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1
METHOD AND APPARATUS FOR
SELECTING CLUSTERINGS TO CLASSIFY A
DATA SET

RELATED APPLICATIONS

This application is U.S. National Stage Application of
PCT/US2012/022178, filed Jan. 23, 2012, which claims
priority to and the benefit of U.S. Provisional Patent Appli-
cation No. 61/436,037, filed Jan. 25, 2011, the disclosures of
which are incorporated herein by reference.

BACKGROUND

Most academics and numerous others routinely attempt to
discover useful information by reading large quantities of
unstructured text. The corpus of text under study may be
literature to review, news stories to understand, medical
information to decipher, blog posts, comments, product
reviews, or emails to sort, audio-to-text summaries of
speeches to comprehend. The purpose is to discover useful
information from this array of unstructured text. This is a
time-consuming task and the information is increasing at a
very fast rate, with the quantity of text equivalent to that in
Library of Congress being produced in emails alone every
ten minutes.

An essential part of information discovery from unstruc-
tured text involves some type of classification. However,
classifying documents in an optimal way is an extremely
challenging computational task that no human being can
come close to optimizing by hand. The task involves choos-
ing the “best” (by some definition) among all possible ways
of partitioning a set of n objects (which mathematically is
known as the Bell number). The task may sound simple, but
merely enumerating the possibilities is essentially impos-
sible for even moderate numbers of documents. For
example, the number of partitions of a set of merely 100
documents is 4.76e+115, which is considerably larger than
the estimated number of elementary particles in the universe.
Even if the number of partitions is limited, the number is still
far beyond human abilities; for example, the number ways
of classifying 100 documents into two categories is 6.33e+

In addition, the task of optimal classification involves
more than enumeration. Classification typically involves
assessing the degree of similarity between each pair of
documents, and then creating a set of clusters called a
“clustering” by simultaneously maximizing the similarity of
documents within each cluster and minimizing the similarity
of documents across clusters. For 100 documents,

(100] 4,950
Pt

similarities need to be remembered while sorting documents
into categories and simultaneously optimizing across the
enormous number of possible clusterings.

This contrasts with a number somewhere between 4 and
7 (or somewhat more, if ordered hierarchically) items a
human being can keep in short-term working memory.
Various algorithms to simplify this process are still
extremely onerous and are likely to lead to sacrificing rather
than optimizing. In addition, this process assumes that
humans can reliably assess the similarity between docu-
ments, which is probably unrealistically optimistic given
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that the ordering of the categories, the ordering of the
documents, and variations in human coder training typically
prime human coders to respond in different ways. In prac-
tice, inter-coder reliability even for well-trained human
coders classifying documents into given categories is rarely
very high.

Since a crucial component of human conceptualization
involves classifying objects into smaller numbers of easier-
to-comprehend categories, an expansive literature in biol-
ogy, computer science, statistics, and the social sciences has
arisen to respond to this challenge. The literature is focused
on fully automatic clustering (FAC) algorithms designed to
produce insightful partitions of input objects with minimal
human input. At least 150 such FAC algorithms have been
characterized in the literature. Each of these methods work
well in some data sets, but predicting which, if any, method
will work well for a given application is often difficult or
impossible, and none work well across applications.

Other articles disclose computer assisted clustering
(CAC) methods designed to give a human user help in
finding an insightful or useful conceptualization from a
choice of clusterings. The intended trade-off means that
CAC methods require an investment of more user time
relative to FAC methods in return for better, more insightful,
clusterings. However, CAC methods, in turn, require con-
siderably less user time than completely unassisted human
clustering. For example, in an article entitled “A General
Purpose Computer-Assisted Document Clustering Method-
ology.” J. Grimmer and G. King, 2010, a disclosed CAC
method applies a large set of FAC methods to a data set and
scales the resulting clusterings so they are each represented
by a point in two-dimensional space, with points closer
together representing clusterings that are more similar.
These points are then used as basis partitions to construct
millions of new clusterings. A method is defined for iden-
tifying new clusterings in the two dimensional space,
through the creation of local averages of the clusterings from
the statistical model. In this way, every point in the space
defines a clustering. This space is then graphically displayed
and a user can move a cursor around the space and (in an
accompanying display window) watch one clustering morph
into another. This CAC method was designed to help users
quickly and efficiently choose clusterings that they, and
others, found more insightful or useful than clusterings
created by existing FAC methods or by following traditional
approaches without computer assistance.

However, in this CAC method clusterings produced by all
existing FAC methods comprise only a small portion of the
possible clusterings. Since these clusterings are used to
construct the clustering space that can be explored by the
user, the aforementioned CAC method inherently limits the
clustering space and omits many clusterings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 2 are flowcharts of an exemplary method in
accordance with embodiments of the invention; and

FIG. 3 is an illustration of a visualization of a space of
clusterings in accordance with embodiments of the inven-
tion.

SUMMARY

In accordance with the principles of the invention, in a
CAC method, a clustering space is generated from fixed
basis partitions that embed the entire space of all possible
clusterings. A two-dimensional clustering space is created
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from the space of all possible clusterings by first isometri-
cally embedding the space of all possible clusterings in a
lower dimensional Euclidean space. This lower dimensional
space is then sampled based on the number of documents in
the corpus. Partitions are then developed based on the
samples that tessellate the space. Finally, using clusterings
representative of these tessellations, a two-dimensional rep-
resentation for users to explore is created.

In one embodiment the lower dimensional Euclidean
space is sampled randomly.

In another embodiment the lower dimensional Euclidean
space is sampled by selecting at least some partitions of
interest to a user.

In still another embodiment, partitions are created from
the samples by finding a partition, which is approximately
the closest partition to each sample. This partition is found
by identifying pairs of documents that should be grouped
together. The latter step is performed by scoring the pairs
and selecting the smallest scores. To ensure that the closest
partition is found, coordinates with small scores are sequen-
tially added while maintaining the pairings necessary to
ensure that only a single partition is selected.

In a further embodiment, a two dimensional space is
created from the partitions employing “landmark™ multidi-
mensional scaling. First, a subset of “landmark™ points are
selected and embedded using a conventional multi-dimen-
sional scaling algorithm. The embedded points are then used
to triangulate the location of the remaining points. As a final
step, a two-dimensional grid (or lattice) of points equal to
the number of clusterings sampled is created and the closest
points to each point on the grid are selected, beginning in the
upper-left hand corner.

In still another embodiment, an animated visualization
method displays the two-dimensional space and allows a
user to move around and explore the space of clusterings by
displaying the clusters in the clustering at each point in the
lower dimensional space and smoothly morphing from a
clustering generated by one clustering method to clusterings
generated by other clustering methods as different points in
the space are selected. The visualization aids a researcher in
choosing one or a small number of clusterings that are the
most useful or informative about the documents.

DETAILED DESCRIPTION

FAC algorithms require assumptions about identifying the
relevant meaning in the text of each document, parsing the
text, representing the text quantitatively, measuring the
similarity between documents, and evaluating the quality of
a cluster and entire clusterings, among others. The applica-
tion of an FAC method making these assumptions, along
with additional assumptions for estimation, produces the
automatic identification of a single clustering. When, as is
often the case, this clustering is not sufficiently useful, some
small amount of human intervention may be applied by
tweaking the tuning parameters that come with some FAC
methods; however, differences among clusterings from any
one FAC method tends to be very small and, for example, far
smaller than differences across methods. For CAC methods,
the meaning in unstructured text need not be identified by
parsing algorithms and the text need not be represented
quantitatively. The other assumptions required for FAC
algorithms are also not required. Instead, CAC methods
make assumptions about the space of possible clusterings
and how human beings can interact with and learn from it.

An illustrative embodiment of the inventive method is
disclosed in FIGS. 1 and 2. The process begins in step 100
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4

and proceeds to step 102 where a Euclidean space 200 of all
possible clusterings is created. The first step in this creation
is to characterize the space of all clusterings. Let N be the
number of objects (which may be text or other documents),
and P be one possible partition of the objects into mutually
exclusive and exhaustive nonempty subsets. The partition is
also called a “clustering”, and the subsets within the parti-
tion are also called “clusters”. The number of unique parti-
tions P in a set of N objects is known as the “Bell number”.
Although the Bell number for two documents is two (both in
the same cluster or each in separate clusters), and for three
documents is five, it increases very fast thereafter. For
example, the number of partitions of a set of 100 documents
is 4.76e+115, and most clustering problems have many more
documents. Even if the number of partitions is fixed, the
number is still huge; for example, the number ways of
classifying 100 documents into 2 categories is 6.33e+29.

The Bell space is defined as the set of all possible unique
partitions P,, of N objects. Although the Bell space is
immense, it is only

(7)-

dimensional and therefore can be embedded in an

(z)-

dimensional Euclidean space. The key to this representation
is recognizing that each partition (or clustering) can be
uniquely characterized by the set of pairs of documents
where both members of each pair appear in the same cluster.
This suggests that a smaller set of

(3

total partitions can be used to build a set of local cluster
ensembles that describe the entire Bell space and can be used
to embed the Bell space into the Euclidean space.

Building a local cluster ensemble requires five pieces of
information. First is a distance metric. Second is a set of
“basis” partitions in the Euclidean space. Third is a kernel
density to determine the weight placed on each of the basis
partitions to construct a specific clustering at a point in the
space. Fourth is a rule for combining the weighted average
of the basis partitions to create a similarity matrix. And
finally, a “cluster function” is required to map from the
similarity matrix to the space of partitions.

An illustrative distance metric is defined for N observa-
tions and two arbitrary partitions of these observations, P,
and P,. Assuming partition P, groups together x total pairs
of observations into the same partition while P, groups
together y total pairs and that P, and P, share Cx,y=min(x,
y) pairs of observations that both partitions P, and P, agree
belong in the same cluster. In this case the distance on the
partitions D(P,, P,) is defined as

!
x+y—20xyy]'2

D(Py, Py) = ( >
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Tlustrative basis partitions are the set of observations that
place a single pair of observations into the same cluster; each
partition is represented as B, ;. The basis partitions are placed
at the corners of an

)

dimensional simplex, each with coordinate e, ;.
An illustrative kernel, k, used to determine the weight on
each basis partition is given by

k(z)=1 for all zef0,1]

k(z)=0 otherwise

An illustrative weight placed on each partition located
around a point ¢ in the simplex is w, =k(d(c, e, ;)) where the
distance d between any two points X, y in K dimensional
Euclidean space is d(x,y)=V2,_, “(x,~y,)*. With this weight-
ing, an illustrative similarity matrix can be constructed as
SAVE, X . "w, B, .

Finally, any clustering method { that identically returns
partitions can be used to map from the similarity matrix to
the space of partitions.

This procedure does not explicitly embed all the points in
the Bell space. To do so would quickly exhaust the memory
of'the largest supercomputers for even moderately sized data
sets. Naively searching through the space is possible using
the geometry created above, but the space can be more
effectively explored by examining systematically selected
subsets of the space (or imposing additional assumptions).
In particular, a set of p partitions is chosen from the Bell
space and organized into a two-dimensional space with
points near each other representing clusterings that are more
similar. The number of partitions p should equal the number
of pixels available to display the space, although a user
could zoom in at any point to present additional partitions.
Most of the displayed partitions should represent areas of the
Bell space that are perceptually distinguishable so that the
bulk of the diversity of relevant clusterings is offered to the
user.

In accordance with the principles of the invention, in step
104, the Bell space is sampled by sampler 204 based on the
number of documents in the corpus as indicated schemati-
cally by arrow 202. These samples are provided to the
partition builder 208 as indicated schematically by arrow
206. In step 106, partitions that tessellate the entire space for
this number of documents are generated by the partition
builder 208. It can be shown that the Bell space of partitions
lies on a set of hyperspheres inside the simplex that are of
decreasing radius towards the center of the simplex. There-
fore, it is sufficient to tessellate each of these hyperspheres
individually in order to tessellate the entire Bell space. In
order to do this, a set of random samples is draw from each
hypersphere. The closest partition to each of the samples on
the sphere is then found. Because the union of the hyper-
spheres constitutes the Bell space, the union of the hyper-
sphere tessellations constitutes a tessellation of the Bell
space.

The partition builder 208 proceeds as follows. Specifi-
cally, assume that a hypersphere, which contains the set of
partitions that group together k observations, is to be tes-
sellated. This implies that the hypersphere corresponding to
k observations has a radius of
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r= [%_@ .

To take a random draw from this hypersphere, first, draw a
point

x~N, y\(d, cXI)
s

where ¢ and d are composed of arbitrary constants. This
point is then projected to the unit sphere by calculating

Xs =~ X
K

where

S= (B +xd+. +xy
2

Finally, the sphere is resized and moved to the center of the
hypersphere,

1
Xy =X X+ ——.

(z)

Repeatedly drawing these points will produce a set of
samples uniformly distributed over the unit-hypersphere.
These draws now constitute a uniform sample over the
hypersphere, but are not a set of partitions that tessellate the
hypersphere. To tessellate with partitions, the partitions
closest to each of the random point draws are found.
Identifying a closest partition naively is an NP-hard prob-
lem, but an approximate method can be used. Partitions with
k pairs will be at a point that is comprised of k 1/k elements
and

(z)-+

0 elements. Each coordinate x, is either

or x. from its new location in the partition. Therefore, to
identify pairs that should be grouped together, the pairs are
scored by

The closet partition can be identified by taking the k smallest
scores. To ensure that the closest partition is identified,
coordinates with small scores are sequentially added. How-
ever, as new pairs of observations are added, the pairings
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necessary to ensure that only a single partition is selected are
maintained. The result of this algorithm is a set of partitions
that are evenly distributed over the hypersphere. Joining
together the partitions that tessellate this hypersphere there-
fore constitutes a probabilistic tessellation of the entire Bell
space.

The fact that the tessellation is constructed by the indi-
vidual concentric hyperspheres turns out to be very conve-
nient for the many applications where researchers have some
prior notion about the types of clusterings that would prove
most insightful. Small regions of the hyperspheres contain
partitions that group together the same number of clusters
and have similar entropy. By sampling from the regions of
hyperspheres with partitions of interest it can be much easier
for a researcher to identify a clustering of interest from the
two-dimensional space to be explored. Using this sampling
scheme also makes it easy to only include partitions where
a given set of pairs of documents are together or a different
given set are grouped separately.

The next step in the inventive method is a projection of
the space to two dimensions to facilitate exploration.
Because large numbers of partitions will be sampled, it is
infeasible to directly perform embedding using direct
approaches, such as conventional multidimensional scaling
algorithms. The direct application of these algorithms
requires the computation and storage of a distance matrix
that compares the distance of each pair of observations. This
would require an immense amount of memory just to store
the distance matrix, let alone the processing power to
naively apply the algorithms to the distance matrix.

One alternative strategy, shown in step 108, is to employ
landmark multidimensional scaling. This method, and the
broader class of methods known as Nystrom methods,
proceed in two steps. First a subset of points is selected that
constitute the “landmarks”. An embedding is performed on
this subset, and then that embedding is used to triangulate
the location of the remaining points. This procedure sub-
stantially reduces the computational complexity of the
embedding at the cost of a departure from an optimal
solution that a classic multidimensional scaling algorithm
might identify.

In one embodiment, a specific Nystrom algorithm
employed proceeds in a series of steps introduced in an
article entitled. “Global Versus Local Methods in Nonlin-
earity Dimensionality Reduction”, V. de Silva and J. B.
Tenenbaum, Proceedings of Neural Information Processing
Systems 15:721-728 (2003), which article is incorporated
herein in its entirety by reference. The sampled partitions are
received form by the selector 212 from the partition builder
208 as schematically indicated by arrow 210. The sampler
212 randomly selects a subset of the sampled partitions,
along with the basis partitions. A sub-distance matrix is then
computed for this set of partitions and either a Sammon
multi-dimensional scaling (as described in “A Nonlinear
Mapping for Data Structure Analysis”. J. Sammon, /EEE
Transactions on Computers 18(5):401-409 (1969), which
article is hereby incorporated herein in its entirety) or a
classic multi-dimensional scaling is performed to embed the
points. For the remaining points, a triangulation method is
used that places the points in the space based on their
distance from the randomly selected points.

The points are then transferred to the projector 216 as
indicated by arrow 214, where, in step 110, a greedy method
is used to embed the points in a two-dimensional lattice.
First a grid (or lattice) of points equal to the number of
clusterings sampled is created. The closest points to each
point on the grid are then greedily selected, beginning in the
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upper-left hand corner of the grid. While this process
severely deforms the space (even more so than the landmark
embedding), this provides the users a space that is easier to
navigate.

The final step 112 in the inventive method is to provide a
map or a geography of clusterings, with nearby clusterings
being more similar. This geography organizes results and
enables a researcher to choose efficiently one or a small
number of clusterings which convey the most useful infor-
mation, or which meet any other criteria the researcher
imposes.

The points generated by the projector 216 are transferred
to the display 220 as indicated by 218. A map is generated
by displaying the two-dimensional projection of the clus-
terings as separate points on a display screen. Each point in
the space corresponds to one clustering. Some discrete
points may be labeled to give structure to the space. For
example, clusterings produced by methods that have come
out of prior research may be labeled with the name of the
clustering method used to generate them. Other points in this
space correspond to new clusterings constructed with a local
cluster ensemble. The space is formally discrete, since the
smallest difference between two clusterings occurs when
(for non-fuzzy clustering) exactly one document moves
from one cluster to another.

The display is arranged so that a researcher can move a
cursor over the space of clusterings and select a single point.
When the point is selected, the corresponding clusters in the
clustering for that point appear in a separate window. The
researcher can then drag the selected point in any direction
and watch the clusters in the separate window morph
smoothly from clusters in one clustering to clusters in the
adjacent clustering. The process then finishes in step 114.

FIG. 3 illustrates one inventive visualization 300 of a
space of clusterings, when applied to one simple corpus of
documents. In this illustrative example, the initial data set
includes the biographies of each U.S. president from Roo-
sevelt to Obama; the biographies were downloaded from the
White House website.

The two-dimensional projection of the space of cluster-
ings is illustrated in the central panel 302, with individual
clustering methods labeled. Each clustering method corre-
sponds to one point in this space, and one clustering of the
given documents. The space is formally discrete, since the
smallest difference between two clusterings occurs when
(for non-fuzzy clustering) exactly one document moves
from one cluster to another, but an enormous range of
possible clusterings still exists: even this tiny data set of only
13 documents can be partitioned in 27,644,437 possible
ways, each representing a different point in this space. In
order to reduce the complexity of the diagram only some
points have been labeled. The labeled points correspond to
clustering methods that have been used in prior research on
text documents; other points in this space correspond to new
clusterings, each clustering constructed as a local cluster
ensemble.

Two specific clusterings 304 and 306, each corresponding
to one point as indicated by arrows 308 and 310, respec-
tively, in the central space appear to the left and right of the
figure. In these clusterings, labels have been added manually
for clarification. Clustering 1 (304), creates clusters of
“Reagan Republicans” (Reagan and the two Bushes) and all
others. Clustering 2 (306) groups the presidents into two
clusters organized chronologically.

Although only two clusters have been shown for clarity,
the display is arranged so that a researcher can move a cursor
over the space of clusterings and select a single point. When
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the point is selected, the corresponding clusters in the
clustering for that point appear in a separate window. The
researcher can then drag the selected point in any direction
and watch the clusters in the separate window morph
smoothly from clusters in one clustering to clusters in the
adjacent clustering.

While the invention has been shown and described with
reference to a number of embodiments thereof, it will be
recognized by those skilled in the art that various changes in
form and detail may be made herein without departing from
the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:

1. A method for selecting clusterings to classify a data set,
the method implemented in a data processor having a
memory and a display and comprising:

a) using the data processor to create a lower dimensional
space of all possible clusterings and storing the space in
the memory, each clustering being associated with an
allocation of objects to be clustered and corresponding
to a point in the lower dimensional space;

b) using the data processor to sample the stored lower
dimensional space based on a number of objects in the
data set;

¢) using the data processor to build partitions based on the
samples that tessellate the lower-dimensional space of
all possible clusterings, the clusterings being tessellated
based on similarities among the objects in the associ-
ated allocations;

d) using the data processor to select partitions and deter-
mine remaining point locations in the lower dimen-
sional space;

e) using the data processor to project the points of the
lower dimensional space to a two dimensional array of
points; and

f) displaying, on the display, points in the two-dimen-
sional array.

2. The method of claim 1 wherein step (a) comprises using
the data processor to embed a space of all possible cluster-
ings into a lower dimensional Fuclidean space.

3. The method of claim 2 wherein step (b) comprises
using the data processor to randomly sample the lower
dimensional Euclidean space.

4. The method of claim 2 wherein step (b) comprises
using the data processor to sample the lower dimensional
Euclidean space by selecting at least some partitions of
interest to a user.

5. The method of claim 1 wherein step (¢) comprises using
the data processor to find a partition that is approximately
the closest partition to each sample generated in step (b).

6. The method of claim 5 wherein the objects are docu-
ments and step (c¢) comprises using the data processor to
score pairs of documents and to select the smallest scores.

7. The method of claim 6 further comprising using the
data processor to sequentially add coordinates with small
scores while maintaining pairings necessary to ensure that
only a single partition is selected.

8. The method of claim 1 wherein step (d) comprises
using the processor to select a subset of “landmark™ points,
to embed the selected points using a conventional multi-
dimensional scaling algorithm and, using the embedded
points, to triangulate the location of the remaining points.
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9. The method of claim 1 wherein step (e) comprises using
the data processor to create a two-dimensional grid of points
equal to the number of clusterings sampled and to select the
closest points to each point on the grid.

10. The method of claim 1 wherein the data processor has
a mechanism for selecting a point on the display and step (e)
comprises displaying clusters in a clustering corresponding
to the selected point.

11. Apparatus for selecting clusterings to classify a data
set comprising a data processor having a display and a
memory with a software program therein that controls the
data processor to perform the following steps:

a) creating a lower dimensional space of all possible
clusterings and storing the space in the memory, each
clustering being associated with an allocation of objects
to be clustered and corresponding to a point in the
lower dimensional space;

b) sampling the stored lower dimensional space based on
a number of objects in the data set;

¢) building partitions based on the samples that tessellate
the lower-dimensional space of all possible clusterings,
the clusterings being tessellated based on similarities
among the objects in the associated allocations;

d) selecting partitions and determine remaining point
locations in the lower dimensional space;

e) projecting the points of the lower dimensional space to
a two-dimensional array of points; and

f) displaying, on the display, points in the two-dimen-
sional array.

12. The apparatus of claim 11 wherein step (a) comprises
embedding a space of all possible clusterings into a lower
dimensional Euclidean space.

13. The apparatus of claim 12 wherein step (b) comprises
randomly sampling the lower dimensional Euclidean space.

14. The apparatus of claim 12 wherein step (b) comprises
sampling the lower dimensional Euclidean space by select-
ing at least some partitions of interest to a user.

15. The apparatus of claim 11 wherein step (c) comprises
finding a partition that is approximately the closest partition
to each sample generated in step (b).

16. The apparatus of claim 15 wherein the objects are
documents and step (c) comprises using the data processor
to score pairs of documents and to select the smallest scores.

17. The apparatus of claim 16 further comprising sequen-
tially adding coordinates with small scores while maintain-
ing pairings necessary to ensure that only a single partition
is selected.

18. The apparatus of claim 11 wherein step (d) comprises
selecting a subset of “landmark™ points, embedding the
selected points using a conventional multi-dimensional scal-
ing algorithm and, using the embedded points, to triangulate
the location of the remaining points.

19. The apparatus of claim 11 wherein step (e) comprises
creating a two-dimensional grid of points equal to the
number of clusterings sampled and selecting the closest
points to each point on the grid.

20. The apparatus of claim 11 wherein the data processor
has a mechanism for selecting a point on the display and step
(e) comprises displaying clusters in a clustering correspond-
ing to the selected point.
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