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Abstract

Two features of quantitative political methodology make teaching and learning espe-
cially difficult: (1) Each new concept of statistics or inference builds on all previous
(and sometimes all other relevant) concepts; and (2) motivating substantively ori-
ented students, by teaching these abstract theories simultaneously with the practical
details of a statistical programming language (such as R), makes learning each sub-
ject harder. We address both problems through a new type of automated teaching
tool that helps students see the big theoretical picture and all its separate parts at the
same time without having to simultaneously learn to program. This tool, which we
make available via one click in a web browser, can be used in a traditional methods
class, but is also designed to work without instructor supervision.
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1 Introduction

Most new political science Ph.D. students have long since branched off from math and

physics and are excited to be able to focus on their substantive interests in government

and politics. Yet, upon arrival, many are surprised to learn that their first class will be in

quantitative political methodology, and they now need to master a series of highly sophis-

ticated technical concepts, such as the mathematical and statistical theories of uncertainty

and inference. Since “deferral of gratification” pretty much defines the graduate school

experience, most dutifully go along. But then they arrive in class, expecting to be taught

these abstract concepts and are told that they must simultaneously learn the practical de-

tails of a statistical programming language — in order to learn (and implement) these

abstract concepts, in order to begin to study what they came to graduate school for in the

first place.

Abstract statistical theory and practical programming tasks (including, e.g., under-

standing how maximum likelihood differs from probability theory and fixing that obscure

bug in your code on line 57) are, of course, both essential to a career as an empirical

political scientist. Although teaching these topics sequentially would be easier and more

efficient, it can be demotivating for substantively oriented students. So we try to give

them the big picture of how research is justified, designed, and implemented all at the

same time, often finding creative ways of using this material to motivate them (Williams,

2022). Judging from changes in the literature over the last several decades, teachers of po-

litical methodology have succeeded spectacularly well in motivating students and making

them better political scientists, but even with the best pedagogical strategies our classes do

sometimes have the same problems as calculus lectures taught during swimming lessons.

In this paper, we introduce an automated teaching tool designed to help students see

the big picture about crucial aspects of statistical theory without having to learn statistical

programming (until later) and with minimal distracting “clutter” (Bailey, 2019). It also

helps students zoom in on details and out for the big picture, whether or not they already

know how to program. This tool, which we call “2K1-in-Silico: An Interactive Non-

Textbook”, is available by clicking on 2K1.iq.harvard.edu; no downloads or installations
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required. (Alternatively, you can download the app from our repository github.com/iqss-

research/2k1-in-silico and use it off line, or try it in RStudio as a transition to learning

to program.) It is designed for self-study, without instructor supervision, although we

have used it to complement a class going through each part in depth (by helping to “teach

students to teach themselves”; Schleutker 2022).

2K1-in-Silco is named after the class for which it was originally designed, Govern-

ment 2001, taught by Gary King. This is the first class in the Harvard University polit-

ical science Ph.D. sequence and almost all graduate students in the department take it,

along with others from related disciplines and professional schools and nearby universi-

ties. 2K1-in-Silico can be used on its own, or by taking Government 2001 at Harvard or

online (through the Harvard Extension School). Most of the materials for this class are

also freely available to students and instructors elsewhere for use in their own classes.

This includes all the lecture videos, the slides used in the lectures, the syllabus, the read-

ings, and more; see the class website at j.mp/G2001. The lecture videos can be watched on

your own on YouTube at bit.ly/gov2001v or with others through Perusall.com, a platform

that allows students to help each other by annotating the videos and readings together and

through other types of motivating interactions. Instructors teaching their own classes, or

groups of students watching together, may create their own free Perusall class account by

registering at bit.ly/gov2001preg, creating a course, and entering in “copy code” PCD-

KPTWZ39, which pulls in all the videos automatically.

2 Interconnected Content

Unlike connections that can often be found among substantive political science research

topics, many parts of quantitative political methodology classes are closer to a singular

whole and so best studied together. The difficulty is that any digestible, single class- or

assignment-sized, piece of this whole is insufficient to convey the big picture. So we

march forward, teach each part, and all the while ask students to trust us that the big

picture, and fuller understanding, will come into focus over the semester. Because each

part is best understood only after understanding all the other parts, students typically refer
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back to material learned earlier, or sometimes repeat the class or take different classes

covering the same material.

In 2K1-in-Silico, we cover these three interrelated topics:

1. Data generation processes, using probability models;

2. Inference, using likelihood models (King, 1998); and

3. Quantities of interest, using statistical simulation (see King, Tomz, and Wittenberg
2000 and Clarify software for R or Stata; see GaryKing.org/clarify).

Probability enables us to randomly generate data from an assumed mathematical model

(e.g., drawing a set of heads and tails from the model of a fair coin flip), whereas the goal

of inference is the reverse: learning about features of a given model (such as whether the

coin is fair) from a set of observed data (e.g., an observed string of heads and tails from

100 flips of a coin). Quantities of interest are calculated from statistical inferences, based

on real data; numerous types of quantities can be computed, such as expected values,

predicted values, and probabilities, for use in forecasts, descriptive and counterfactual

estimation, or for other purposes.

Probability, inference, and quantities of interest are mostly useful to political scientists

with far more sophisticated models than coin flips, of course, allowing for explanatory

variables and many possible different dependence structures, distributions, sample spaces,

and mathematical formalisms. 2K1-in-Silico presently includes 18 different models, such

as linear-normal regression, Poisson and negative binomial count models, exponential

duration models, and binary and ordered probit and logit models. (Our software is open

source, so anyone can add models if they wish, with some programming of course!)

Understanding one historical period or substantive topic studied by political scien-

tists is usually helpful in studying another, but many topics in political methodology are

much more interrelated. The likelihood theory of inference is defined with probability

densities. Computing quantities of interest can be done by simulation or analytic means

to learn about the results of likelihood estimation or features of a probability distribution

constructed from theory without data. Probability can be studied without the other two

topics, but empirical political scientists have little interest in made-up models (or the data
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they can generate) without any necessary connection to the world we wish to study.

3 Design Principles

In building 2K1-in-Silico, we followed several design principles.

First, the main idea is to provide the big picture while enabling students to zoom

in and see any details they wish, with nothing omitted, and then zooming back out to

understand the context. One of the reasons learning programming is valuable is because

it enables us to get a feel for complicated statistical and mathematical objects (such as

statistical models) too complicated to fit entirely in one human’s working memory, usually

by repeatedly running a program, changing its inputs, and seeing what happens to the

outputs. We allow users to gain this intuition in 2K1-in-Silico by simple dropdown boxes

and slider bars, and watching numerical results and graphics change dynamically and

instantly, without any programming.

Second, the documentation for most statistical software packages does not include

complete, mathematically precise descriptions of the methods and algorithms implemented,

leaving instead only citations to the original scholarly source (sometimes with half-baked

equations written in text, like DEPENDENT = alpha + beta1*INDEPENDENT, which

usually conveys what is going on only to those who already know). For software users,

however, determining whether the method implemented is identical to that in the textbook

can then sometimes be difficult. In fact, anyone who writes computer code to implement

a method knows that they typically do differ and for good reasons.

For one example, numerical optimization that involves a parameter that can only be

positive, say a variance σ2, can crash the program if it guesses zero or a negative value on

the way to the optimum. Thus, a convenient numerical optimization trick is to reparame-

terize by defining σ2 = eγ , and estimating γ. This is convenient because γ can take on any

finite value, and so we can optimize the function without constraints and without anything

crashing, estimate γ, and then exponentiate the result. This works well also because eγ̂

is the same maximum likelihood estimate as if we had optimized the function directly.

That’s great but, in fact, the standard errors and full posterior distribution do change with
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this reparameterization and so replication, and complete understanding, requires knowing

how the software is written. Thus, in 2K1-in-Silico, every time a user chooses a model,

the full and precise mathematical formulation of the model implemented in the software

automatically appears on the page (LATEX formatted).

Third, to make this tool work as well as possible without instructor intervention, we

add next to every object on every page a i symbol, enabling the user to request more

information. Clicking on any one of those symbols provides the needed information

about an equation, dropdown box, statistical model, parameter, covariate, numerical re-

sult, dataset, or graphic. The information is presented in a little popup box without causing

the user to lose context. In addition to all the i symbols, there’s a button to ask for a tu-

torial that will take you on a guided tour of the whole app if desired, which is designed

for the most basic users without interfering with those with more advanced skills.

Finally, the program even tries to convey what numerical optimization algorithms do

by letting the user guess at parameter values and see what the result looks like in terms of

the distance from the maximum likelihood or what the uncertainty estimates look like. At

every stage, the data are always available and on the screen, including data that could be

generated by a probability model or to be used in making a statistical inference of some

kind.

4 What it does

Almost by definition, we cannot use the static presentation format of a paper to fully

convey what our interactive tool does, and so feel free to click here 2K1.iq.harvard.edu

and read along in order to see it in action as we explain it. In the app, you will find

an overview page with three tabs across the top, corresponding to (1) data generation

processes, (2) model inferences, and (3) quantities of inference, intended to be used in

this order. You can start with “tutorial mode” or instead skip that and see if the app is

as intuitive enough without it, as intended. Either way, for any feature not immediately

understandable, merely click on the corresponding i to get an in-context, detailed expla-

nation.
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Begin by clicking on the data generation process (DGP) tab, and choosing a DGP to

explore. The mathematical form of the chosen probability model will instantly appear,

along with slider bars for the user to set, indicating the parameter values and number of

observations. This is followed by a dataset drawn from the model along with graphic vi-

sualizations in a variety of useful formats that automatically change depending on the type

of data and model. All options, including the choice of the model, come with defaults, so

you do not even need to make any choices if you prefer; however, you will gain intuition

if you adjust the inputs and get a feel for how they and the model control the outputs.

To provide a better feel for the app if you have not yet clicked on the link, see Figure

1 for a snapshot of the app’s inference tab. Along the top row, you can see the tabs that

provide context. Below that is the dataset the user created on the previous (DGP) page.

Although the data was generated by some model of the user’s choice there, in the real

world we do not know the DGP during inference. Thus, on this page we must choose

the assumed distribution for the statistical model, which we can do from the dropdown

box (on the top left, with “Ordered Logit” showing presently), along with the choice of

one or more explanatory variables to include (with their own dropdown boxes, presently

showing “Normal B” and “Uniform A,” with details about them documented in the gray

i symbol to its right).

As soon as you choose an assumed statistical model, the mathematical form of the sta-

tistical model appears, followed by the complete mathematical form of the log-likelihood.

At the bottom left, the values of the maximum likelihood estimates and variance ma-

trix appear, but to get a better feel for the maximization process, the slider bars at the

top right allow the user to make a “guesstimate” of the values of each of the parameters

(in blue, corresponding to the values in the math at the left). As the user adjusts these

slider bars, the horizontal bars (in green, corresponding to the color of the word “guessti-

mate”) in the graph below show how well they fit the empirical histogram of the data.

The second graph plots the (profile) log-likelihood function for each parameter (chosen

by the dropdown box below it), along with the best quadratic approximation to the log-

likelihood which is used for calculating the standard errors. The dashed green vertical line
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Figure 1: 2K1-in-Silico: Model Inference tab (translated to a static figure)
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in this second plot shows how close the user’s guesstimate is to the maximum of the log-

likelihood function, and will move as you adjust the sliders. The last graph on this page,

which also instantly adjusts based on the slider bars, provides predicted values from the

currently chosen model (in this case ordered logit, for each of the three outcome values

that sum to one). If you click on the “Set to MLE” button under the slider bars, the bars

will adjust automatically to the maximum likelihood estimates, and the user will see the

green horizontal bars on the first graph matching the histogram bars exactly, and all the

other graphs adjusting automatically.

The last tab enables you to compute any of a variety of quantities of interest. If you

click on the tab, you will see at the top the maximum likelihood estimates and variance

matrix from the inference tab. You can choose which quantity interests you and should

be calculated. Given that, the full mathematical details of the estimation and fundamental

uncertainty appear, as these are needed for simulating quantities of interest. You can also

select values of the explanatory variables via slider bars. From all this information, 2K1-

in-Silico automatically presents a set of colorful graphics to summarize the quantities you

chose to compute, along with various types of uncertainty estimates.

At any time, you can go back to the main page to see the big picture, or any of the

three tabs.

5 Concluding remarks

In addition to trying 2K1-in-Silico or assigning it in class by clicking on 2K1.iq.harvard.edu,

we hope you will help us extend the tool to a wider variety of models, graphics, meth-

ods, and statistical concepts. We could even add additional tabs for understanding data,

matching for causal inference, and imputation for missing data, among others.

To do this, you will need to do some programming of course, but we use relatively

straightforward R-Shiny technology, as recommended by Metzger (2022). All the code is

open source and freely available at github.com/iqss-research/2k1-in-silico.
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