, except for very simple cases, sophisticated non-parametric methods are required
to estimate each of the component probabilities in equations (13)–(15), and �, � and RD�
are not easy to estimate directly; to our knowledge, they have never been estimated in a real
application. We remedy this situation by showing, in Appendix A, that these equations can be
simpli�ed so that RD�=(

√
OR−1)=(√OR+1) (which, surprisingly, is exactly Yule’s (1912)

[29] ‘coe�cient of colligation’, sometimes called Yule’s Y ). The bounds are thus a simple
function of the odds ratio

RD∈
[
min

(
0;

√
OR − 1√
OR + 1

)
;max

(
0;

√
OR − 1√
OR + 1

)]
(16)

The advantages of our expression in equation (16) are not only algebraic simplicity, and the
familiarity with the odds ratio among applied researchers, but also that OR can be estimated
very easily without non-parametric methods in simple discrete cases, in logistic regression,
and in a wide variety of multiplicative intercept models, even including many neural networks
(such as the popular feed-forward perceptron with a logit output function [30; 31]). Since these
neural network models have arbitrary approximation capabilities, equation (16) can e�ectively
always be applied.

7.2. A proposed ‘available information’ assumption

Applied researchers have been reluctant to adopt Manski’s ‘ignorance’ assumption, perhaps
in part because the knowledge they have about � is discarded entirely, often resulting in very
wide bounds on the quantities of interest. Particularly uncomfortable for researchers is that no
matter how strong the empirical relationship among the variables, the bounds on RR always
include 1 and on RD always include 0, which in both cases denote no treatment e�ect.
Thus, existing literature e�ectively requires researchers to choose among three extreme

assumptions: � is essentially zero; is known exactly (possibly apart from sampling error);

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1409–1427
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or is completely unknown. Our alternative approach is to elicit from researchers a range of
values into which they are willing to say that � must fall (for example, [0:001; 0:05]), which
appears to be a better re�ection of the nature of prior information available in applied research
settings than the extremes of exact knowledge or complete ignorance. Our approach seems
consistent with Manski’s (reference [2], p. 31) goals for future research and, like his speci�c
methods, does not require a fully Bayesian prior distribution. Our approach could also be
applied to bring available information and probabilistic inference to the methods Manski [2]
has o�ered in other areas.
Let ��, RR� and RD� denote values of the probability, relative risk and risk di�erence,

respectively, evaluated at �. Suppose that � is known only to fall within the range [�0; �1],
where 0¡�0¡�1¡1. (Since, by de�nition, choice-based samples include at least one example
of a case and one of a control, �0 and �1 are known not to equal zero or one exactly.) Then,
since � and RR are monotonic in �, their bounds are simply

�∈[��0 ; ��1 ] (17)

and

RR∈[min(RR�0 ;RR�1);max(RR�0 ;RR�1)] (18)

The bounds for the risk di�erence are more complicated since RD� is a parabolic function
of �, and so the bounds di�er in the monotonic and non-monotonic regions. The relationship
is monotonic in regions where �0 and �1 are both greater than or both less than the value of
� that corresponds to RD�=(

√
OR − 1)=(√OR + 1). This region corresponds to cases where

the derivative of RD� with respect to �, evaluated at �0 and �1, have the same sign. (This
derivative can easily be checked numerically by comparing the signs of RD�0+� − RD�0 and
RD�1+�−RD�1 for a suitably small value of �.) When the relationship is monotonic, the bounds
are

RD∈[min(RD�0 ;RD�1);max(RD�0 ;RD�1)] (19)

and otherwise they are

RD∈[min(RD�0 ;RD�1 ;RD�);max(RD�0 ;RD�1 ;RD�)] (20)

7.3. Revisiting a numerical example

We illustrate our methods by extending the numerical example concerning smoking and heart
disease given by Manski [2; 3]. For clarity, we follow Manski in ignoring uncertainty (that is,
equating sample fractions with sampling probabilities as if n→∞) in this section (only); in
the next two sections, we show how to include estimation uncertainty and compute con�dence
intervals. This section also demonstrates the degree to which results under our approach are
sensitive to assumptions about the interval [�0; �1] while holding constant (at zero) estimation
uncertainty. (The e�ect of estimation uncertainty, while holding constant the interval, follows
standard sampling theory.)
In Manski’s example, X is a binary explanatory variable taking values 1 for smokers and

0 for non-smokers, and Y takes on the values 1 for coronary heart disease and 0 for healthy in-
dividuals. The assumptions in his example imply that Pr(X =1|Y =1)=0:6, Pr(X =1|Y =0)=
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0:49, Pr(X =0|Y =1)=0:4 and Pr(X =0|Y =0)=0:51. Hence using equation (7), we can
write the probabilities as functions of �:

Pr(Y =1|X =1; �) = 0:6�
0:6�+ 0:49(1− �) =

�
0:82 + 0:18�

Pr(Y =1|X =0; �) = 0:4�
0:4�+ 0:51(1− �) =

�
1:28− 0:28�

For each of the quantities of interest, we now compare the case where � is unknown,
as Manski does, to where it is known to lie in the interval [0:05; 0:15] (Manski’s exam-
ple implies that �=0:1, which he treats as not known). Without bounds on �, the problem
provides no information about any probability, whereas the additional information about �
gives much more informative bounds; the probability of heart disease among smokers is
Pr(Y =1|X =1)∈[0:06; 0:18], whereas among non-smokers it is Pr(Y =1|X =0)∈[0:04; 0:12].
For relative risk, Manski’s ‘ignorance’ assumption gives RR∈[1; 1:57] whereas our alternative
approach implies the very tight bounds of RR∈[1:46; 1:53], indicating that smoking increases
the risk of heart disease between 46 per cent and 53 per cent. For the risk di�erence, the
bounds given no information on � are RD∈[0; 0:11] whereas our approach yields much nar-
rower bounds of RD∈[0:021; 0:056], the increase in probability due to smoking.

7.4. Classical con�dence intervals

We now provide a method of computing classical con�dence intervals, saving our preferred
robust Bayesian interpretation for the following section. Since each end of the bounds on �,
RR and RD are measured with error, upper and lower con�dence intervals could be computed
and reported for each. However, the inner bounds (the upper con�dence limit on the lower
bound and the lower con�dence limit on the upper bound) are not of interest. Thus, we
recommend de�ning a con�dence interval (CI) as the range between the outer con�dence
limits. The actual CI coverage of the resulting interval is always at least as great as the
nominal coverage.
For all methods provided above, con�dence intervals can easily be computed by simulation

(the delta method is also possible but di�cult due to the discontinuities caused by the mini-
mum and maximum functions). The bounds are known functions of, and derive their sampling
distributions from, the estimated model parameters. Therefore, the distribution of the bounds
can be simulated using random draws from the sampling distributions of the parameters [27].
For example, in the logit model, the asymptotic distribution of the estimated parameters is
normal with mean vector and covariance matrix estimated by the usual maximum likelihood
procedures. Random draws from this distribution can then be converted into random draws
from the distribution of the bounds through the relevant formulas relating the bounds and the
model parameters. A 90 per cent (for example) CI for the bounds can be obtained by sorting
the m random draws of the bounds and taking the 5th and 95th percentile values as the lower
and upper bounds, respectively. Our software implements these procedures. The choice of m
re�ects the trade-o� between accuracy and speed; larger values of m improve accuracy and
reduce speed. The required m depends on the example; 1000 will often be enough, but it is
easy to verify – rerun the simulation and if anything changes in as many signi�cant digits as
is needed, increase m and try again.
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7.5. A robust Bayesian interpretation

Our estimation procedure is not strictly Bayesian in that choosing an interval for � is not
equivalent to imposing a uniform (or any version of a ‘non-informative’) prior density within
those bounds. However, our procedure can be thought of as a special case of ‘robust Bayesian
analysis’ (for example, references [32; 33]), and one that happens to be easier to apply and
gives results that are considerably easier for applied researchers to use than most examples
in this literature.
From this robust Bayesian perspective, the interval chosen for � can be thought of as nar-

rowing the choice of a prior to only a class of densities rather than a (fully Bayesian) single
density. In our case, the class of priors is de�ned to include all densities P(�) subject to
the constraint that

∫ �1
�0
P(�) d�=1. The advantages of this approach are that prior elicitation

is much easier, it does not force analysts to give priors when no prior information exists,
and more importantly estimates depend only on real information and so are the same for
any density within the class. If a classical Bayesian prior is inaccurate, classical Bayesian
inferences will be incorrect. In contrast, our ‘robust Bayesian’ approach will give valid infer-
ences even if we can only narrow the prior to a class of densities rather than one particular
density function. (Since data do not help in making inferences about �, this model is an
example of the type of analysis for which Berger [32] argues robust Bayesian analysis is
required.)
The cost of this approach is that the information about our quantity of interest can only be

narrowed to a class of posterior densities. Fortunately, in the present case, this class can be
conveniently summarized as an inequality (rather than an equality) statement regarding the
credible intervals; the probability that the actual quantity of interest is within the computed
interval is always at least as great as the nominal coverage.
One objection to our procedure is that assuming a zero prior probability for � outside the

interval [�0; �1] may be unrealistic. Of course one may simply enlarge the prior interval to
include the non-zero density area, but a probabilistic version is easy to construct. First, elicit
the interval endpoints, �0 and �1, and also a fraction � (for example, 0:05) such that 1− �
fraction of the time � falls within [�0; �1], that is

∫ �1
�0
P(�) d�=1− �. Then, outside this interval,

use a portion of a (single) density to allocate the remaining probability to [0; �0) and (�1; 1],
so that the sum of the integrals of the two add to �. In this way, every member of the class
of densities on the full interval [0; 1] is proper, and robust Bayesian analysis can proceed as
before. We have found these changes inconsequential in the real applications we have studied,
although our software o�ers the option to handle this situation.

7.6. An empirical example

We now reanalyse data provided in Tumbarello et al. [34], the largest case-control study ever
conducted of the risk factors leading to bacterial pneumonia in HIV-infected patients. We focus
on their univariate analysis of risk factors in 350 cases and 700 controls. The authors report
prior knowledge of � (the fraction of HIV-seropositive individuals in the general population
who have an episode of bacterial pneumonia), based on previous studies, as falling in the
interval [0:097; 0:29]. We interpret this to be a 99 per cent prior interval and for simplicity
assume the remaining �=0:01 mass to be uniform in [0; 0:097) and (0:29; 0:6]; our experiments
(not shown) indicate that inferences change very little across many reasonable choices for the
density outside the [0:097; 0:29] interval for �.
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Table I. Replication and extension of 95 per cent CIs in reference [34]. The OR row is an exact replication
and the others are extensions using the methods developed here. The last two rows give the probability of
contracting bacterial pneumonia given the absence and presence, respectively, of the given risk factor.

Quantity of interest Risk factor

IV drug use Smoking Pneumonia Cirrhosis

OR 1.44–2.70 1.81–3.64 1.01–1.88 1.01–2.49
RR 1.31–2.45 1.52–3.13 1.01–1.73 1.03–2.17
RD 0.03–0.19 0.05–0.27 0.00–0.13 0.00–0.20
Pr(Y =1|X =0) 0.05–0.26 0.05–0.26 0.08–0.31 0.08–0.31
Pr(Y =1|X =1) 0.10–0.38 0.13–0.47 0.09–0.40 0.10–0.50

The �rst row of Table I replicates the CI for the univariate odds ratio reported in refer-
ence [34] for each of four risk factors they considered. The second row of the table gives
¿95 per cent CIs for the risk ratio of each risk factor, using the robust Bayesian methods
described in Section 6.5 (with m=1000 simulations). As the table shows, the intervals for
RR indicate somewhat smaller e�ects than OR, with the most noticeable e�ects for IV drug
use and smoking.
Perhaps more interesting are the �nal three rows of the table which o�er information not

reported in any form in the original article. For example, Table I shows that smoking increases
the probability of bacterial pneumonia between 0.05 and 0.27 (a ¿95 per cent CI for the
risk di�erence, RD). For another example, the ¿95 per cent CI for the base probability of
an IV drug user contracting bacterial pneumonia is 0.10–0.38. These examples and the other
information in Table I all seem like valuable information for researchers and others interested
in the study and its results. The information existed in the data from this study but they are
revealed only by application of the methods o�ered here.

8. INFERENCE WITHOUT FULL POPULATION INFORMATION OR ADDITIONAL
ASSUMPTIONS: DENSITY CASE-CONTROL

We now give analogous results for density case-control designs to those provided in Section 7
for classic case-control designs, and provide informative bounds for �, RR, RD, �i(t) and rdt
when no information or only partial information is available about the �j’s in Section 5 (we
skip rr since it does not depend on �j and is estimable from the conditional logit procedure).
Inference from density case control samples are complicated by the fact that more than one
piece of population information is involved; there is a �j associated with each of the M risk
sets. (See reference [35] for methods for estimating the risk using only the overall cohort
disease rate. However this estimator is less e�cient than the one proposed by Langholz and
Borgan [28] and employed here. See also reference [6] on estimating rates using information
on the crude incidence density.) We elicit the minimum and maximum values of each �j,
which we denote �j and ��j, respectively. The interval (�j; ��j] can change with j or can be
constant over risk sets; it can be speci�ed to include 100 per cent of the prior density, as
in Section 7.2, or 1− � fraction of the density, as in Section 7.5. When we are completely
ignorant over �j, the interval is (0; 1].
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To simplify notation, let rk =e xkb, r j=
∑

k∈Rj rk . Clearly rk¿0 and r
j¿0 ∀k; j. Then the

estimators for the rate, cumulative rate, and risk in (10), (11) and (12) can be rewritten as

�i(tj) =
ri�j
r j

(21)

H (Ti; Xi) =
∑
tj∈Ti

�i(tj)=
∑
tj∈Ti

ri�j
r j

(22)

and

�i=Pr(Y =1|Xi)=1− e−H (Ti; Xi) =1− exp

(
− ∑
tj∈Ti

ri�j
r j

)
(23)

respectively. We now develop bounds for the quantities of interest as functions of �j and ��j.

8.1. Risk

From (23) we have

@�i
@�j

=
e−H (Xi; Ti)ri

r j
¿0 ∀j

hence the risk is a monotonically increasing function with respect to every �j. Denote �i and
��i as the values of �i with all �j set to �j and ��j respectively; then the bounds for �i are simply
�i∈[�i; ��i]. For example, when we are completely ignorant about �j and therefore (�j; ��j] is
(0; 1], the bounds give �i∈(0; 1− exp(−∑tj∈Rj

ri
r j )].

8.2. Risk ratio

We now examine RR=�1=�0, where �i is as in (23), i=0; 1. We have

@RR
@�j

=
r1(1−�1)�0 − r0(1−�0)�1

�20r j
(24)

the sign of which is determined by that of the numerator. When the numerator is positive,
that is, when

rr = r1=r0¿
�1(1−�0)
(1−�1)�0 =OR (25)

the partial derivative is positive and so RR increases with respect to �j. Otherwise the deriva-
tive is negative and RR decreases with respect to �j. In Appendix B we show that (25) holds
whenever rr¡1, independent of the values of �j. Similarly the sign is reversed whenever
rr¿1. Hence RR is either monotonically increasing or monotonically decreasing with respect
to �j, for all j.
Thus, when rr¡1, RR is monotonically increasing with respect to all �j and is therefore

bounded by RR and RR, which are values of RR with all �j set to their minimum and
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maximum values, respectively. Otherwise, RR is monotonically decreasing and the bounds
are RR and RR. In short, RR is bounded by

RR∈[min(RR;RR);max(RR;RR)] (26)

It is easy to see that lim�j→0 RR= r1=r0, hence when no information is available for �j and
therefore (�j; ��j] is (0; 1], the bounds become

RR∈(min(r1=r0;RR);max(r1=r0;RR))
where RR is RR evaluated at �j=1 ∀j:

8.3. Risk di�erence

The case of RD=�1 − �0 is more complicated since RD is not a monotonic function of the
�j’s and @RD=@�j=[r1e−H (T1 ; X‘)− r0e−H (T0 ; X0)]=r j can change signs depending on the values of
�j. Under the proportional hazards model where ri and r j are not functions of time, however,
we can reduce the analytically di�cult or even intractable problem of constrained optimization
in multi-dimensional space to a simple one in which RD is a one-dimensional function of the
cumulative baseline hazard, which is a monotone function of the �j’s.
Let Q(�j)=

∑M
j=1 �j=r

j denote the cumulative baseline hazard rate, and note that @Q(�j)=@�j
=1=r j¿0 for all j, so Q(�j) is monotonically increasing in all �j’s and therefore bounded
between Q=Q(�j) and �Q=Q(��j). Now rewrite RD in terms of Q. From (22), we have
H (Tk ; Xk)= rkQ for k=0; 1, hence

RD=(1− e−r1Q)− (1− e−r0Q)= e−r0Q − e−r1Q (27)

and

@RD
@�j

=
r1e−r1Q − r0e−r0Q

r j
(28)

RD is not monotone in Q, but Q is a scalar and we know its bounds, which brings us to
a situation mathematically similar to analysing RD in classic case-control designs.
Let Q∗ be the solution to the �rst-order condition @RD=@�j=0. From equation (28) we can

solve for Q∗= 1
(r1−r0) ln(r1=r0). Then, from (27) we have

RD(Q∗)= (r0=r1)r0=(r1−r0) − (r0=r1)r1=(r1−r0) (29)

To get the bounds for RD, we �rst see whether [Q; �Q] contains Q∗. If it does, then

RD∈[min(RD;RD;RD∗);max(RD;RD;RD∗)] (30)

where RD=RD(Q), RD=RD( �Q), and RD∗=RD(Q∗). Otherwise the bounds are

RD∈[min(RD;RD);max(RD;RD)] (31)

When no information is available for �j, the bounds become

RD∈[min(0;RD∗);max(0;RD∗)] (32)
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8.4. Rate

From (21) we see that @�i(tj)=@�j= ri=r j¿0, hence �i(tj) is monotonically increasing in �j.
It is therefore bounded in (�i(tj); �i(tj)), where �i(tj) is �i(tj) evaluated at �j, and �i(tj) is
�i(tj) evaluated at ��j. When we are ignorant with respect to the �j’s, the rate is bounded as
(0; ri=r j).

8.5. Rate di�erence

Since @rd=@�j=(r1 − r0)=r j, rd is monotonically increasing in �j if r1¿r0, and decreasing
otherwise. Hence the bound on the rate di�erence is

rd∈[min[rd(�j); rd(��j)];max[rd(�j); rd(��j)]] (33)

and when ignorant of all information on �j, the bounds are

rd∈[min[0; (r1 − r0)=r j];max[0; (r1 − r0)=r j]]

9. A CONCLUDING REMARK ON REPORTING STANDARDS

As is increasingly recognized, the quantity of interest in most case-control studies is not the
odds ratio but rather some version or function of a probability, risk ratio, risk di�erence,
rate, rate ratio or rate di�erence, depending on context [6; 36; 37; 7; 38–41]. We provide the
methods to estimate each of these quantities from case-control studies.
Unless the odds ratio happens to approximate a parameter of central substantive interest,

which would be unusual to say the least we suggest that it not be reported any more fre-
quently than any other intermediate quantity in statistical calculations. We suggest instead that
researchers justify their assumption regarding bounds on � (in classic case-control studies) or
�j (in risk set case-control studies) in the data or methods section of their work. Then, they
can substitute the con�dence interval (CI) now reported for the odds ratio with the CI for
their chosen quantity (or quantities) of interest. For example, instead of ‘the e�ect of smok-
ing on lung cancer is positive OR=1:38 (95 per cent CI 1.30–1.46)’ researchers could write
‘smoking increases the risk of contracting lung cancer by a factor of between 2.5 to 3.1 (a
¿95 per cent CI)’ or ‘smoking increases the probability of contracting lung cancer between
0.022 and 0.051 (a ¿95 per cent CI)’. If uncertainty exists over the appropriate bounds for
the unknown quantities, we suggest using the widest bounds, conducting sensitivity analyses
by showing how the CI depends on di�erent assumptions, or setting � to a value other than
zero.
The methods discussed here are meant to improve presentation and increase the amount

of information that can be extracted from existing models and data collections. They do not
enable scholars to ignore the usual threats to inference (measurement error, selection bias,
confounding etc.) that must be avoided in any study.
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APPENDIX A: SIMPLIFYING MANSKI’S BOUNDS ON THE RISK DIFFERENCE

Proving equation (16) requires algebra only. For simplicity, let Pab=Pr(Xa|Y = b), so that
OR=(P11P00)=(P01P10). Then, omitting tedious but straightforward algebra at several stages,
�=(ORP201=P

2
11)

1=2 =
√
ORP01=P11, and �=

√
OR=(

√
OR + P11=P10). Then the components of

RD� are

P11�=

√
ORP10P11√
ORP10 + P11

; P01�=

√
ORP01P10√
ORP10 + P11

P10(1− �) = P10P11√
ORP10 + P11

; P00(1− �)= P11P00√
ORP10 + P11

and so putting the terms together yields RD�=
√
OR=(1+

√
OR) − 1=(1+√

OR)= (
√
OR −

1)=(
√
OR + 1).

APPENDIX B: MONOTONICITY OF RISK RATIO UNDER DENSITY
CASE-CONTROL DESIGNS

We show here that if rr¡1, then rr¿[�1(1−�0)]=[(1−�1)�0] (the r1=r0¿1 case is similar).
Let Hk =H (Tk ; Xk), k=0; 1. From the de�nition of �1 and �0, [�1(1−�0)]=[(1−�1)�0 can be
simpli�ed to (eH1 − 1)=(eH0 − 1). Since rr =H1=H0, we only need to show that if H1=H0¡1,
then H1=H0¿(eH1 − 1)=(eH0 − 1), or, equivalently, H1(eH0 − 1)¿H0(eH1 − 1).
The Taylor series expansions of eH1 − 1 and eH0 − 1 at 0 give

eH1 − 1=H1 + (1=2)H 2
1 + (1=3!)H

3
1 + · · · (34)

eH0 − 1=H0 + (1=2)H 2
0 + (1=3!)H

3
0 + · · · (35)

and hence

H1(eH0 − 1) =H1H0 + (1=2)H 2
0H1 + (1=3!)H

3
0H1 + · · · (36)

H0(eH1 − 1) =H0H1 + (1=2)H 2
1H0 + (1=3!)H

3
1H0 + · · · (37)

The �rst term in (36) and (37) are equal, and when H1=H0¡1, hence H1¡H0, all other
terms in (36) are greater than the corresponding terms in (37) (since both H0¿0 and H1¿0
always). Thus, when H1=H0¡1, H1(eH0 − 1)¿H0(eH1 − 1).
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